
Fun with Java: Frame Animation

Baldwin teaches you how to do frame animation. Equally important, he also teaches you about

event-driven programming, multi-threaded programming, ordinary inner classes, anonymous

inner classes, exception handling, and image icons.

Published: February 4, 2003

By Richard G. Baldwin

Java Programming Notes # 1470

 Preface

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 Complete Program Listing

Preface

Computer programming doesn't have to be a gut-wrenching, high-pressure

activity. Programming can also be fun. For me, programs that provide sensory feedback, such

as animation and sound, are particularly enjoyable.

My previous series on animation, which began with the lesson entitled Fun with Java: Sprite

Animation, Part 1, taught you how to combine sprite animation and frame animation.

My current series of lessons, beginning with the lesson entitled Java Sound, An Introduction,

will teach you how to program using the Java Sound API.

A somewhat simpler approach

Sometimes, the combination of sprite animation and frame animation is overkill, and frame

animation is all that you need. Frame animation is generally the simpler of the two.

Page-flip animation

When I was a young boy, one of my friends had a book that had a small image at the lower right-

hand corner of every right-hand page. By grasping the pages between the thumb and forefinger,

and flipping through the pages rapidly, it was possible to animate the images to create a movie. I

later learned how to do the same things by drawing stick men in the right-hand margin of every

right-hand page in the telephone book. Then by flipping through the pages very quickly, I could

cause the stick men to dance, turn flips, run back and forth, etc.

mailto:Baldwin@DickBaldwin.com
http://www.developer.com/java/article.php/893471
http://www.developer.com/java/article.php/893471
http://www.developer.com/java/other/article.php/1565671

Little did I know as a youngster that someday I would be doing essentially the same thing, (and

also teaching others how to do it) using a computer.

(In fact, at that point in my life, I had never heard of a computer, nor had anyone

that I knew).

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

Preview

In this lesson, I will teach you how to do frame animation, independent of sprite

animation. Equally important, I will also use this opportunity to teach you about:

 Image icons

 Event-driven programming

 Multi-threaded programming

 Ordinary inner classes

 Anonymous inner classes

 Exception handling

Not trivial topics

None of the topics in the above list are trivial topics. In fact, with the exception of image icons

and exception handling, these topics constitute a large part of what I teach in my college-level

Intermediate Java Programming class.

(I cover exception handling in the introductory OOP course, and cover Image

Icons in one of the advanced courses.)

Of course, I cover each of those topics in much more depth in the classroom than I will be able to

do in this single lesson. Therefore, as we go along, I will refer you to more detailed tutorial

lessons on some of the topics as background material.

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/

Discussion and Sample Code

Will discuss a sample program

As is my usual practice, I will provide this instruction by discussing a sample

program. Although this program is rather short and compact, it is by no means simple. In fact, it

incorporates some of the most subtle and abstract concepts of Java programming, including:

 Event-driven programming

 Multi-threaded programming

 Ordinary inner classes

 Anonymous inner classes

Will discuss in fragments

Also, as is my usual practice, I will discuss the program in fragments. (A complete listing of the

program is shown in Listing 15 near the end of the lesson.)

This program, named Animate04, illustrates frame animation. When you compile and run the

program, the graphical user interface (GUI) shown in Figure 1 appears on the screen.

Figure 1 Program GUI

Each time the user points to the GUI with the mouse pointer, the stick man starts dancing and

continues dancing until the mouse pointer exits the GUI. (The program was tested using Sun's

SDK version 1.4.1 under Win2000.)

What is the animation process involved?

The animation process is essentially the same as the one I described above involving the

telephone book. In this program, three images of the stick man are stored in the program. When

the mouse pointer is inside the GUI, the program displays a series of images by cycling through

the three images of the stick man. This creates the illusion that the stick man is moving.

(You could improve the quality of the animation considerably by creating

additional image files showing intermediate positions for the stick man and

causing the program to cycle through those images as well.)

