
Fun with Java: Sprite Animation, Part 5 

Baldwin shows you how to override the update method of the Component class to improve the 

animation quality of the program over what would normally be achieved using the default 

version of the update method.  In the process, he shows you how to eliminate the flashing that 

often accompanies efforts to use the default version of the update method for animation 

purposes.  He also shows you how to get and use an offscreen drawing context to accomplish 

double buffering in the drawing process.  
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Preface 

Why the repeated introduction?  

If you are one of those orderly people who start reading a book at the beginning and reads 

through to the end, you are probably wondering why I keep repeating this long introduction.  The 

truth is that this introduction isn't meant for you.  Rather, it is meant for those people who start 

reading in the middle.  

Having said that, this is one of the lessons in a miniseries that will concentrate on having fun 

while programming in Java.  

This miniseries will include a variety of Java programming topics that fall in the category of fun 

programming.  This particular lesson is the fifth in of a group of lessons that teach you how to 

write animation programs in Java.  

The first lesson in the group was entitled Fun with Java: Sprite Animation, Part 1.  (Here is your 

opportunity to go back and start reading at the beginning.) The previous lesson was entitled Fun 

with Java: Sprite Animation, Part 4.  

Viewing tip  

Java1450.htm
Java1456.htm
Java1456.htm


You may find it useful to open another copy of this lesson in a separate browser window.  That 

will make it easier for you to scroll back and forth among the different figures and listings while 

you are reading about them.  

Supplementary material  

I recommend that you also study the other lessons in my extensive collection of online Java 

tutorials.  You will find those lessons published at Gamelan.com.  However, as of the date of this 

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and 

sometimes they are difficult to locate there.  You will find a consolidated index at Baldwin's Java 

Programming Tutorials.  

Preview 

This is one of a group of lessons that will teach you how to write animation programs in 

Java.  These lessons will teach you how to write sprite animation, frame animation, and a 

combination of the two.  

Animated spherical sea creatures  

The first program, being discussed in this lesson, will show you how to use sprite animation to 

cause a group of colored spherical sea creatures to swim around in a fish tank.  A screen shot of 

the output produced by this program is shown in Figure 1.  

 

Figure 1.  Animated spherical sea creatures in a fish tank. 

A creature of many colors  

Many sea creatures have the ability to change their color in very impressive ways.  The second 

program that I will discuss in subsequent lessons will simulate that process using a combination 

of sprite and frame animation.  

Slithering sea worms  

The third program, also to be discussed in a subsequent lesson, will use a combination of sprite 

animation, frame animation, and some other techniques to cause a group of multi-colored sea 
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worms to slither around in the fish tank.  In addition to slithering, the sea worms will also change 

the color of different parts of their body, much like real sea creatures.  

A screen shot of the output from the third program is shown in Figure 2.  

 

Figure 2.  Animated sea worms in a fish tank. 

Getting the required GIF images  

Figure 3 shows the GIF image files that you will need to run these three programs.  

   

 
                

Figure 3.  GIF image files that you will need. 

You should be able to capture the images by right-clicking on them individually, and then saving 

them into files on your local disk.  Having done that, you will need to rename the files to match 

the names that are hard-coded into the programs.  

Review of previous lesson  

In the previous lesson, I explained the behavior of the run method of the animation thread as 

well as the makeSprite method of the controlling class.  



I provided a preview of the SpriteManager class, which will be discussed in detail in a 

subsequent lesson.  I also provided a brief preview of the Sprite class, which will be discussed in 

detail in a subsequent lesson.  

I discussed the repaint, update, and paint methods of the Component class.  I also discussed 

the timer loop used in this program, and suggested an alternative approach that makes use of a 

Timer object to fire Action events.  

Also in the previous lesson, I provided a complete recap of everything that we have learned in 

the first four lessons of this series.  

What are the plans for this lesson?  

There are only two methods remaining to be discussed in the controlling class:  update and 

paint.  In this lesson, I will explain the behavior of the overridden update and paint 

methods.  As explained in the previous lesson, the update method is invoked by the operating 

system in response to a repaint request on the Frame.  

