
Fun with Java: Sprite Animation, Part 5

Baldwin shows you how to override the update method of the Component class to improve the

animation quality of the program over what would normally be achieved using the default

version of the update method. In the process, he shows you how to eliminate the flashing that

often accompanies efforts to use the default version of the update method for animation

purposes. He also shows you how to get and use an offscreen drawing context to accomplish

double buffering in the drawing process.

Published: November 4, 2001

By Richard G. Baldwin

Java Programming, Lecture Notes # 1458

 Preface

 Preview

 Discussion and Sample Programs

 Summary

 What's Next

 Complete Program Listing

Preface

Why the repeated introduction?

If you are one of those orderly people who start reading a book at the beginning and reads

through to the end, you are probably wondering why I keep repeating this long introduction. The

truth is that this introduction isn't meant for you. Rather, it is meant for those people who start

reading in the middle.

Having said that, this is one of the lessons in a miniseries that will concentrate on having fun

while programming in Java.

This miniseries will include a variety of Java programming topics that fall in the category of fun

programming. This particular lesson is the fifth in of a group of lessons that teach you how to

write animation programs in Java.

The first lesson in the group was entitled Fun with Java: Sprite Animation, Part 1. (Here is your

opportunity to go back and start reading at the beginning.) The previous lesson was entitled Fun

with Java: Sprite Animation, Part 4.

Viewing tip

Java1450.htm
Java1456.htm
Java1456.htm

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at Baldwin's Java

Programming Tutorials.

Preview

This is one of a group of lessons that will teach you how to write animation programs in

Java. These lessons will teach you how to write sprite animation, frame animation, and a

combination of the two.

Animated spherical sea creatures

The first program, being discussed in this lesson, will show you how to use sprite animation to

cause a group of colored spherical sea creatures to swim around in a fish tank. A screen shot of

the output produced by this program is shown in Figure 1.

Figure 1. Animated spherical sea creatures in a fish tank.

A creature of many colors

Many sea creatures have the ability to change their color in very impressive ways. The second

program that I will discuss in subsequent lessons will simulate that process using a combination

of sprite and frame animation.

Slithering sea worms

The third program, also to be discussed in a subsequent lesson, will use a combination of sprite

animation, frame animation, and some other techniques to cause a group of multi-colored sea

http://softwaredev.earthweb.com/java
http://www.geocities.com/Athens/7077/scoop/onjava.html
http://www.geocities.com/Athens/7077/scoop/onjava.html

worms to slither around in the fish tank. In addition to slithering, the sea worms will also change

the color of different parts of their body, much like real sea creatures.

A screen shot of the output from the third program is shown in Figure 2.

Figure 2. Animated sea worms in a fish tank.

Getting the required GIF images

Figure 3 shows the GIF image files that you will need to run these three programs.

Figure 3. GIF image files that you will need.

You should be able to capture the images by right-clicking on them individually, and then saving

them into files on your local disk. Having done that, you will need to rename the files to match

the names that are hard-coded into the programs.

Review of previous lesson

In the previous lesson, I explained the behavior of the run method of the animation thread as

well as the makeSprite method of the controlling class.

I provided a preview of the SpriteManager class, which will be discussed in detail in a

subsequent lesson. I also provided a brief preview of the Sprite class, which will be discussed in

detail in a subsequent lesson.

I discussed the repaint, update, and paint methods of the Component class. I also discussed

the timer loop used in this program, and suggested an alternative approach that makes use of a

Timer object to fire Action events.

Also in the previous lesson, I provided a complete recap of everything that we have learned in

the first four lessons of this series.

What are the plans for this lesson?

There are only two methods remaining to be discussed in the controlling class: update and

paint. In this lesson, I will explain the behavior of the overridden update and paint

methods. As explained in the previous lesson, the update method is invoked by the operating

system in response to a repaint request on the Frame.

Discussion and Sample Program

This program is so long that several lessons will be required to discuss it fully. Rather than to

make you wait until I complete all of those lessons to get your hands on the program, I have

provided a copy of the entire program in Listing 6 near the end of the lesson. That way, you can

copy it into a source file on your local disk, compile it, run it, and start seeing the results.

Discuss in fragments

As usual, I will discuss the program in fragments. As explained in the previous lesson, once

during each iteration of the animation loop, the code updates the positions of all of the sprites

and then invokes the repaint method on the Frame. Then it sleeps for a specified period, wakes

up, and does it all over again.