The class definitions

This program consists of a single top-level outer class and two inner classes. Listing 1 shows the

beginning of the top-level class, which is also the controlling class (because it defines the main

method).

public class Animate04 extends JFrame{

 Thread animate;

 ImageIcon images[] = {//An array of

images

 new ImageIcon("java1470a.gif"),

 new ImageIcon("java1470b.gif"),

 new ImageIcon("java1470c.gif")};

 JLabel label = new

JLabel(images[0]);

Listing 1

Three instance variables are declared in Listing 1, with two of those instance variables being

initialized when they are declared.

The instance variable named animate

The first instance variable, named animate, is used later to store a reference to a Thread

object. The Thread object is used to produce the animation. (I will discuss the class from which

this object is instantiated later.)

The instance variable named images

The second instance variable, named images, is a reference to a three-element array object of

type ImageIcon. This array object is initialized to contain references to three ImageIcon

objects. The three ImageIcon objects are created, and the references to those objects are stored

in the array when it is declared.

(In Java, the elements of a new array object can be initialized by including a list

of comma-separated expressions inside a matching pair of curly braces. Each

expression corresponds to one element in the array. The size of the array is

determined by the number of expressions. The contents of each array element are

determined by evaluating the corresponding expression. Each expression must

evaluate to a value that is assignment-compatible with the declared type of the

array elements, which in this case is ImageIcon.)

The ImageIcon class

Here is part of what Sun has to say about the ImageIcon class.

"An implementation of the Icon interface that paints Icons from Images. Images

that are created from a URL or filename are preloaded using MediaTracker to

monitor the loaded state of the image."

Thus, the ImageIcon class implements the Icon interface. The class provides a large number of

overloaded constructors.

The Icon interface

Here is part of what Sun has to say about the Icon interface:

"A small fixed size picture, typically used to decorate components."

In this program, the objects of the interface type Icon (objects of the class ImageIcon) will be

used to decorate a JLabel component.

ImageIcon constructors

The overloaded constructors of the ImageIcon class have the ability to create ImageIcon objects

from a variety of sources. The overloaded version that I used in this program creates ImageIcon

objects from gif files, as indicated by the code in Listing 1.

(Each of the ImageIcon objects created in Listing 1 is based on a different gif

file. These gif files contain images of the stick man in different positions.)

The MediaTracker class

In some situations, particularly when the file containing the image is large, or is not stored

locally, the actions of a MediaTracker object can be important (that is not the case in this

program). Here is part of what Sun has to say about the MediaTracker class.

"The MediaTracker class is a utility class to track the status of a number of

media objects. Media objects could include audio clips as well as images, though

currently only images are supported."

Purpose of a MediaTracker object

Basically, the purpose of a MediaTracker object is to notify the program of the loading state of

an image (media object). This can be important in situations where the amount of time required

to load the image is significant. That is not the case in this program because:

 The images are small.

 The images are loaded from the local hard drive.

 The images are loaded and converted to ImageIcon objects when the object of the

controlling class is created. (The images are probably fully loaded before the user has

time to pick up the mouse.)

Therefore, I didn't need to use a MediaTracker object to track the load status of the images in

this program.

The instance variable named label

Referring back to Listing 1, the instance variable named label is a reference to a JLabel object,

which is initially decorated with one of the ImageIcon objects discussed above.

(The JLabel object is initially decorated with the ImageIcon object whose

reference is stored at index 0 in the array. Later on, the value of the Icon

property of the label changes with time to produce the animation.)

The JLabel class

Here is part of what Sun has to say about the JLabel class:

"A JLabel object can display either text, an image, or both. You can specify where

in the label's display area the label's contents are aligned ..."

In this program, the JLabel object displays only an image. It does not display text.

JLabel constructors

The JLabel class provides several overloaded constructors, which allow you to specify the text,

the image, and the alignment of the two when the object is constructed.

When the JLabel is intended to display an image, the incoming parameter to the constructor

must be a reference to an object of the interface type Icon. This requirement is satisfied by the

code in Listing 1, because the ImageIcon class implements the Icon interface.

The setIcon method of the JLabel class

The JLabel class also provides a method named setIcon, which requires an incoming parameter

of the interface type Icon. This method makes it possible to change the image being displayed

by the label at runtime. This method will be used to cycle through images of the stick man to

produce the animation in this program.

