
Fun with Java: Sprite Animation, Part 1 

Programming in Java doesn't have to be dull and boring.  In fact, it's possible to have a lot of fun 

while programming in Java.  This is the first lesson in a miniseries that will concentrate on 

having fun while programming in Java.  

Published:  October 1, 2001  

By Richard G. Baldwin  

Java Programming, Lecture Notes # 1450  

 Preface 

 Preview 

 Discussion and Sample Programs 

 Summary 

 What's Next 

 Complete Program Listing 

 

Preface 

Programming in Java doesn't have to be dull and boring.  In fact, it's possible to have a lot of fun 

while programming in Java.  This is the first lesson in a miniseries that will concentrate on 

having fun while programming in Java.  

Viewing tip  

You may find it useful to open another copy of this lesson in a separate browser window.  That 

will make it easier for you to scroll back and forth among the different figures and listings while 

you are reading about them.  

Supplementary material  

I recommend that you also study the other lessons in my extensive collection of online Java 

tutorials.  You will find those lessons published at Gamelan.com.  However, as of the date of this 

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and 

sometimes they are difficult to locate there.  You will find a consolidated index at Baldwin's Java 

Programming Tutorials.  

Preview 

Animation is fun  

http://softwaredev.earthweb.com/java
http://www.geocities.com/Athens/7077/scoop/onjava.html
http://www.geocities.com/Athens/7077/scoop/onjava.html


When it comes to having fun while programming, it's hard to beat a good old fashioned program 

that provides visual feedback and stimulation.  And in that category, it's hard to beat an 

animation program.  

This is the first of several lessons that will teach you how to write animation programs in 

Java.  These lessons will teach you how to write sprite animation, frame animation, and a 

combination of the two.  Once you know how to do animation, there are lots of ways to put that 

knowledge to use.  For example, you could use that newfound knowledge to write some neat 

game programs.  Or, you could take your newfound knowledge and use it to explore the world of 

Artificial Life.  

Descriptions of upcoming programs  

The first program that I will discuss in this and the next few lessons will show you how to write a 

program in which you animate a group of colored spherical sea creatures swimming around in a 

fish tank.  A screen shot of the output produced by this program is shown in Figure 1.  

 

Figure 1.  Animated spherical sea creatures in a fish tank. 

Uses sprite animation  

This program will use sprite animation to cause the spherical creatures to swim around.  Of 

course, the screen shot doesn't do justice to the effect that you will see when you run the program 

in its animated form.  

Using frame animation to change colors  

If you watch The Discovery Channel or The Learning Channel very much, you will already 

know that many sea creatures have the ability to change their color in very impressive ways.  The 

second program that I will discuss will simulate that process.  It will use sprite animation to 

cause the spherical creatures to swim, and will also use frame animation to cause them to change 

their color at the same time.  Since a screen shot can't show the creatures changing colors, a 

screen shot of the second program would look very similar to the screen shot in Figure 1 

above.  Therefore, I didn't provide a screen shot of the second program.  

How about some sea worms?  



A screen shot of the output from the third program is shown in Figure 2.  

 

Figure 2.  Animated sea worms in a fish tank. 

This program will use a combination of sprite animation, frame animation, and some other 

techniques to cause a group of multi-colored sea worms to slither around in the fish tank.  In 

addition to slithering, the sea worms will also change the color of different parts of their body, 

much like the real sea creatures that have this amazing ability to change the colors on their 

bodies do.  

The required GIF files  

Figure 3 shows the GIF image files that you will need to run these three programs.  

   

 
                

Figure 3.  GIF image files that you will need. 

You should be able to capture the various images from Figure 3 by right-clicking on them 

individually, and then saving them into files on your local disk.  

Rename the captured files  

Having done that, you will need to rename the files to match the names that are hard-coded into 

the programs (or change the names in the programs to match the names of your files).  



Important classes  

In this lesson, I will introduce you to several classes and concepts that you must understand in 

order to understand animation in Java.  

Included in the classes that I will discuss will be the following, which are particularly important 

to sprite animation:  

 Image 

 Toolkit 

 Graphics 

 MediaTracker 

 Random 

Important concepts  

I will also discuss a number of concepts, including the following, which are particularly 

important to sprite animation:  

 offscreen graphics contexts 

 coordinates in Java graphics 

 translation origins 

 the drawImage method 

 animation repetition rates 

 pseudo-random numbers 

Preview of control structure  

Here is a preview of the control structure that I will use for this animation program.  

The controlling class extends the Frame class and implements the Runnable interface.  Thus, an 

object of the controlling class is used to provide the visual manifestation of the program as a 

visual Frame object.  An object of the controlling class is also suitable for using as an animation 

thread, which controls the overall behavior of the animation process.  In other words, an object 

of the controlling class acts both as the director of the play, and the stage upon which the play is 

performed.  

The main method of the controlling class instantiates an object of the controlling class, thus 

causing the constructor for the controlling class to be executed.  