Discussion and Sample Program 

This program is so long that several lessons will be required to discuss it fully.  Rather than to 

make you wait until I complete all of those lessons to get your hands on the program, I have 

provided a copy of the entire program in Listing 6 near the end of the lesson.  That way, you can 

copy it into a source file on your local disk, compile it, run it, and start seeing the results.  

Discuss in fragments  

As usual, I will discuss the program in fragments.  As explained in the previous lesson, once 

during each iteration of the animation loop, the code updates the positions of all of the sprites 

and then invokes the repaint method on the Frame.  Then it sleeps for a specified period, wakes 

up, and does it all over again.  

What is the behavior of the repaint method?  

According to the Sun documentation, invoking the repaint method on the Frame causes a call to 

be made to the frame's update method as soon as possible.  

What is the behavior of the update method?  

Sun describes the default behavior of the update method as follows:  

"The update method of Component does the following: 

o Clears this component by filling it with the background color. 

o Sets the color of the graphics context to be the foreground color of this 

component. 



o Calls this component's paint method to completely redraw this component." 

Doesn't use default update method  

However, this animation program does not use the default behavior of the update 

method.  Rather, this program overrides the update method to provide behavior that is 

appropriate for better-quality animation.  

Three major changes  

This program makes three major changes to the default behavior of the update method to 

improve the animation quality.  

Eliminate flashing  

First, the new behavior eliminates the clearing of the display area of the Frame object at the 

beginning of each redraw operation.  This eliminates a flashing effect that is often produced by 

that default operation.  

Use double buffering  

Second, the new behavior draws the scene on an offscreen graphics context and then transfers 

that scene onto the screen context at high speed. (This is often referred to as double 

buffering.)  This makes it impossible for the viewer to see the scene as it is being drawn, and 

usually provides a more pleasing result.  

No need for the paint method  

Third, since all of the required drawing is accomplished in the update method, there is no call to 

the paint method by the update method.  Although an overridden version of the paint method is 

provided, it doesn't do anything, and it isn't invoked by the animation process.  

An offscreen graphics context  

The code fragment in Listing 1 gets an offscreen graphics context to be used as described above.  

   

  public void update(Graphics g) { 

    if (offScreenGraphicsCtx == null) { 

      offScreenImage =  

         createImage(getSize().width,  

                     getSize().height); 

      offScreenGraphicsCtx =  

          offScreenImage.getGraphics(); 

    }//end if 

 

Listing 1 



As you can see, there are two steps involved in getting a useful offscreen graphics context.  

1. Create an Image object 

2. Create a Graphics object 

 

Create an Image object  

The first step is to invoke the createImage method of the Component class to get an Image 

object of a specified size.  This method requires the width and height of the image as parameters 

and returns a reference to an object of type Image.  

Create a Graphics object  

The second step is to invoke the getGraphics method on the Image object returned by the first 

step.  This method returns a reference to an object of type Graphics.  Here is what Sun has to 

say about the method:  

"Creates a graphics context for drawing to an off-screen image. This method can 

only be called for off-screen images." 

Drawing offscreen  

Once we have the offscreen graphics context, we can invoke any of the methods of the Graphics 

class to draw pictures on that context.  

In this case, we don't draw the pictures within the update method directly.  Rather, we pass a 

reference to the offscreen context to the drawScene method of the SpriteManager object where 

the drawing is actually accomplished (you will see how the scene is drawn in a subsequent lesson 

where I discuss the SpriteManager class in detail).  

The call to the drawScene method of the SpriteManager class is shown in Listing 2.  

   

    spriteManager.drawScene( 

                 offScreenGraphicsCtx); 

 

Listing 2 

Drawing onscreen  

When the drawScene method returns, the scene has been drawn onto the offscreen graphics 

context, and it is time to copy it to the screen context at a high rate of speed.  This is 

accomplished using the drawImage method of the Graphics class, as shown in Listing 3.  

   

    if(offScreenImage != null){ 



         g.drawImage( 

           offScreenImage, 0, 0, 

this); 

    }//end if 

  }//end overridden update method 

 

Listing 3 

The drawImage method is overloaded  

There are several overloaded versions of the drawImage method.  The version used here 

requires four parameters.  The first parameter is a reference to an offscreen graphics context.  