The constructor for Animate04

The constructor for the Animate04 class begins in Listing 2.

 public Animate04(){//constructor

 getContentPane().add(label);

Listing 2

As you saw earlier in Listing 1, the Animate04 class extends the JFrame class. The code in

Listing 2 places the JLabel object on the content pane of the JFrame object.

The getContentPane method

The getContentPane method returns a reference to the content pane. In case you are unfamiliar

with the content pane, I discuss it extensively in my tutorial lesson entitled Swing,

Understanding getContentPane() and other JFrame Layers.

To make a long story short, a JFrame object provides several thousand transparent layers on

which you can place components, (such as JLabel objects, JButton objects, etc.). Each

component is located horizontally and vertically by specifying the x and y coordinate position for

the upper left-hand corner of the component. (A layout manager may automatically perform that

task for you.)

In a three dimensional sense, the z-order or depth coordinate value of each components can be

controlled by specifying the number of the layer on which you want to place each

component. This causes some components to appear to be in front of other components.

What is the content pane?

The content pane is the default layer on which you place components if you don't need to control

the z-order placement. All components placed on the content pane are at the same level in the z-

order.

In this program, we are placing only one component, (a JLabel object), in the

JFrame. Therefore, we aren't concerned about z-order among components, and we simply place

that component on the content pane (default layer) as shown in Listing 2.

An anonymous listener class

The code in Listing 3 creates an anonymous MouseListener object from an anonymous class

and registers it to listen for mouse events on the content pane. The purpose is to detect when the

mouse enters and exits the area of the content pane so that the animation can be started and

stopped on that basis.

 getContentPane().addMouseListener(

 new MouseAdapter(){

 public void

mouseEntered(MouseEvent e){

 //Body code deleted for

http://home.att.net/~baldwin.rg/Intermediate/Java087.htm
http://home.att.net/~baldwin.rg/Intermediate/Java087.htm

brevity

 }//end mouseEntered

 public void

mouseExited(MouseEvent e){

 //Body code deleted for

brevity

 }//end MouseExited

 }//end new MouseAdapter

);//end addMouseListener()

Listing 3

The code in Listing 3 is some of the most cryptic code in all of Java. Just in case you aren't

already familiar with anonymous classes, I will take some time to explain the code in Listing 3.

The JavaBeans event model

The code in Listing 3, plus what I am about to explain to you, is based on the JavaBeans event

model (previously called the Delegation Event Model).

(My series of tutorial lessons, beginning with Event Handling in JDK 1.1, A First

Look, Delegation Event Model, discuss event-driven programming in detail.)

Making a long story short

Once again, to make a long story short, the JavaBeans event model depends on sources and

listeners. In this program, the content pane of the JFrame object will act as a source for mouse

events. The anonymous MouseListener object registered on the content pane in Listing 3 will

listen for, and handle those events when they occur.

What is a MouseListener object?

To be a mouse listener, an object must be instantiated from a class that implements the

MouseListener interface. The MouseListener interface declares the following five methods:

 mouseClicked

 mouseEntered

 mouseExited

 mousePressed

 mouseReleased

As you probably already know, any class that implements an interface must provide a concrete

definition for each method declared in the interface. Thus, any class that implements the

MouseListener interface must provide a concrete definition for each of the five methods listed

above.

A convenience class named MouseAdapter

http://home.att.net/~baldwin.rg/Intermediate/Java080.htm
http://home.att.net/~baldwin.rg/Intermediate/Java080.htm

The Java API provides a convenience class named MouseAdapter, which implements the

MouseListener interface. This class defines concrete (but empty) versions of the five methods

declared in the interface. A programmer needing to define a class from which MouseListener

objects can be instantiated has two choices:

 Implement the MouseListener interface and define all five methods.

 Extend the MouseAdapter class and override only the methods of interest.

I elected the second option in this program. Furthermore, I elected to do it in a very common,

but very cryptic way.

Overrides mouseEntered and mouseExited methods

To begin with, the code in Listing 3 overrides the mouseEntered and mouseExited methods,

and ignores the other three methods.