Objects of type Image  

The constructor for the controlling class causes seven Image objects to be created.  Each Image 

object is based on the pixel contents of a GIF file.  



One of the Image objects is used to produce the background scenery against which the animation 

is played out.  The other six Image objects are used to provide the visual manifestation of the 

sprites.  

Each Image object provides the visual manifestation for more than one sprite.  Therefore, some 

of the sprites look alike (twins in some cases and triplets in others).  

Set the Frame size  

After the Image objects have been created, the size of the Image object used for the background 

scenery is used by the constructor to set the size of the Frame.  Then the Frame is made visible.  

Start the animation thread  

Finally, the constructor creates the animation thread and starts it running.  From this point 

forward, the run method of the controlling class controls the animation behavior of the program.  

The run method  

The run method begins by creating and populating a SpriteManager object.  An object of the 

SpriteManager class is capable of managing a collection of sprites, causing them to update their 

positions on demand, and dealing with collisions between the sprites.  

The SpriteManager object  

The SpriteManager object is populated with fifteen separate Sprite objects.  Each sprite has a 

visual manifestation based on one of the six Image objects.  Each sprite also has an initial 

position based on a random number and has a motion vector whose components are also based 

on random numbers.  The motion vector is used to determine the next position of the sprite when 

the sprite is told by the SpriteManager to change its position.  

The animation loop  

Then the run method enters an infinite loop, iterating approximately twelve times per 

second.  At the beginning of each iteration, the SpriteManager is told to update the positions of 

all of the sprites in its collection.  It does so, dealing with collisions in the process.  

The run method sends a message to the operating system asking it to repaint the Frame object 

on the screen.  

The upDate method  

When the operating system honors the request to repaint, it invokes the upDate method on the 

Frame object, (which normally does some initialization and then invokes the paint method).  



The update method is overridden in this program to cause the new scene to be drawn in its 

entirety, showing each of the sprites in its new position superimposed upon the background 

image.  Note that in this case, the update method does not invoke the paint method, because 

there is nothing for the paint method to do.  

An offscreen image  

When drawing the scene, the update method first draws the scene on an offscreen graphics 

context, and then causes the scene to be transferred from that context to the screen context.  This 

is done to improve the animation quality of the program.  

Discussion and Sample Program 

That's enough of the preliminaries.  It's time to get down to business and start discussing code.  

A fairly long program  

This is a fairly long program.  It is so long, in fact, that several lessons will be required to discuss 

it fully.  However, rather than to make you wait until I complete all of those lessons to get your 

hands on the program, I have provided a copy of the entire program in Listing 6 near the end of 

the lesson.  That way, you can copy it into a source file on your local disk, compile it, run it, and 

start seeing the results immediately.  

Will discuss in fragments  

As usual, I will discuss the program in fragments.  In addition to the controlling class named 

Animate01, the program contains several other important classes.  I will discuss the controlling 

class in this lesson and defer my discussion of the other classes until future lessons.  In fact, the 

controlling class itself is quite long, so I will partition the discussion of the controlling class into 

several consecutive lessons as well.  

Acknowledgment  

Before getting into the details, I want to acknowledge that some of the techniques used in this 

program, such as the animation timer and the collision detector, were taken from the book 

entitled Teach Yourself Internet Game Programming with Java in 21 days, by Michael Morrison.  

The copy of the book that I have is the first edition (I don't know if there are later editions) and 

is somewhat dated by now (for example, it uses the original JDK 1.0 event model).  However, 

even though Java has been updated significantly since the publication of the book, some 

techniques discussed in the book are still appropriate for use.  

In addition, the book provides a good discussion of the benefits of Object-Oriented 

Programming.  That information is beneficial to anyone embarking on a career as a Java 

programmer.  



The controlling class  

The beginning of the class definition for the controlling class named Animate01 is shown in 

Listing 1.  

   

public class Animate01 extends Frame  

                   implements 

Runnable{ 

  private Image offScreenImage; 

  private Image backGroundImage; 

  private Image[] gifImages =  

                          new 

Image[6]; 

 

Listing 1 

Extends the Frame class  

As you can see, the controlling class extends the Frame class (extending JFrame would work 

just as well provided that you take the Swing content pane into account).  This causes an object 

instantiated from the controlling class to be suitable as a drawing surface for the 

animation.  Thus, the animation images are presented directly on the surface of the Frame as 

shown in Figure 1 and Figure 2.  

Implements the Runnable interface  

The controlling class also implements the Runnable interface.  This makes it suitable for use as 

a Thread object.  We will see later that the animation loop is actually implemented inside the 

run method of the controlling class.  

The Image Class  

The code in Listing 1 declares three reference variables.  The first two are reference variables of 

the type Image.  The third is a reference variable that refers to an array object containing six 

references to objects of type Image.  From this, you might surmise that an understanding of the 

Image class is important to this type of animation, and if so, you are correct.  

What does Sun have to say about the Image class?  