The second and third parameters are the coordinate values of the screen image where the top left-

hand corner of the offscreen image will be positioned.  In this case, the top left-hand corner of 

the offscreen image will be placed at the top left-hand corner of the screen image.  

The last parameter is a reference to an ImageObserver object.  I have probably already confused 

you enough in an earlier lesson regarding the use of this as an ImageObserver object.  I won't 

add to that confusion by discussing it further here.  (Again, however, I plan to dedicate an entire 

future lesson to the concept of ImageObserver.)  

Does not invoke the paint method  

Note that the code in the overridden update method does not invoke the paint method, as is the 

case with the default version of the update method.  All of the required drawing is handled in the 

update method, and there is nothing further to be drawn by the paint method.  As a result, the 

overridden paint method shown in Listing 4 below is not used in the animation process.  

   

  public void paint(Graphics g) { 

    //Nothing required here.  All  

    // drawing is done in the update  

    // method. 

  }//end overridden paint method 

     

}//end class Animate01 

 

Listing 4 

That completes my discussion of all the methods of the controlling class.  

The BackgroundImage class  

Listing 5 contains all of the code for a utility class named BackgroundImage.  As I mentioned 

in an earlier lesson, this class was written simply to make it a little easier to deal with the 

background image.  

   



class BackgroundImage{ 

  private Image image; 

  private Component component; 

  private Dimension size; 

 

  public BackgroundImage( 

                  Component component, 

                  Image image) { 

    this.component = component; 

    size = component.getSize(); 

    this.image = image; 

  }//end construtor 

   

  public Dimension getSize(){ 

    return size; 

  }//end getSize() 

 

  public Image getImage(){ 

    return image; 

  }//end getImage() 

 

  public void setImage(Image image){ 

    this.image = image; 

  }//end setImage() 

 

  public void drawBackgroundImage( 

                          Graphics g){ 

    g.drawImage( 

              image, 0, 0, component); 

  }//end drawBackgroundImage() 

}//end class BackgroundImage 

 

Listing 5 

A very simple class  

As you can see from Listing 5, there isn't much to this class, so it doesn't deserve much in the 

way of a discussion.  

Basically, an object instantiated from this class has the ability to  

 Store a reference to a background Image object, 

 Return a reference to the object, 

 Return the size of the object 

 Cause the background image to be drawn on a specified graphics context 

Beyond that, there isn't much to be said for this class.  

Summary 



It has taken five lessons, but I have finally completed my discussion of the controlling class for 

this animation program.  

In this lesson, I showed you how to override the update method of the Component class to 

improve the animation quality of the program over what would normally be achieved using the 

default version of the update method.  

In the process, I showed you how to eliminate the flashing that often accompanies efforts to use 

the default version of the update method for animation purposes.  This flashing is caused by the 

fact that the default version of update draws an empty component (often white) at the beginning 

of each redraw cycle.  

I also showed you how to get and use an offscreen drawing context to accomplish double 

buffering in the drawing process.  The use of double buffering makes it impossible for the user to 

see the scene as it is being drawn because the scene is first drawn offscreen and then transferred 

as a whole to the screen context.  Depending on the drawing speed, this can also produce a more 

pleasing result.  

I also provided a very brief discussion of the utility class named BackgroundImage.  

What's Next? 

There are two more classes to cover before my discussion of this animation program is 

complete:  SpriteManager and Sprite.  

I will begin my discussion of the SpriteManager class in the next lesson.  

Complete Program Listing 

A complete listing of the program is provided in Listing 6.  

   

/*File Animate01.java 

Copyright 2001, R.G.Baldwin 

 

This program displays several animated 

colored spherical creatures swimming  

around in an aquarium.  Each creature  

maintains generally the same course 

with until it collides with another  

creature or with a wall.  However,  

each creature has the ability to  

occasionally make random changes in  

its course. 