The MouseListener registration method

The addMouseListener method in Listing 3 is used to register a MouseListener object on a

source of mouse events. In this case, the source is the content pane.

(Once a MouseListener object is registered on a source of mouse events, the

listener object will be notified each time a mouse event occurs on the source

object. The notification methodology is to invoke the specific method, chosen

from the five methods listed above, corresponding to the kind of mouse event that

occurred. The behavior of the method will determine the response to the event.)

The parameter required for registration

The addMouseListener registration method requires an incoming parameter of type

MouseListener, which is a reference to a MouseListener object. This parameter is created in

Listing 3 by instantiating an anonymous object inside the parenthesis of the call to the

addMouseListener method.

What is an anonymous object?

It is very common in Java to instantiate a new anonymous object inside the parenthesis of a

method call.

(An anonymous object is an object whose reference is not assigned to a named

reference variable. Hence, it has no name and is "anonymous.")

For example, the following statement instantiates a new anonymous object of the Date class and

passes that object's reference to the println method. This will cause the current date and time to

be displayed on the standard output:

System.out.println(new Date());

Not an ordinary anonymous object

However, the anonymous object instantiated in Listing 3 is not an ordinary anonymous

object. An ordinary anonymous object would be instantiated using an expression of the form

new MouseListenerClass()

where MouseListenerClass is the name of a class that implements the MouseListener interface.

A non-existent MouseListener class

In the code in Listing 3, the anonymous object is instantiated from a non-existent

MouseListener class. In other words, the class definition does not exist outside of the code in

Listing 3.

The MouseListener object is instantiated anonymously in Listing 3. Furthermore, the class

from which the object is instantiated is also defined anonymously within the parentheses that

make up the call to the addMouseListener method.

A verbal interpretation

You can verbally interpret the first two lines of code in Listing 3 as follows:

Register, on the content pane, a MouseListener object, instantiated from a

previously undefined class, which has no name, but which extends the class

named MouseAdapter.

Overridden interface methods

Beginning with the third line in Listing 3, the next several lines in Listing 3 override the

mouseEntered and mouseExited methods declared in the MouseListener interface and defined

in the MouseAdapter class.

(Note that the body code for each of the overridden methods in Listing 3 was

deleted for brevity. I wanted to be able to explain the structure first without

getting bogged down in detailed body code.)

Only one semicolon

If you examine the code in Listing 3 carefully, you will see that it contains only one

semicolon. Therefore, everything in Listing 3 is part of a single statement. The final two lines in

Listing 3 provide the curly brace, parenthesis, and semicolon required to complete the statement.

An anonymous listener object of an anonymous class

Once the code in Listing 3 has been executed, a new anonymous object has been instantiated

from an anonymous inner class. The new object has been registered on the content pane at that

point.

The anonymous class is a class that implements the MouseListener interface. Whenever a

mouse event occurs on the content pane, the appropriate method in the anonymous listener object

will be invoked to handle the event.

Expanding Listing 3

Now I am going to provide two listings that expand on the omitted details from Listing

3. Listing 4 shows the complete mouseEntered method from Listing 3, with the body code

restored. Similarly Listing 5, (to be discussed later), shows the complete mouseExited method

from Listing 3 with the body code restored.

 public void

mouseEntered(MouseEvent e){

 animate = new Animate();

 animate.start();

 }//end mouseEntered

Listing 4

The mouseEntered method

After the MouseListener object is registered on the content pane, the mouseEntered method

shown in Listing 4 will be invoked each time the mouse pointer enters the area of the screen

occupied by the content pane.

The behavior of the mouseEntered method is:

 Instantiate a new object of the Animate class.

 Invoke the start method on that object.

The Animate class is a Thread class

The Animate class, which I will discuss in detail later, extends the Thread class, and defines the

run method. Here is part of what Sun has to say in the documentation for the Thread class:

"A thread is a thread of execution in a program. The Java Virtual Machine allows

an application to have multiple threads of execution running concurrently."

The start method

Here is part of what Sun has to say about the start method of the Thread class:

"Causes this thread to begin execution; the Java Virtual Machine calls the run

method of this thread.

The result is that two threads are running concurrently: the current thread (which

returns from the call to the start method) and the other thread (which executes its

run method)."