Here is part of what Sun has to say about the Image class:  

"The abstract class Image is the superclass of all classes that represent graphical 

images. The image must be obtained in a platform-specific manner." 

Because Image is an abstract class, we can't directly instantiate objects of the class.  We will see 

later that we obtain our objects of type Image using a roundabout approach involving the 

Toolkit class.  (I will have more to say about that later.)  



The Toolkit class  

For the time being, suffice it to say the Toolkit class makes it possible to gain access to system-

dependent resources using system-independent code.  

(Other examples of the use of the Toolkit class have to do with the system event queue, and 

access to system printers, which I discuss at length in other lessons.)  

Getting Image objects  

We will get our Image objects by invoking one of the overloaded getImage methods of the 

Toolkit class.  Once we get an Image object, we really won't know the name of the class from 

which it was instantiated.  Furthermore, we won't care about the name of the class from which it 

was instantiated.  We will know simply that we can treat it as type Image and let polymorphic 

behavior take care of us.  

(Hopefully, you already know all about polymorphic behavior.  If not, I discuss it in detail in 

several other lessons, including the lessons on the Collections Framework.)  

Using Image objects  

The Image class (and the classes that extend it) define (or override) a number of useful methods 

that we will use throughout the program.  This will include the methods named getGraphics, 

getWidth, and getHeight.  

The Graphics class  

The code in Listing 2 declares two more reference variables.  Of particular interest at this point is 

the reference variable of type Graphics.  This particular variable will be used to refer to an 

object that will serve as offscreen graphics context.  

   

  private Graphics  

                  offScreenGraphicsCtx; 

  private Thread animationThread; 

 

Listing 2 

What is an offscreen graphics context?  

Put simply, in this program, an offscreen graphics context is an area of memory that serves as a 

stand-in for the computer screen.  

We use the methods of the Graphics class to draw pictures in that memory without disturbing 

the pictures currently showing on the computer screen.  

Why use an offscreen graphics context?  



Then we can blast the pictures from the offscreen graphics context to the actual computer screen 

very rapidly.  

This is an important capability for animation.  A noticeable amount of time is often required to 

create a picture.  Because this approach doesn't disturb the visible image during the time required 

to create the picture, it usually results in smoother animation than can be achieved by creating 

and drawing the pictures directly on the computer screen.  It eliminates the flashing and other 

distractions that can occur when the material is being displayed as it is being created.  

What does Sun have to say about the Graphics class?  

The sun documentation has quite a lot to say about the Graphics class in general.  Here is a brief 

sampling:  

"The Graphics class is the abstract base class for all graphics contexts that allow 

an application to draw onto components that are realized on various devices, as 

well as onto offscreen images." 

For example, printing in Java involves the use of methods of the Graphics class to draw pictures 

on the paper in the printer.  It doesn't matter whether those pictures represent landscapes or 

letters; they are pictures nonetheless.  In that sense, the printer paper can be thought of as a 

graphics context.  

Our graphics contexts  

In this program, we will be particularly interested in two graphics contexts:  

 The computer screen. 

 An offscreen image. 

More info from Sun  

Here is more of what Sun has to say about the Graphics class:  

"A Graphics object encapsulates state information needed for the basic rendering 

operations that Java supports. This state information includes the following 

properties ..." 

Sun goes on to list several properties, which won't be too important to us in this lesson.  

Location, width, and height  

In this lesson, we will frequently be working with the location, width, and height of 

images.  This requires some knowledge of how coordinate positions are treated.  In this regard, 

Sun says:  



"All coordinates that appear as arguments to the methods of this Graphics object 

are considered relative to the translation origin of this Graphics object prior to 

the invocation of the method." 

What is a translation origin?  

By default, the plotting origin of a graphics surface is the upper left-hand corner of the surface on 

which the plotting is being performed.  That origin can be translated to a different spot (the 

translation origin), but none of the code in this lesson does that.  

Positive horizontal coordinates progress from left to right across the graphics surface (relative to 

the origin).  Positive vertical coordinates progress from top to bottom down the surface (relative 

to the origin).  

(The translation origin for the images produced by this program is the upper-left corner of the 

Frame object.)  

The drawImage methods  

The Graphics class, (and its subclass named Graphics2D) provide dozens of methods that can 

be used to draw pictures on a graphics context.  However, most of those methods have to do with 

drawing lines, circles, polygons, etc.  

Only about eight methods are provided for drawing images, and most of those methods are 

overloaded versions of the method named drawImage.  The drawImage method will surely 

become our friend in this and the next few lessons.  

The Thread class  

The other reference variable declared in the code in Listing 2 is of type Thread.  Hopefully you 

already know all about Java threads.  If not, I have published several lessons explaining the use 

of threads on my web site, and you should probably refer to them before getting too far into this 

program.  

The MediaTracker class  

The variable declaration in Listing 3 exposes one of the more abstract issues involved in this 

program, the MediaTracker class.  