What is the behavior of the repaint method?

According to the Sun documentation, invoking the repaint method on the Frame causes a call to

be made to the frame's update method as soon as possible.

What is the behavior of the update method?

Sun describes the default behavior of the update method as follows:

"The update method of Component does the following:

o Clears this component by filling it with the background color.

o Sets the color of the graphics context to be the foreground color of this

component.

o Calls this component's paint method to completely redraw this component."

Doesn't use default update method

However, this animation program does not use the default behavior of the update

method. Rather, this program overrides the update method to provide behavior that is

appropriate for better-quality animation.

Three major changes

This program makes three major changes to the default behavior of the update method to

improve the animation quality.

Eliminate flashing

First, the new behavior eliminates the clearing of the display area of the Frame object at the

beginning of each redraw operation. This eliminates a flashing effect that is often produced by

that default operation.

Use double buffering

Second, the new behavior draws the scene on an offscreen graphics context and then transfers

that scene onto the screen context at high speed. (This is often referred to as double

buffering.) This makes it impossible for the viewer to see the scene as it is being drawn, and

usually provides a more pleasing result.

No need for the paint method

Third, since all of the required drawing is accomplished in the update method, there is no call to

the paint method by the update method. Although an overridden version of the paint method is

provided, it doesn't do anything, and it isn't invoked by the animation process.

An offscreen graphics context

The code fragment in Listing 1 gets an offscreen graphics context to be used as described above.

 public void update(Graphics g) {

 if (offScreenGraphicsCtx == null) {

 offScreenImage =

 createImage(getSize().width,

 getSize().height);

 offScreenGraphicsCtx =

 offScreenImage.getGraphics();

 }//end if

Listing 1

As you can see, there are two steps involved in getting a useful offscreen graphics context.

1. Create an Image object

2. Create a Graphics object

Create an Image object

The first step is to invoke the createImage method of the Component class to get an Image

object of a specified size. This method requires the width and height of the image as parameters

and returns a reference to an object of type Image.

Create a Graphics object

The second step is to invoke the getGraphics method on the Image object returned by the first

step. This method returns a reference to an object of type Graphics. Here is what Sun has to

say about the method:

"Creates a graphics context for drawing to an off-screen image. This method can

only be called for off-screen images."

Drawing offscreen

Once we have the offscreen graphics context, we can invoke any of the methods of the Graphics

class to draw pictures on that context.

In this case, we don't draw the pictures within the update method directly. Rather, we pass a

reference to the offscreen context to the drawScene method of the SpriteManager object where

the drawing is actually accomplished (you will see how the scene is drawn in a subsequent lesson

where I discuss the SpriteManager class in detail).

The call to the drawScene method of the SpriteManager class is shown in Listing 2.

 spriteManager.drawScene(

 offScreenGraphicsCtx);

Listing 2

Drawing onscreen

When the drawScene method returns, the scene has been drawn onto the offscreen graphics

context, and it is time to copy it to the screen context at a high rate of speed. This is

accomplished using the drawImage method of the Graphics class, as shown in Listing 3.

 if(offScreenImage != null){

 g.drawImage(

 offScreenImage, 0, 0,

this);

 }//end if

 }//end overridden update method

Listing 3

The drawImage method is overloaded

There are several overloaded versions of the drawImage method. The version used here

requires four parameters. The first parameter is a reference to an offscreen graphics context.

The second and third parameters are the coordinate values of the screen image where the top left-

hand corner of the offscreen image will be positioned. In this case, the top left-hand corner of

the offscreen image will be placed at the top left-hand corner of the screen image.

The last parameter is a reference to an ImageObserver object. I have probably already confused

you enough in an earlier lesson regarding the use of this as an ImageObserver object. I won't

add to that confusion by discussing it further here. (Again, however, I plan to dedicate an entire

future lesson to the concept of ImageObserver.)

Does not invoke the paint method

Note that the code in the overridden update method does not invoke the paint method, as is the

case with the default version of the update method. All of the required drawing is handled in the

update method, and there is nothing further to be drawn by the paint method. As a result, the

overridden paint method shown in Listing 4 below is not used in the animation process.

 public void paint(Graphics g) {

 //Nothing required here. All

 // drawing is done in the update

 // method.

 }//end overridden paint method

}//end class Animate01

Listing 4

That completes my discussion of all the methods of the controlling class.