Thus, when the start method is invoked on an object instantiated from the Animate class, the

run method belonging to that object is executed in a separate thread, running concurrently with

the thread that handles events. This makes it possible to produce the animation and continue to

monitor for events at the same time.

The run method

Later, when we examine the run method of the Animate class, we will see that it causes the

three images discussed earlier to be repetitively displayed in succession. That is what produces

the illusion that the stick man is dancing. That is also what I refer to as frame animation.

The mouseExited method

The mouseEntered method shown in Listing 4 is invoked when the mouse pointer enters the

area of the screen occupied by the content pane. This causes animation of the stick man to begin.

The mouseExited method shown in Listing 5 is invoked when the mouse pointer leaves the area

of the screen occupied by the content pane. This causes the animation of the stick man to stop.

Stopping the animation

The process of stopping the animation is a little more complicated than the process of starting the

animation. This is evidenced by the code in Listing 5, which shows the full body of the

mouseExited method from Listing 3.

 public void

mouseExited(MouseEvent e){

 animate.interrupt();

while(animate.isAlive()){}//loop;

 animate = null;

 label.setIcon(images[0]);

 label.repaint();

 }//end MouseExited

Listing 5

Basically, here is what happens as a result of invoking the mouseExited method:

 Interrupt the animation thread to terminate the animation.

 Loop for a few cycles while the animation thread finishes everything that it needs to do

and dies a natural death.

 Hand the animation object over to the garbage collector.

 Restore the default image to the label so that it will always be the same when not being

animated.

The interrupt method

The result of invoking the interrupt method on a Thread object depends on the current state of

the Thread object. As you will see when we examine the code in the run method of the Thread

object, we are concerned with the Thread object being in one of two possible states:

 The thread is sleeping.

 The thread is not sleeping, but rather is involved in selecting a new icon and causing it to

be painted on the screen.

Interrupting the Thread object

The Thread object cycles between these two states in order to:

 Display a new stick man image.

 Delay for an appropriate amount of time so that the new image will register in the brain

of the viewer. If the delay is too short, the image won't be seen by the viewer and the

animation will just be a blur. If the delay is too long, the animation will appear to be

jerky.

If the interrupt method is invoked on the Thread object while it is sleeping, an

InterruptedException will be thrown. We will stop the animation when the animation is

thrown.

If the interrupt method is invoked on the Thread object while it is selecting a new icon and

causing it to be painted on the screen, the interrupt status for the Thread object will be set to

true. We will test this status in the run method before causing the Thread object to go to

sleep. If the status is true at that point in time, we will purposely throw an

InterruptedException. Again, we will stop the animation when the exception is

thrown. However, in this case, a few extra machine cycles may occur before the exception is

thrown.

The isAlive method

Shortly after the InterruptedException is thrown, the thread's run method will terminate

normally, and the thread will die a natural death. Because this doesn't happen instantly, the code

in Listing 5 loops until the isAlive method returns false. This ensures that no further action is

taken on the Thread object while it is still alive.

(I always get a little nervous about writing a loop in an event handler for fear that

it may take too long to terminate. However, I decided to take a chance in this

case, and it seems to work OK under Win2000. However, a more sophisticated

approach may be required on other operating systems, particularly those that

don't provide automatic time slicing to prevent the event-handling thread from

hogging the CPU.)

Eligible for garbage collection

Continuing with the code in Listing 5, once the thread is no longer alive, a null value is assigned

to the reference variable that refers to the Thread object. This causes the object to become

eligible for garbage collection.

The setIcon method

As mentioned earlier, the setIcon method can be used to define the icon a component will

display. The code in Listing 5 causes the icon that will be displayed to be the same icon that is

displayed when the program starts. Thus, the same icon is displayed whenever the stick man is

not being animated.

The repaint method

The purpose of the repaint method is to cause the screen area occupied by a component to be

repainted as soon as possible. In this case, that causes the label with the new icon to appear on

the screen.

Invoking the repaint method on a JLabel component sends a request to the operating system to

invoke the component's paint method to repaint the component. Since I didn't override the paint

method for the JLabel object, the default version of the paint method for the label is actually

invoked.