The primary purpose of the MediaTracker class is to help you deal with time delays that may 

occur when loading image data into memory.  If the images are being loaded via the Internet, 

those time delays can be quite long.  Even if the images are being loaded from a local hard drive, 

the delays can be long enough to be troublesome.  

   

  private MediaTracker mediaTracker; 

 



Listing 3 

In other words, when you are using images, you need to know the load status of each image 

before you try to use it.  If it hasn't finished loading, you must be careful what you try to do with 

it.  

What does Sun have to say about MediaTracker?  

Here is part of what the Sun documentation for JDK 1.3 has to say about the MediaTracker 

class:  

"The MediaTracker class is a utility class to track the status of a number of media 

objects. Media objects could include audio clips as well as images, though 

currently only images are supported.  

To use a media tracker, create an instance of MediaTracker and call its addImage 

method for each image to be tracked.  

In addition, each image can be assigned a unique identifier. This identifier 

controls the priority order in which the images are fetched. It can also be used to 

identify unique subsets of the images that can be waited on independently. Images 

with a lower ID are loaded in preference to those with a higher ID number." 

How do you use a MediaTracker object?  

Once you have registered an image with a MediaTracker object (using the addImage method 

and identifying the image with a specific ID value), there are several methods that you can 

invoke on the MediaTracker object to learn the current status of the image.  

Some of the methods allow you to manipulate the images in other ways, such as unregistering an 

image using the removeImage method.  

The MediaTracker methods  

Here is a partial list of the available methods (note that, as usual, some of the methods have 

several overloaded versions).  

 checkAll 

 checkID 

 getErrorsAny 

 getErrorsID 

 isErrorAny 

 isErrorID 

 removeImage 

 statusAll 

 statusID 



 waitForAll 

 waitForID 

The names of these methods are fairly descriptive, so you should be able to surmise what most of 

them do.  

I will use some of these methods in this program to track the loading of GIF images that are used 

for the background graphic and the sprites.  

The SpriteManager class  

Listing 4 shows the declaration of three additional instance variables.  

   

  private SpriteManager spriteManager; 

  //Animation display rate, 12fps 

  private int animationDelay = 83; 

  private Random rand =  

                new Random(System. 

                  currentTimeMillis()); 

 

Listing 4 

The SpriteManager class is defined in this program.  As the name implies, an object of this 

class is used to manage the sprites involved in the animation process.  This class will be 

discussed in detail in a subsequent lesson.  

Animation repetition rate  

The variable named animationDelay is used to control the repetition rate of the animation 

process.  

As in the movies, or on TV, animation is achieved by presenting a series of pictures on the 

screen.  Each picture represents a slightly different version of an object being animated.  

(When I was a child, I used to create stick-man movies by drawing different versions of a stick-

man doing acrobatics on the edges of the pages in a book.  By rapidly flipping through the pages 

with my thumb and forefinger, I could animate the stick-man and cause him to do his 

acrobatics.)  

What is the required repetition rate?  

The pictures need to be presented at a sufficiently fast rate to fool the brain and give the illusion 

of continuous motion.  On the other hand, presenting the pictures too rapidly simply wastes 

computer resources because the animation quality is not significantly improved.  

Is twelve repetitions per second adequate?  



The animationDelay variable in Listing 4 is initialized to a value of 83 milliseconds.  This is 

used by the program to insert 83 milliseconds between repetitions of the animated sprites.  This 

works out to approximately 12 repetitions per second.  Many authors agree that this rate is a 

good compromise between too slow and too fast.  However, only you can be the final judge of 

that.  

Changing the repetition rate  

To the extent that you computer can handle it, it isn't difficult to increase the repetition 

rate.  Decrease the initialization value for the animationDelay variable to increase the repetition 

rate, or increase the value to decrease the repetition rate.  

Divide the animationDelay value into 1 to get the repetition rate.  Note, however, that if you 

make the animationDelay value too small, you computer won't be able to achieve the repetition 

rate specified by your new value for animationDelay.  In that case, the computer will simply be 

displaying new pictures as fast as it can create them.  

Pseudo-random numbers  

As we go through the program, you will see a number of instances where a random number is 

needed for some purpose.  The third reference variable in Listing 4 contains a reference to an 

object of the class Rand.  Here is part of what the Sun documentation has to say about the Rand 

class:  

"An instance of this class is used to generate a stream of pseudo-random 

numbers. The class uses a 48-bit seed, ...  

If two instances of Random are created with the same seed, and the same 

sequence of method calls is made for each, they will generate and return identical 

sequences of numbers." 

The converse is also true  

Although it isn't explicitly stated in the Sun documentation, the converse of the second paragraph 

above is also true.  In particular, if two instances of Random are created with different seeds, 

and the same sequence of method calls is made for each, they will generate and return different 

sequences of numbers.  

In this program, I didn't want identical sequences of numbers.  Therefore, in the code shown in 

Listing 4, the Random object was constructed using the current time in milliseconds (relative to 

midnight on January 1, 1970) as the seed.  Using this approach, unless two Random objects are 

created within the same millisecond, they will produce different sequences of numbers.  