 

**************************************/ 

import java.awt.*; 

import java.awt.event.*; 

import java.util.*; 



 

public class Animate01 extends Frame  

                  implements Runnable { 

  private Image offScreenImage; 

  private Image backGroundImage; 

  private Image[] gifImages =  

                          new Image[6]; 

  //offscreen graphics context 

  private Graphics  

                  offScreenGraphicsCtx; 

  private Thread animationThread; 

  private MediaTracker mediaTracker; 

  private SpriteManager spriteManager; 

  //Animation display rate, 12fps 

  private int animationDelay = 83; 

  private Random rand =  

                new Random(System. 

                  currentTimeMillis()); 

   

  public static void main( 

                        String[] args){ 

    new Animate01(); 

  }//end main 

  //---------------------------------// 

 

  Animate01() {//constructor 

    // Load and track the images 

    mediaTracker =  

                new MediaTracker(this); 

    //Get and track the background  

    // image 

    backGroundImage =  

        Toolkit.getDefaultToolkit(). 

          getImage("background02.gif"); 

    mediaTracker.addImage( 

                   backGroundImage, 0); 

     

    //Get and track 6 images to use  

    // for sprites 

    gifImages[0] =  

           Toolkit.getDefaultToolkit(). 

               getImage("redball.gif"); 

    mediaTracker.addImage( 

                      gifImages[0], 0); 

    gifImages[1] =  

           Toolkit.getDefaultToolkit(). 

             getImage("greenball.gif"); 

    mediaTracker.addImage( 

                      gifImages[1], 0); 

    gifImages[2] =  

           Toolkit.getDefaultToolkit(). 

              getImage("blueball.gif"); 

    mediaTracker.addImage( 

                      gifImages[2], 0); 

    gifImages[3] =  

           Toolkit.getDefaultToolkit(). 



            getImage("yellowball.gif"); 

    mediaTracker.addImage( 

                      gifImages[3], 0); 

    gifImages[4] =  

           Toolkit.getDefaultToolkit(). 

            getImage("purpleball.gif"); 

    mediaTracker.addImage( 

                      gifImages[4], 0); 

    gifImages[5] =  

           Toolkit.getDefaultToolkit(). 

            getImage("orangeball.gif"); 

    mediaTracker.addImage( 

                      gifImages[5], 0); 

     

    //Block and wait for all images to  

    // be loaded 

    try { 

      mediaTracker.waitForID(0); 

    }catch (InterruptedException e) { 

      System.out.println(e); 

    }//end catch 

     

    //Base the Frame size on the size  

    // of the background image. 

    //These getter methods return -1 if 

    // the size is not yet known. 

    //Insets will be used later to  

    // limit the graphics area to the  

    // client area of the Frame. 

    int width =  

        backGroundImage.getWidth(this); 

    int height =  

       backGroundImage.getHeight(this); 

 

    //While not likely, it may be  

    // possible that the size isn't 

    // known yet.  Do the following  

    // just in case. 

    //Wait until size is known 

    while(width == -1 || height == -1){ 

      System.out.println( 

                  "Waiting for image"); 

      width = backGroundImage. 

                        getWidth(this); 

      height = backGroundImage. 

                       getHeight(this); 

    }//end while loop 

     

    //Display the frame 

    setSize(width,height); 

    setVisible(true); 

    setTitle( 

        "Copyright 2001, R.G.Baldwin"); 

 

    //Create and start animation thread 

    animationThread = new Thread(this); 



    animationThread.start(); 

   

    //Anonymous inner class window  

    // listener to terminate the  

    // program. 

    this.addWindowListener( 

                   new WindowAdapter(){ 

      public void windowClosing( 

                        WindowEvent e){ 

        System.exit(0);}}); 

     

  }//end constructor 

  //---------------------------------// 

 

  public void run() { 

    //Create and add sprites to the  

    // sprite manager 

    spriteManager = new SpriteManager( 

             new BackgroundImage( 

               this, backGroundImage)); 

    //Create 15 sprites from 6 gif  

    // files. 

    for (int cnt = 0; cnt < 15; cnt++){ 

      Point position = spriteManager. 

        getEmptyPosition(new Dimension( 

           gifImages[0].getWidth(this), 

           gifImages[0]. 

                     getHeight(this))); 

      spriteManager.addSprite( 

        makeSprite(position, cnt % 6)); 

    }//end for loop 

 