The BackgroundImage class

Listing 5 contains all of the code for a utility class named BackgroundImage. As I mentioned

in an earlier lesson, this class was written simply to make it a little easier to deal with the

background image.

class BackgroundImage{

 private Image image;

 private Component component;

 private Dimension size;

 public BackgroundImage(

 Component component,

 Image image) {

 this.component = component;

 size = component.getSize();

 this.image = image;

 }//end construtor

 public Dimension getSize(){

 return size;

 }//end getSize()

 public Image getImage(){

 return image;

 }//end getImage()

 public void setImage(Image image){

 this.image = image;

 }//end setImage()

 public void drawBackgroundImage(

 Graphics g){

 g.drawImage(

 image, 0, 0, component);

 }//end drawBackgroundImage()

}//end class BackgroundImage

Listing 5

A very simple class

As you can see from Listing 5, there isn't much to this class, so it doesn't deserve much in the

way of a discussion.

Basically, an object instantiated from this class has the ability to

 Store a reference to a background Image object,

 Return a reference to the object,

 Return the size of the object

 Cause the background image to be drawn on a specified graphics context

Beyond that, there isn't much to be said for this class.

Summary

It has taken five lessons, but I have finally completed my discussion of the controlling class for

this animation program.

In this lesson, I showed you how to override the update method of the Component class to

improve the animation quality of the program over what would normally be achieved using the

default version of the update method.

In the process, I showed you how to eliminate the flashing that often accompanies efforts to use

the default version of the update method for animation purposes. This flashing is caused by the

fact that the default version of update draws an empty component (often white) at the beginning

of each redraw cycle.

I also showed you how to get and use an offscreen drawing context to accomplish double

buffering in the drawing process. The use of double buffering makes it impossible for the user to

see the scene as it is being drawn because the scene is first drawn offscreen and then transferred

as a whole to the screen context. Depending on the drawing speed, this can also produce a more

pleasing result.

I also provided a very brief discussion of the utility class named BackgroundImage.

What's Next?

There are two more classes to cover before my discussion of this animation program is

complete: SpriteManager and Sprite.

I will begin my discussion of the SpriteManager class in the next lesson.

Complete Program Listing

A complete listing of the program is provided in Listing 6.

/*File Animate01.java

Copyright 2001, R.G.Baldwin

This program displays several animated

colored spherical creatures swimming

around in an aquarium. Each creature

maintains generally the same course

with until it collides with another

creature or with a wall. However,

each creature has the ability to

occasionally make random changes in

its course.

**************************************/

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class Animate01 extends Frame

 implements Runnable {

 private Image offScreenImage;

 private Image backGroundImage;

 private Image[] gifImages =

 new Image[6];

 //offscreen graphics context

 private Graphics

 offScreenGraphicsCtx;

 private Thread animationThread;

 private MediaTracker mediaTracker;

 private SpriteManager spriteManager;

 //Animation display rate, 12fps

 private int animationDelay = 83;

 private Random rand =

 new Random(System.

 currentTimeMillis());

 public static void main(

 String[] args){

 new Animate01();

 }//end main

 //---------------------------------//

 Animate01() {//constructor

 // Load and track the images

 mediaTracker =

 new MediaTracker(this);

 //Get and track the background

 // image

 backGroundImage =

 Toolkit.getDefaultToolkit().

 getImage("background02.gif");

 mediaTracker.addImage(

 backGroundImage, 0);

 //Get and track 6 images to use

 // for sprites

 gifImages[0] =

 Toolkit.getDefaultToolkit().

 getImage("redball.gif");

 mediaTracker.addImage(

 gifImages[0], 0);

 gifImages[1] =

 Toolkit.getDefaultToolkit().

 getImage("greenball.gif");

 mediaTracker.addImage(

 gifImages[1], 0);

 gifImages[2] =

 Toolkit.getDefaultToolkit().

 getImage("blueball.gif");

 mediaTracker.addImage(

 gifImages[2], 0);

 gifImages[3] =

 Toolkit.getDefaultToolkit().

 getImage("yellowball.gif");

 mediaTracker.addImage(

 gifImages[3], 0);

 gifImages[4] =

 Toolkit.getDefaultToolkit().

 getImage("purpleball.gif");

 mediaTracker.addImage(

 gifImages[4], 0);

 gifImages[5] =

 Toolkit.getDefaultToolkit().

 getImage("orangeball.gif");

 mediaTracker.addImage(

 gifImages[5], 0);

 //Block and wait for all images to

 // be loaded

 try {

 mediaTracker.waitForID(0);

 }catch (InterruptedException e) {

 System.out.println(e);

 }//end catch

 //Base the Frame size on the size

 // of the background image.