In some cases, using time as a seed is inadequate.  Other instances of Random are created at 

other places in the program using seed values based on something other than time.  



What can you do with a Random object?  

Once you have an object of the Random class, a number of methods are available that allow you 

to extract random numbers from the object.  

For example, the method named nextInt returns the next pseudo random, uniformly distributed 

int value from a random number generator's sequence.  This method will be used frequently, in 

conjunction with the modulus operator (%) to obtain random numbers that are uniformly 

distributed between the positive and negative values of a particular whole number (between -8 

and +8, for example).  

The main method  

The code shown in Listing 5 is the main method for this application.  This code simply creates a 

new instance of the controlling class.  

   

  public static void main( 

                        String[] 

args){ 

    new Animate01(); 

  }//end main 

 

Listing 5 

This code, working in conjunction with the constructor and the run method of the animation 

thread starts the program running.  

Summary 

In this lesson, I have introduced you to several classes and concepts that you must understand in 

order to understand animation in Java.  

I have introduced and discussed a number of classes used by the program.  Included were the 

following, which are particularly important to sprite animation:  

 Image 

 Toolkit 

 Graphics 

 MediaTracker 

 Random 

I have also discussed a number of concepts, including the following, which are particularly 

important to sprite animation:  

 offscreen graphics contexts 



 coordinates in Java graphics 

 translation origins 

 the drawImage method 

 animation repetition rates 

 pseudo-random numbers 

What's Next? 

The next lesson in this series will pick up with a discussion of the constructor for the Animate01 

class.  

Complete Program Listing 

A complete listing of the program is provided in Listing 6.  

   

/*File Animate01.java 

Copyright 2001, R.G.Baldwin 

 

This program displays several animated 

colored spherical creatures swimming  

around in an aquarium.  Each creature  

maintains generally the same course 

with until it collides with another  

creature or with a wall.  However,  

each creature has the ability to  

occasionally make random changes in  

its course. 

 

**************************************/ 

import java.awt.*; 

import java.awt.event.*; 

import java.util.*; 

 

public class Animate01 extends Frame  

                  implements Runnable { 

  private Image offScreenImage; 

  private Image backGroundImage; 

  private Image[] gifImages =  

                          new Image[6]; 

  //offscreen graphics context 

  private Graphics  

                  offScreenGraphicsCtx; 

  private Thread animationThread; 

  private MediaTracker mediaTracker; 

  private SpriteManager spriteManager; 

  //Animation display rate, 12fps 

  private int animationDelay = 83; 

  private Random rand =  

                new Random(System. 

                  currentTimeMillis()); 

   



  public static void main( 

                        String[] args){ 

    new Animate01(); 

  }//end main 

  //---------------------------------// 

 

  Animate01() {//constructor 

    // Load and track the images 

    mediaTracker =  

                new MediaTracker(this); 

    //Get and track the background  

    // image 

    backGroundImage =  

        Toolkit.getDefaultToolkit(). 

          getImage("background02.gif"); 

    mediaTracker.addImage( 

                   backGroundImage, 0); 

     

    //Get and track 6 images to use  

    // for sprites 

    gifImages[0] =  

           Toolkit.getDefaultToolkit(). 

               getImage("redball.gif"); 

    mediaTracker.addImage( 

                      gifImages[0], 0); 

    gifImages[1] =  

           Toolkit.getDefaultToolkit(). 

             getImage("greenball.gif"); 

    mediaTracker.addImage( 

                      gifImages[1], 0); 

    gifImages[2] =  

           Toolkit.getDefaultToolkit(). 

              getImage("blueball.gif"); 

    mediaTracker.addImage( 

                      gifImages[2], 0); 

    gifImages[3] =  

           Toolkit.getDefaultToolkit(). 

            getImage("yellowball.gif"); 

    mediaTracker.addImage( 

                      gifImages[3], 0); 

    gifImages[4] =  

           Toolkit.getDefaultToolkit(). 

            getImage("purpleball.gif"); 

    mediaTracker.addImage( 

                      gifImages[4], 0); 

    gifImages[5] =  

           Toolkit.getDefaultToolkit(). 

            getImage("orangeball.gif"); 

    mediaTracker.addImage( 

                      gifImages[5], 0); 

     

    //Block and wait for all images to  

    // be loaded 

    try { 

      mediaTracker.waitForID(0); 

    }catch (InterruptedException e) { 



      System.out.println(e); 

    }//end catch 

     

    //Base the Frame size on the size  

    // of the background image. 

    //These getter methods return -1 if 

    // the size is not yet known. 

    //Insets will be used later to  

    // limit the graphics area to the  

    // client area of the Frame. 

    int width =  

        backGroundImage.getWidth(this); 

    int height =  

       backGroundImage.getHeight(this); 

 

    //While not likely, it may be  

    // possible that the size isn't 

    // known yet.  Do the following  

    // just in case. 