    //Loop, sleep, and update sprite  

    // positions once each 83  

    // milliseconds 

    long time =  

            System.currentTimeMillis(); 

    while (true) {//infinite loop 

      spriteManager.update(); 

      repaint(); 

      try { 

        time += animationDelay; 

        Thread.sleep(Math.max(0,time -  

          System.currentTimeMillis())); 

      }catch (InterruptedException e) { 

        System.out.println(e); 

      }//end catch 

    }//end while loop 

  }//end run method 

  //---------------------------------// 

   

  private Sprite makeSprite( 

      Point position, int imageIndex) { 

    return new Sprite( 

          this,  

          gifImages[imageIndex],  



          position,  

          new Point(rand.nextInt() % 5, 

                  rand.nextInt() % 5)); 

  }//end makeSprite() 

  //---------------------------------// 

 

  //Overridden graphics update method  

  // on the Frame 

  public void update(Graphics g) { 

    //Create the offscreen graphics  

    // context 

    if (offScreenGraphicsCtx == null) { 

      offScreenImage =  

         createImage(getSize().width,  

                     getSize().height); 

      offScreenGraphicsCtx =  

          offScreenImage.getGraphics(); 

    }//end if 

     

    // Draw the sprites offscreen 

    spriteManager.drawScene( 

                 offScreenGraphicsCtx); 

 

    // Draw the scene onto the screen 

    if(offScreenImage != null){ 

         g.drawImage( 

           offScreenImage, 0, 0, this); 

    }//end if 

  }//end overridden update method 

  //---------------------------------// 

 

  //Overridden paint method on the  

  // Frame 

  public void paint(Graphics g) { 

    //Nothing required here.  All  

    // drawing is done in the update  

    // method above. 

  }//end overridden paint method 

     

}//end class Animate01 

//===================================// 

 

class BackgroundImage{ 

  private Image image; 

  private Component component; 

  private Dimension size; 

 

  public BackgroundImage( 

                  Component component,  

                  Image image) { 

    this.component = component; 

    size = component.getSize(); 

    this.image = image; 

  }//end construtor 

   

  public Dimension getSize(){ 



    return size; 

  }//end getSize() 

 

  public Image getImage(){ 

    return image; 

  }//end getImage() 

 

  public void setImage(Image image){ 

    this.image = image; 

  }//end setImage() 

 

  public void drawBackgroundImage( 

                          Graphics g) { 

    g.drawImage( 

               image, 0, 0, component); 

  }//end drawBackgroundImage() 

}//end class BackgroundImage 

//=========================== 

 

class SpriteManager extends Vector { 

  private BackgroundImage  

                       backgroundImage; 

 

  public SpriteManager( 

     BackgroundImage backgroundImage) { 

    this.backgroundImage =  

                       backgroundImage; 

  }//end constructor 

  //---------------------------------// 

   

  public Point getEmptyPosition( 

                 Dimension spriteSize){ 

    Rectangle trialSpaceOccupied =  

      new Rectangle(0, 0,  

                    spriteSize.width,  

                    spriteSize.height); 

    Random rand =  

         new Random( 

           System.currentTimeMillis()); 

    boolean empty = false; 

    int numTries = 0; 

 

    // Search for an empty position 

    while (!empty && numTries++ < 100){ 

      // Get a trial position 

      trialSpaceOccupied.x =  

        Math.abs(rand.nextInt() % 

                      backgroundImage. 

                      getSize().width); 

 

      trialSpaceOccupied.y =  

        Math.abs(rand.nextInt() % 

                     backgroundImage. 

                     getSize().height); 

 

      // Iterate through existing  



      // sprites, checking if position  

      // is empty 

      boolean collision = false; 

      for(int cnt = 0;cnt < size(); 

                                cnt++){ 

        Rectangle testSpaceOccupied =  

              ((Sprite)elementAt(cnt)). 

                    getSpaceOccupied(); 

        if (trialSpaceOccupied. 

                 intersects( 

                   testSpaceOccupied)){ 

          collision = true; 

        }//end if 

      }//end for loop 

      empty = !collision; 

    }//end while loop 

    return new Point( 

                 trialSpaceOccupied.x,  

                 trialSpaceOccupied.y); 