 //These getter methods return -1 if

 // the size is not yet known.

 //Insets will be used later to

 // limit the graphics area to the

 // client area of the Frame.

 int width =

 backGroundImage.getWidth(this);

 int height =

 backGroundImage.getHeight(this);

 //While not likely, it may be

 // possible that the size isn't

 // known yet. Do the following

 // just in case.

 //Wait until size is known

 while(width == -1 || height == -1){

 System.out.println(

 "Waiting for image");

 width = backGroundImage.

 getWidth(this);

 height = backGroundImage.

 getHeight(this);

 }//end while loop

 //Display the frame

 setSize(width,height);

 setVisible(true);

 setTitle(

 "Copyright 2001, R.G.Baldwin");

 //Create and start animation thread

 animationThread = new Thread(this);

 animationThread.start();

 //Anonymous inner class window

 // listener to terminate the

 // program.

 this.addWindowListener(

 new WindowAdapter(){

 public void windowClosing(

 WindowEvent e){

 System.exit(0);}});

 }//end constructor

 //---------------------------------//

 public void run() {

 //Create and add sprites to the

 // sprite manager

 spriteManager = new SpriteManager(

 new BackgroundImage(

 this, backGroundImage));

 //Create 15 sprites from 6 gif

 // files.

 for (int cnt = 0; cnt < 15; cnt++){

 Point position = spriteManager.

 getEmptyPosition(new Dimension(

 gifImages[0].getWidth(this),

 gifImages[0].

 getHeight(this)));

 spriteManager.addSprite(

 makeSprite(position, cnt % 6));

 }//end for loop

 //Loop, sleep, and update sprite

 // positions once each 83

 // milliseconds

 long time =

 System.currentTimeMillis();

 while (true) {//infinite loop

 spriteManager.update();

 repaint();

 try {

 time += animationDelay;

 Thread.sleep(Math.max(0,time -

 System.currentTimeMillis()));

 }catch (InterruptedException e) {

 System.out.println(e);

 }//end catch

 }//end while loop

 }//end run method

 //---------------------------------//

 private Sprite makeSprite(

 Point position, int imageIndex) {

 return new Sprite(

 this,

 gifImages[imageIndex],

 position,

 new Point(rand.nextInt() % 5,

 rand.nextInt() % 5));

 }//end makeSprite()

 //---------------------------------//

 //Overridden graphics update method

 // on the Frame

 public void update(Graphics g) {

 //Create the offscreen graphics

 // context

 if (offScreenGraphicsCtx == null) {

 offScreenImage =

 createImage(getSize().width,

 getSize().height);

 offScreenGraphicsCtx =

 offScreenImage.getGraphics();

 }//end if

 // Draw the sprites offscreen

 spriteManager.drawScene(

 offScreenGraphicsCtx);

 // Draw the scene onto the screen

 if(offScreenImage != null){

 g.drawImage(

 offScreenImage, 0, 0, this);

 }//end if

 }//end overridden update method

 //---------------------------------//

 //Overridden paint method on the

 // Frame

 public void paint(Graphics g) {

 //Nothing required here. All

 // drawing is done in the update

 // method above.

 }//end overridden paint method

}//end class Animate01

//===================================//

class BackgroundImage{

 private Image image;

 private Component component;

 private Dimension size;

 public BackgroundImage(

 Component component,

 Image image) {

 this.component = component;

 size = component.getSize();

 this.image = image;

 }//end construtor

 public Dimension getSize(){

 return size;

 }//end getSize()

 public Image getImage(){

 return image;

 }//end getImage()

 public void setImage(Image image){

 this.image = image;

 }//end setImage()

 public void drawBackgroundImage(

 Graphics g) {

 g.drawImage(

 image, 0, 0, component);

 }//end drawBackgroundImage()

}//end class BackgroundImage

//===========================

class SpriteManager extends Vector {

 private BackgroundImage

 backgroundImage;

 public SpriteManager(

 BackgroundImage backgroundImage) {

 this.backgroundImage =

 backgroundImage;