    //Wait until size is known 

    while(width == -1 || height == -1){ 

      System.out.println( 

                  "Waiting for image"); 

      width = backGroundImage. 

                        getWidth(this); 

      height = backGroundImage. 

                       getHeight(this); 

    }//end while loop 

     

    //Display the frame 

    setSize(width,height); 

    setVisible(true); 

    setTitle( 

        "Copyright 2001, R.G.Baldwin"); 

 

    //Create and start animation thread 

    animationThread = new Thread(this); 

    animationThread.start(); 

   

    //Anonymous inner class window  

    // listener to terminate the  

    // program. 

    this.addWindowListener( 

                   new WindowAdapter(){ 

      public void windowClosing( 

                        WindowEvent e){ 

        System.exit(0);}}); 

     

  }//end constructor 

  //---------------------------------// 

 

  public void run() { 

    //Create and add sprites to the  

    // sprite manager 

    spriteManager = new SpriteManager( 

             new BackgroundImage( 



               this, backGroundImage)); 

    //Create 15 sprites from 6 gif  

    // files. 

    for (int cnt = 0; cnt < 15; cnt++){ 

      Point position = spriteManager. 

        getEmptyPosition(new Dimension( 

           gifImages[0].getWidth(this), 

           gifImages[0]. 

                     getHeight(this))); 

      spriteManager.addSprite( 

        makeSprite(position, cnt % 6)); 

    }//end for loop 

 

    //Loop, sleep, and update sprite  

    // positions once each 83  

    // milliseconds 

    long time =  

            System.currentTimeMillis(); 

    while (true) {//infinite loop 

      spriteManager.update(); 

      repaint(); 

      try { 

        time += animationDelay; 

        Thread.sleep(Math.max(0,time -  

          System.currentTimeMillis())); 

      }catch (InterruptedException e) { 

        System.out.println(e); 

      }//end catch 

    }//end while loop 

  }//end run method 

  //---------------------------------// 

   

  private Sprite makeSprite( 

      Point position, int imageIndex) { 

    return new Sprite( 

          this,  

          gifImages[imageIndex],  

          position,  

          new Point(rand.nextInt() % 5, 

                  rand.nextInt() % 5)); 

  }//end makeSprite() 

  //---------------------------------// 

 

  //Overridden graphics update method  

  // on the Frame 

  public void update(Graphics g) { 

    //Create the offscreen graphics  

    // context 

    if (offScreenGraphicsCtx == null) { 

      offScreenImage =  

         createImage(getSize().width,  

                     getSize().height); 

      offScreenGraphicsCtx =  

          offScreenImage.getGraphics(); 

    }//end if 

     



    // Draw the sprites offscreen 

    spriteManager.drawScene( 

                 offScreenGraphicsCtx); 

 

    // Draw the scene onto the screen 

    if(offScreenImage != null){ 

         g.drawImage( 

           offScreenImage, 0, 0, this); 

    }//end if 

  }//end overridden update method 

  //---------------------------------// 

 

  //Overridden paint method on the  

  // Frame 

  public void paint(Graphics g) { 

    //Nothing required here.  All  

    // drawing is done in the update  

    // method above. 

  }//end overridden paint method 

     

}//end class Animate01 

//===================================// 

 

class BackgroundImage{ 

  private Image image; 

  private Component component; 

  private Dimension size; 

 

  public BackgroundImage( 

                  Component component,  

                  Image image) { 

    this.component = component; 

    size = component.getSize(); 

    this.image = image; 

  }//end construtor 

   

  public Dimension getSize(){ 

    return size; 

  }//end getSize() 

 

  public Image getImage(){ 

    return image; 

  }//end getImage() 

 

  public void setImage(Image image){ 

    this.image = image; 

  }//end setImage() 

 

  public void drawBackgroundImage( 

                          Graphics g) { 

    g.drawImage( 

               image, 0, 0, component); 

  }//end drawBackgroundImage() 

}//end class BackgroundImage 

//=========================== 

 



class SpriteManager extends Vector { 

  private BackgroundImage  

                       backgroundImage; 

 

  public SpriteManager( 

     BackgroundImage backgroundImage) { 

    this.backgroundImage =  

                       backgroundImage; 

  }//end constructor 

  //---------------------------------// 

   

  public Point getEmptyPosition( 

                 Dimension spriteSize){ 

    Rectangle trialSpaceOccupied =  

      new Rectangle(0, 0,  

                    spriteSize.width,  

                    spriteSize.height); 

    Random rand =  

         new Random( 

           System.currentTimeMillis()); 

    boolean empty = false; 

    int numTries = 0; 

 

    // Search for an empty position 

    while (!empty && numTries++ < 100){ 

      // Get a trial position 

      trialSpaceOccupied.x =  

        Math.abs(rand.nextInt() % 

                      backgroundImage. 