Not a blocking method

The repaint method is not a blocking method. This will become important later when we

discuss the animation thread. Rather, the repaint method sends the repaint request to the

operating system and returns immediately. In other words, control does not necessarily stay

within the repaint method until the component has been repainted.

The operating system may not honor all repaint requests

In point of fact, the operating system is not required to honor all repaint requests. For example,

if a series of repaint requests for the same component are made in short succession, the operating

system has the option to ignore all the intermediate repaint requests and honor only the final

request in the series. This could happen if the time interval between repaint requests is less than

the time required to perform the repaint operation on the screen.

The mouseExited method terminates

Once the repaint request is made, the mouseExited method shown in Listing 5 terminates.

(The actual repainting of the screen may not have been accomplished by that

point in time. It may actually occur later.)

The virtual machine is then free to honor the next event in the system event queue.

Still in the constructor

Recall that we are still discussing the code in the constructor. The final four statements in the

constructor are shown in Listing 6. With the possible exception of the first statement in Listing

6, the final four statements in the constructor should be self-explanatory based on the names of

the methods involved.

setDefaultCloseOperation(EXIT_ON_CLOSE);

 setTitle("Copyright 2003,

R.G.Baldwin");

 setSize(250,200);

 setVisible(true);

 }//end constructor

Listing 6

The setDefaultCloseOperation method

The setDefaultCloseOperation method specifies the action to be taken when the user clicks the

close button on the frame.

(On a Windows system, this is the button with the X in the upper right corner of

the JFrame object as shown in Figure 1).

Several optional actions can be specified. When the value EXIT_ON_CLOSE is passed as a

parameter to the method, this specifies that the program should terminate when the user clicks

the close button.

The ordinary inner class

At this point, I am going to temporarily skip the main method and discuss the ordinary inner

class named Animate. First, however, a few comments are in order regarding the use of inner

classes.

Why use inner classes?

The primary benefit of using inner classes has to do with accessibility of instance variables and

instance methods. Basically, the code in an inner class has direct access to all the instance

variables and all the instance methods of all outer enclosing classes. In some cases, this can

eliminate a great deal of parameter passing that is required when all classes are defined as top-

level classes.

For example, the code in the anonymous inner class discussed above directly accesses the

instance variable named animate. The code also accesses the instance variable named images,

and the instance variable named label.

These are all instance variables of the outer enclosing class. If the event handling code had been

placed in a top-level class instead, it would have been necessary to pass copies of those instance

variables to the constructor for the top-level class and to save those copies for use within the

mouseEntered and mouseExited methods of that class. Thus, it is often much more convenient

to define a class an either an ordinary inner class or an anonymous inner class.

What happens at compile time?

Every class that is defined in a Java program results in a compiled file with an extension of class

regardless of whether it is a top-level class, an ordinary inner class, or an anonymous inner

class. For example, when compiled, this program produces the following three files:

 Animate04$1.class

 Animate04$Animate.class

 Animate04.class

The first file in the above list results from compiling the anonymous inner class discussed

above. Obviously, the class file does have a name, which is automatically assigned by the virtual

machine. However, that name is never used explicitly by the programmer. Hence the class is

called an anonymous inner class.

Even though the anonymous class, in this case, is defined inside the constructor for the outer

controlling class, it is actually compiled right along with the other classes that make up the

program. In other words, the compilation of this class has nothing to do with the invocation of

the constructor at runtime.

The second file in the above list results from compiling the ordinary inner class that we will

discuss next. The third file in the above list results from compiling the controlling class for this

program.

The inner class named Animate

An ordinary inner class is an inner class because its definition resides inside the definition of

another class. However, it doesn't reside within the argument list of a method call, as is the case

for an anonymous inner class.

The purpose of this inner class is to provide the animation action for the program. The class

definition begins in Listing 7.

 class Animate extends Thread{

Listing 7

A class that extends the Thread class

You will recall that the purpose of the Animate class is to behave as a thread, executing

concurrently with other threads in the program. You can learn more about threads by reviewing

my tutorial lesson entitled Threads of Control.