  }//end getEmptyPosition() 

  //---------------------------------// 

   

  public void update() { 

    Sprite sprite; 

     

    //Iterate through sprite list 

    for (int cnt = 0;cnt < size(); 

                                cnt++){ 

      sprite = (Sprite)elementAt(cnt); 

      //Update a sprite's position 

      sprite.updatePosition(); 

 

      //Test for collision. Positive  

      // result indicates a collision 

      int hitIndex =  

              testForCollision(sprite); 

      if (hitIndex >= 0){ 

        //a collision has occurred 

        bounceOffSprite(cnt,hitIndex); 

      }//end if 

    }//end for loop 

  }//end update 

  //---------------------------------// 

   

  private int testForCollision( 

                   Sprite testSprite) { 

    //Check for collision with other  

    // sprites 

    Sprite  sprite; 

    for (int cnt = 0;cnt < size(); 

                                cnt++){ 

      sprite = (Sprite)elementAt(cnt); 

      if (sprite == testSprite) 

        //don't check self 

        continue; 

      //Invoke testCollision method  



      // of Sprite class to perform 

      // the actual test. 

      if (testSprite.testCollision( 

                               sprite)) 

        //Return index of colliding  

        // sprite 

        return cnt; 

    }//end for loop 

    return -1;//No collision detected 

  }//end testForCollision() 

  //---------------------------------// 

   

  private void bounceOffSprite( 

                    int oneHitIndex, 

                    int otherHitIndex){ 

    //Swap motion vectors for  

    // bounce algorithm 

    Sprite oneSprite =  

        (Sprite)elementAt(oneHitIndex); 

    Sprite otherSprite =  

      (Sprite)elementAt(otherHitIndex); 

    Point swap =  

           oneSprite.getMotionVector(); 

    oneSprite.setMotionVector( 

        otherSprite.getMotionVector()); 

    otherSprite.setMotionVector(swap); 

  }//end bounceOffSprite() 

  //---------------------------------// 

   

  public void drawScene(Graphics g){ 

    //Draw the background and erase  

    // sprites from graphics area 

    //Disable the following statement  

    // for an interesting effect. 

    backgroundImage. 

                drawBackgroundImage(g); 

 

    //Iterate through sprites, drawing 

    // each sprite 

    for (int cnt = 0;cnt < size(); 

                                 cnt++) 

      ((Sprite)elementAt(cnt)). 

                    drawSpriteImage(g); 

  }//end drawScene() 

  //---------------------------------// 

   

  public void addSprite(Sprite sprite){ 

    add(sprite); 

  }//end addSprite() 

   

}//end class SpriteManager 

//===================================// 

 

class Sprite { 

  private Component component; 

  private Image image; 



  private Rectangle spaceOccupied; 

  private Point motionVector; 

  private Rectangle bounds; 

  private Random rand;  

 

  public Sprite(Component component, 

                Image image, 

                Point position, 

                Point motionVector){ 

 

    //Seed a random number generator  

    // for this sprite with the sprite 

    // position. 

    rand = new Random(position.x); 

    this.component = component; 

    this.image = image; 

    setSpaceOccupied(new Rectangle( 

          position.x, 

          position.y, 

          image.getWidth(component), 

          image.getHeight(component))); 

    this.motionVector = motionVector; 

    //Compute edges of usable graphics 

    // area in the Frame. 

    int topBanner = ( 

                 (Container)component). 

                       getInsets().top; 

    int bottomBorder =  

                ((Container)component). 

                    getInsets().bottom; 

    int leftBorder = ( 

                (Container)component). 

                     getInsets().left; 

    int rightBorder = ( 

                (Container)component). 

                    getInsets().right; 

    bounds = new Rectangle( 

         0 + leftBorder, 

         0 + topBanner, 

         component.getSize().width -  

            (leftBorder + rightBorder), 

         component.getSize().height - 

           (topBanner + bottomBorder)); 

  }//end constructor 

  //---------------------------------// 

 

  public Rectangle getSpaceOccupied(){ 

    return spaceOccupied; 

  }//end getSpaceOccupied() 