                      getSize().width); 

      trialSpaceOccupied.y =  

        Math.abs(rand.nextInt() % 

                     backgroundImage. 

                     getSize().height); 

 

      // Iterate through existing  

      // sprites, checking if position  

      // is empty 

      boolean collision = false; 

      for(int cnt = 0;cnt < size(); 

                                cnt++){ 

        Rectangle testSpaceOccupied =  

              ((Sprite)elementAt(cnt)). 

                    getSpaceOccupied(); 

        if (trialSpaceOccupied. 

                 intersects( 

                   testSpaceOccupied)){ 

          collision = true; 

        }//end if 

      }//end for loop 

      empty = !collision; 

    }//end while loop 

    return new Point( 

                 trialSpaceOccupied.x,  

                 trialSpaceOccupied.y); 

  }//end getEmptyPosition() 



  //---------------------------------// 

   

  public void update() { 

    Sprite sprite; 

     

    //Iterate through sprite list 

    for (int cnt = 0;cnt < size(); 

                                cnt++){ 

      sprite = (Sprite)elementAt(cnt); 

      //Update a sprite's position 

      sprite.updatePosition(); 

 

      //Test for collision. Positive  

      // result indicates a collision 

      int hitIndex =  

              testForCollision(sprite); 

      if (hitIndex >= 0){ 

        //a collision has occurred 

        bounceOffSprite(cnt,hitIndex); 

      }//end if 

    }//end for loop 

  }//end update 

  //---------------------------------// 

   

  private int testForCollision( 

                   Sprite testSprite) { 

    //Check for collision with other  

    // sprites 

    Sprite  sprite; 

    for (int cnt = 0;cnt < size(); 

                                cnt++){ 

      sprite = (Sprite)elementAt(cnt); 

      if (sprite == testSprite) 

        //don't check self 

        continue; 

      //Invoke testCollision method  

      // of Sprite class to perform 

      // the actual test. 

      if (testSprite.testCollision( 

                               sprite)) 

        //Return index of colliding  

        // sprite 

        return cnt; 

    }//end for loop 

    return -1;//No collision detected 

  }//end testForCollision() 

  //---------------------------------// 

   

  private void bounceOffSprite( 

                    int oneHitIndex, 

                    int otherHitIndex){ 

    //Swap motion vectors for  

    // bounce algorithm 

    Sprite oneSprite =  

        (Sprite)elementAt(oneHitIndex); 

    Sprite otherSprite =  



      (Sprite)elementAt(otherHitIndex); 

    Point swap =  

           oneSprite.getMotionVector(); 

    oneSprite.setMotionVector( 

        otherSprite.getMotionVector()); 

    otherSprite.setMotionVector(swap); 

  }//end bounceOffSprite() 

  //---------------------------------// 

   

  public void drawScene(Graphics g){ 

    //Draw the background and erase  

    // sprites from graphics area 

    //Disable the following statement  

    // for an interesting effect. 

    backgroundImage. 

                drawBackgroundImage(g); 

 

    //Iterate through sprites, drawing 

    // each sprite 

    for (int cnt = 0;cnt < size(); 

                                 cnt++) 

      ((Sprite)elementAt(cnt)). 

                    drawSpriteImage(g); 

  }//end drawScene() 

  //---------------------------------// 

   

  public void addSprite(Sprite sprite){ 

    add(sprite); 

  }//end addSprite() 

   

}//end class SpriteManager 

//===================================// 

 

class Sprite { 

  private Component component; 

  private Image image; 

  private Rectangle spaceOccupied; 

  private Point motionVector; 

  private Rectangle bounds; 

  private Random rand;  

 

  public Sprite(Component component, 

                Image image, 

                Point position, 

                Point motionVector){ 

    //Seed a random number generator  

    // for this sprite with the sprite 

    // position. 

    rand = new Random(position.x); 

    this.component = component; 

    this.image = image; 

    setSpaceOccupied(new Rectangle( 

          position.x, 

          position.y, 

          image.getWidth(component), 

          image.getHeight(component))); 



    this.motionVector = motionVector; 

    //Compute edges of usable graphics 

    // area in the Frame. 

    int topBanner = ( 

                 (Container)component). 

                       getInsets().top; 

    int bottomBorder =  

                ((Container)component). 

                    getInsets().bottom; 

    int leftBorder = ( 

                (Container)component). 

                     getInsets().left; 

    int rightBorder = ( 

                (Container)component). 

                    getInsets().right; 

    bounds = new Rectangle( 

         0 + leftBorder, 

         0 + topBanner, 

         component.getSize().width -  

            (leftBorder + rightBorder), 

         component.getSize().height - 

           (topBanner + bottomBorder)); 

  }//end constructor 

  //---------------------------------// 

 

  public Rectangle getSpaceOccupied(){ 

    return spaceOccupied; 

  }//end getSpaceOccupied() 

  //---------------------------------// 

   

  void setSpaceOccupied( 

              Rectangle spaceOccupied){ 

    this.spaceOccupied = spaceOccupied; 