 }//end constructor

 //---------------------------------//

 public Point getEmptyPosition(

 Dimension spriteSize){

 Rectangle trialSpaceOccupied =

 new Rectangle(0, 0,

 spriteSize.width,

 spriteSize.height);

 Random rand =

 new Random(

 System.currentTimeMillis());

 boolean empty = false;

 int numTries = 0;

 // Search for an empty position

 while (!empty && numTries++ < 100){

 // Get a trial position

 trialSpaceOccupied.x =

 Math.abs(rand.nextInt() %

 backgroundImage.

 getSize().width);

 trialSpaceOccupied.y =

 Math.abs(rand.nextInt() %

 backgroundImage.

 getSize().height);

 // Iterate through existing

 // sprites, checking if position

 // is empty

 boolean collision = false;

 for(int cnt = 0;cnt < size();

 cnt++){

 Rectangle testSpaceOccupied =

 ((Sprite)elementAt(cnt)).

 getSpaceOccupied();

 if (trialSpaceOccupied.

 intersects(

 testSpaceOccupied)){

 collision = true;

 }//end if

 }//end for loop

 empty = !collision;

 }//end while loop

 return new Point(

 trialSpaceOccupied.x,

 trialSpaceOccupied.y);

 }//end getEmptyPosition()

 //---------------------------------//

 public void update() {

 Sprite sprite;

 //Iterate through sprite list

 for (int cnt = 0;cnt < size();

 cnt++){

 sprite = (Sprite)elementAt(cnt);

 //Update a sprite's position

 sprite.updatePosition();

 //Test for collision. Positive

 // result indicates a collision

 int hitIndex =

 testForCollision(sprite);

 if (hitIndex >= 0){

 //a collision has occurred

 bounceOffSprite(cnt,hitIndex);

 }//end if

 }//end for loop

 }//end update

 //---------------------------------//

 private int testForCollision(

 Sprite testSprite) {

 //Check for collision with other

 // sprites

 Sprite sprite;

 for (int cnt = 0;cnt < size();

 cnt++){

 sprite = (Sprite)elementAt(cnt);

 if (sprite == testSprite)

 //don't check self

 continue;

 //Invoke testCollision method

 // of Sprite class to perform

 // the actual test.

 if (testSprite.testCollision(

 sprite))

 //Return index of colliding

 // sprite

 return cnt;

 }//end for loop

 return -1;//No collision detected

 }//end testForCollision()

 //---------------------------------//

 private void bounceOffSprite(

 int oneHitIndex,

 int otherHitIndex){

 //Swap motion vectors for

 // bounce algorithm

 Sprite oneSprite =

 (Sprite)elementAt(oneHitIndex);

 Sprite otherSprite =

 (Sprite)elementAt(otherHitIndex);

 Point swap =

 oneSprite.getMotionVector();

 oneSprite.setMotionVector(

 otherSprite.getMotionVector());

 otherSprite.setMotionVector(swap);

 }//end bounceOffSprite()

 //---------------------------------//

 public void drawScene(Graphics g){

 //Draw the background and erase

 // sprites from graphics area

 //Disable the following statement

 // for an interesting effect.

 backgroundImage.

 drawBackgroundImage(g);

 //Iterate through sprites, drawing

 // each sprite

 for (int cnt = 0;cnt < size();

 cnt++)

 ((Sprite)elementAt(cnt)).

 drawSpriteImage(g);

 }//end drawScene()

 //---------------------------------//

 public void addSprite(Sprite sprite){

 add(sprite);

 }//end addSprite()

}//end class SpriteManager

//===================================//

class Sprite {

 private Component component;

 private Image image;

 private Rectangle spaceOccupied;

 private Point motionVector;

 private Rectangle bounds;

 private Random rand;

 public Sprite(Component component,

 Image image,

 Point position,

 Point motionVector){

 //Seed a random number generator

 // for this sprite with the sprite

 // position.

 rand = new Random(position.x);

 this.component = component;

 this.image = image;

 setSpaceOccupied(new Rectangle(

 position.x,

 position.y,

 image.getWidth(component),

 image.getHeight(component)));

 this.motionVector = motionVector;

 //Compute edges of usable graphics

 // area in the Frame.

 int topBanner = (

 (Container)component).

 getInsets().top;

 int bottomBorder =

 ((Container)component).