  //---------------------------------// 

   

  void setSpaceOccupied( 

              Rectangle spaceOccupied){ 

    this.spaceOccupied = spaceOccupied; 

  }//setSpaceOccupied() 

  //---------------------------------// 



   

  public void setSpaceOccupied( 

                       Point position){ 

    spaceOccupied.setLocation( 

               position.x, position.y); 

  }//setSpaceOccupied() 

  //---------------------------------// 

   

  public Point getMotionVector(){ 

    return motionVector; 

  }//end getMotionVector() 

  //---------------------------------// 

   

  public void setMotionVector( 

                   Point motionVector){ 

    this.motionVector = motionVector; 

  }//end setMotionVector() 

  //---------------------------------// 

   

  public void setBounds( 

                     Rectangle bounds){ 

    this.bounds = bounds; 

  }//end setBounds() 

  //---------------------------------// 

   

  public void updatePosition() { 

    Point position = new Point( 

     spaceOccupied.x, spaceOccupied.y); 

     

    //Insert random behavior.  During  

    // each update, a sprite has about 

    // one chance in 10 of making a  

    // random change to its  

    // motionVector.  When a change  

    // occurs, the motionVector 

    // coordinate values are forced to 

    // fall between -7 and 7.  This  

    // puts a cap on the maximum speed 

    // for a sprite. 

    if(rand.nextInt() % 10 == 0){ 

      Point randomOffset =  

         new Point(rand.nextInt() % 3, 

                   rand.nextInt() % 3); 

      motionVector.x += randomOffset.x; 

      if(motionVector.x >= 7)  

                   motionVector.x -= 7; 

      if(motionVector.x <= -7)  

                   motionVector.x += 7; 

      motionVector.y += randomOffset.y; 

      if(motionVector.y >= 7)  

                   motionVector.y -= 7; 

      if(motionVector.y <= -7)  

                   motionVector.y += 7; 

    }//end if 

     

    //Move the sprite on the screen 



    position.translate( 

       motionVector.x, motionVector.y); 

 

    //Bounce off the walls 

    boolean bounceRequired = false; 

    Point tempMotionVector = new Point( 

                       motionVector.x, 

                       motionVector.y); 

     

 

    //Handle walls in x-dimension 

    if (position.x < bounds.x) { 

      bounceRequired = true; 

      position.x = bounds.x; 

      //reverse direction in x 

      tempMotionVector.x =  

                   -tempMotionVector.x; 

    }else if (( 

      position.x + spaceOccupied.width) 

          > (bounds.x + bounds.width)){ 

      bounceRequired = true; 

      position.x = bounds.x +  

                  bounds.width -  

                   spaceOccupied.width; 

      //reverse direction in x 

      tempMotionVector.x =  

                   -tempMotionVector.x; 

    }//end else if 

     

    //Handle walls in y-dimension 

    if (position.y < bounds.y){ 

      bounceRequired = true; 

      position.y = bounds.y; 

      tempMotionVector.y =  

                   -tempMotionVector.y; 

    }else if ((position.y +  

                  spaceOccupied.height) 

         > (bounds.y + bounds.height)){ 

      bounceRequired = true; 

      position.y = bounds.y +  

                 bounds.height -  

                  spaceOccupied.height; 

      tempMotionVector.y =  

                   -tempMotionVector.y; 

    }//end else if 

     

    if(bounceRequired) 

      //save new motionVector 

                   setMotionVector( 

                     tempMotionVector); 

    //update spaceOccupied 

    setSpaceOccupied(position); 

  }//end updatePosition() 

  //---------------------------------// 

   

  public void drawSpriteImage( 



                           Graphics g){ 

    g.drawImage(image, 

                spaceOccupied.x, 

                spaceOccupied.y, 

                component); 

  }//end drawSpriteImage() 

  //---------------------------------// 

   

  public boolean testCollision( 

                    Sprite testSprite){ 

    //Check for collision with  

    // another sprite 

    if (testSprite != this){ 

      return spaceOccupied.intersects( 

        testSprite.getSpaceOccupied()); 

    }//end if 

    return false; 

  }//end testCollision 

}//end Sprite class 

//===================================// 
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