  }//setSpaceOccupied() 

  //---------------------------------// 

   

  public void setSpaceOccupied( 

                       Point position){ 

    spaceOccupied.setLocation( 

               position.x, position.y); 

  }//setSpaceOccupied() 

  //---------------------------------// 

   

  public Point getMotionVector(){ 

    return motionVector; 

  }//end getMotionVector() 

  //---------------------------------// 

   

  public void setMotionVector( 

                   Point motionVector){ 

    this.motionVector = motionVector; 

  }//end setMotionVector() 

  //---------------------------------// 

   

  public void setBounds( 

                     Rectangle bounds){ 



    this.bounds = bounds; 

  }//end setBounds() 

  //---------------------------------// 

   

  public void updatePosition() { 

    Point position = new Point( 

     spaceOccupied.x, spaceOccupied.y); 

     

    //Insert random behavior.  During  

    // each update, a sprite has about 

    // one chance in 10 of making a  

    // random change to its  

    // motionVector.  When a change  

    // occurs, the motionVector 

    // coordinate values are forced to 

    // fall between -7 and 7.  This  

    // puts a cap on the maximum speed 

    // for a sprite. 

    if(rand.nextInt() % 10 == 0){ 

      Point randomOffset =  

         new Point(rand.nextInt() % 3, 

                   rand.nextInt() % 3); 

      motionVector.x += randomOffset.x; 

      if(motionVector.x >= 7)  

                   motionVector.x -= 7; 

      if(motionVector.x <= -7)  

                   motionVector.x += 7; 

      motionVector.y += randomOffset.y; 

      if(motionVector.y >= 7)  

                   motionVector.y -= 7; 

      if(motionVector.y <= -7)  

                   motionVector.y += 7; 

    }//end if 

     

    //Move the sprite on the screen 

    position.translate( 

       motionVector.x, motionVector.y); 

 

    //Bounce off the walls 

    boolean bounceRequired = false; 

    Point tempMotionVector = new Point( 

                       motionVector.x, 

                       motionVector.y); 

     

    //Handle walls in x-dimension 

    if (position.x < bounds.x) { 

      bounceRequired = true; 

      position.x = bounds.x; 

      //reverse direction in x 

      tempMotionVector.x =  

                   -tempMotionVector.x; 

    }else if (( 

      position.x + spaceOccupied.width) 

          > (bounds.x + bounds.width)){ 

      bounceRequired = true; 

      position.x = bounds.x +  



                  bounds.width -  

                   spaceOccupied.width; 

      //reverse direction in x 

      tempMotionVector.x =  

                   -tempMotionVector.x; 

    }//end else if 

     

    //Handle walls in y-dimension 

    if (position.y < bounds.y){ 

      bounceRequired = true; 

      position.y = bounds.y; 

      tempMotionVector.y =  

                   -tempMotionVector.y; 

    }else if ((position.y +  

                  spaceOccupied.height) 

         > (bounds.y + bounds.height)){ 

      bounceRequired = true; 

      position.y = bounds.y +  

                 bounds.height -  

                  spaceOccupied.height; 

      tempMotionVector.y =  

                   -tempMotionVector.y; 

    }//end else if 

     

    if(bounceRequired) 

      //save new motionVector 

                   setMotionVector( 

                     tempMotionVector); 

    //update spaceOccupied 

    setSpaceOccupied(position); 

  }//end updatePosition() 

  //---------------------------------// 

   

  public void drawSpriteImage( 

                           Graphics g){ 

    g.drawImage(image, 

                spaceOccupied.x, 

                spaceOccupied.y, 

                component); 

  }//end drawSpriteImage() 

  //---------------------------------// 

   

  public boolean testCollision( 

                    Sprite testSprite){ 

    //Check for collision with  

    // another sprite 

    if (testSprite != this){ 

      return spaceOccupied.intersects( 

        testSprite.getSpaceOccupied()); 

    }//end if 

    return false; 

  }//end testCollision 

}//end Sprite class 

//===================================// 

 

Listing 6 



 

Copyright 2001, Richard G. Baldwin.  Reproduction in whole or in part in any form or medium 

without express written permission from Richard Baldwin is prohibited.  

About the author 

Richard Baldwin is a college professor and private consultant whose primary focus is a 

combination of Java and XML. In addition to the many platform-independent benefits of Java 

applications, he believes that a combination of Java and XML will become the primary driving 

force in the delivery of structured information on the Web.  

Richard has participated in numerous consulting projects involving Java, XML, or a 

combination of the two.  He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas.  He is the author of Baldwin's Java 

Programming Tutorials, which has gained a worldwide following among experienced and 

aspiring Java programmers. He has also published articles on Java Programming in Java Pro 

magazine.  

Richard holds an MSEE degree from Southern Methodist University and has many years of 

experience in the application of computer technology to real-world problems.  

baldwin.richard@iname.com  

-end-  

   

   

   

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