 getInsets().bottom;

 int leftBorder = (

 (Container)component).

 getInsets().left;

 int rightBorder = (

 (Container)component).

 getInsets().right;

 bounds = new Rectangle(

 0 + leftBorder,

 0 + topBanner,

 component.getSize().width -

 (leftBorder + rightBorder),

 component.getSize().height -

 (topBanner + bottomBorder));

 }//end constructor

 //---------------------------------//

 public Rectangle getSpaceOccupied(){

 return spaceOccupied;

 }//end getSpaceOccupied()

 //---------------------------------//

 void setSpaceOccupied(

 Rectangle spaceOccupied){

 this.spaceOccupied = spaceOccupied;

 }//setSpaceOccupied()

 //---------------------------------//

 public void setSpaceOccupied(

 Point position){

 spaceOccupied.setLocation(

 position.x, position.y);

 }//setSpaceOccupied()

 //---------------------------------//

 public Point getMotionVector(){

 return motionVector;

 }//end getMotionVector()

 //---------------------------------//

 public void setMotionVector(

 Point motionVector){

 this.motionVector = motionVector;

 }//end setMotionVector()

 //---------------------------------//

 public void setBounds(

 Rectangle bounds){

 this.bounds = bounds;

 }//end setBounds()

 //---------------------------------//

 public void updatePosition() {

 Point position = new Point(

 spaceOccupied.x, spaceOccupied.y);

 //Insert random behavior. During

 // each update, a sprite has about

 // one chance in 10 of making a

 // random change to its

 // motionVector. When a change

 // occurs, the motionVector

 // coordinate values are forced to

 // fall between -7 and 7. This

 // puts a cap on the maximum speed

 // for a sprite.

 if(rand.nextInt() % 10 == 0){

 Point randomOffset =

 new Point(rand.nextInt() % 3,

 rand.nextInt() % 3);

 motionVector.x += randomOffset.x;

 if(motionVector.x >= 7)

 motionVector.x -= 7;

 if(motionVector.x <= -7)

 motionVector.x += 7;

 motionVector.y += randomOffset.y;

 if(motionVector.y >= 7)

 motionVector.y -= 7;

 if(motionVector.y <= -7)

 motionVector.y += 7;

 }//end if

 //Move the sprite on the screen

 position.translate(

 motionVector.x, motionVector.y);

 //Bounce off the walls

 boolean bounceRequired = false;

 Point tempMotionVector = new Point(

 motionVector.x,

 motionVector.y);

 //Handle walls in x-dimension

 if (position.x < bounds.x) {

 bounceRequired = true;

 position.x = bounds.x;

 //reverse direction in x

 tempMotionVector.x =

 -tempMotionVector.x;

 }else if ((

 position.x + spaceOccupied.width)

 > (bounds.x + bounds.width)){

 bounceRequired = true;

 position.x = bounds.x +

 bounds.width -

 spaceOccupied.width;

 //reverse direction in x

 tempMotionVector.x =

 -tempMotionVector.x;

 }//end else if

 //Handle walls in y-dimension

 if (position.y < bounds.y){

 bounceRequired = true;

 position.y = bounds.y;

 tempMotionVector.y =

 -tempMotionVector.y;

 }else if ((position.y +

 spaceOccupied.height)

 > (bounds.y + bounds.height)){

 bounceRequired = true;

 position.y = bounds.y +

 bounds.height -

 spaceOccupied.height;

 tempMotionVector.y =

 -tempMotionVector.y;

 }//end else if

 if(bounceRequired)

 //save new motionVector

 setMotionVector(

 tempMotionVector);

 //update spaceOccupied

 setSpaceOccupied(position);

 }//end updatePosition()

 //---------------------------------//

 public void drawSpriteImage(

 Graphics g){

 g.drawImage(image,

 spaceOccupied.x,

 spaceOccupied.y,

 component);

 }//end drawSpriteImage()

 //---------------------------------//

 public boolean testCollision(

 Sprite testSprite){

 //Check for collision with

 // another sprite

 if (testSprite != this){

 return spaceOccupied.intersects(

 testSprite.getSpaceOccupied());

 }//end if

 return false;

 }//end testCollision

}//end Sprite class

//===================================//

Listing 6

Copyright 2001, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java and XML. In addition to the

many platform-independent benefits of Java applications, he believes that a combination of Java

and XML will become the primary driving force in the delivery of structured information on the

Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