Two approaches to multi-threaded programming

Briefly, there are two different ways that you can define a class from which you can instantiate

thread objects:

 Implement the Runnable interface

 Extend the convenience class named Thread, which in turn implements Runnable

Even though the second approach is sometimes more convenient than the first, because Java

doesn't support multiple inheritance, it isn't always possible for your class to extend the Thread

class. However, it is always possible for your class to implement the Runnable interface.

As you can see in Listing 7, I elected to define a new class named Animate, which extends the

Thread class.

Defining the run method

Regardless of which approach you take, your new class must provide a concrete definition for

the method named run, which is declared in the Runnable interface.

Here is what Sun has to say about the run method:

"When an object implementing interface Runnable is used to create a thread,

starting the thread causes the object's run method to be called in that separately

executing thread.

The general contract of the method run is that it may take any action

whatsoever."

http://home.att.net/~baldwin.dick/Intro/Java058.htm

Somewhat analogous to the main method

I like to think of the run method of a thread as being somewhat analogous to the main method of

an application. When you execute a Java application, its main method is always

executed. When you invoke the start method on a Runnable object, its run method is always

executed.

(The start method was invoked on an object of the Animate class in the

mouseEntered method shown in Listing 4.)

As mentioned earlier, when the run method of a thread terminates, the thread is deemed to no

longer be alive. (I made use of that fact in the mouseExited method discussed in Listing 5

earlier.)

When the main method no longer has anything to do, and there are no live non-daemon threads,

the application will terminate. (I'm not going to get into a discussion of daemon threads

here. See Threads of Control for a detailed discussion.)

The run method of the Animate class

The run method of the Animate class contains two blocks of code:

 A try block

 A catch block

The try block is shown in Listing 8.

 public void run(){//begin run

method

 try{

 while(true){

 display(1,500);

 display(0,500);

 display(2,500);

 display(0,500);

 }//end while loop

 }//end try block

Listing 8

The try block

The code in the try block consists of an infinite loop. This loop continues to loop and invoke the

method named display several times during each iteration until the display method throws an

exception.

Display the stick man

http://home.att.net/~baldwin.dick/Intro/Java058.htm

The display method, (which we will examine shortly), causes different images of the stick man to

be displayed, depending on the value of the first parameter passed to the method.

Briefly, the two parameters to the display method specify which image to display, and how long

to display that image.

(The first parameter is an index into the array containing the ImageIcon objects

from Listing 1, and the second parameter is the display time in milliseconds.)

This is the code that actually produces the animation. The four successive invocations of display

cause four views of the stick man to be displayed. Then another iteration begins and the same

four views appear again.

(If you need a more complex animation algorithm possibly involving more images

and varying display times, this is where you would provide a suitable algorithm

for that purpose.)

An InterruptedException may be thrown

This animation process continues until the display method throws an exception.

(It is expected that an InterruptedException will be thrown when the

mouseExited method invokes the interrupt method on the Animate thread object.)

As is always the case, when an exception is thrown, execution of the code terminates and the

virtual machine begins searching for a catch block whose type is compatible with the type of

exception thrown. If such a match is found, control is transferred to that block, and the code in

the catch block is executed.

The catch block

The catch block, which constitutes the second block of code in the run method, begins in Listing

9.

 catch(Exception ex){

 if(ex instanceof

InterruptedException){

 //Do nothing. This exception

is

 // expected on mouseExited.

 }//end if

Listing 9

This catch block is compatible with exceptions of type Exception, or any subclass of

Exception. This includes InterruptedException and most other exceptions as well.

If an InterruptedException has occurred ...

The code in the catch block uses the instanceof operator to determine if the exception is of type

InterruptedException. If so, no further action is taken. By the time control reaches the catch

block as a result of an InterruptedException, animation has been terminated, which is the

desired result of invoking the interrupt method in the mouseExited method. Therefore, no

further action is required on the part of the thread object.

Some other type of exception

On the other hand, if the exception is of some type other than InterruptedException, this is an

unexpected exception. In this case, the code in Listing 10 prints an error message and terminates

the program.

 else{//Unexpected exception

occurred.

 System.out.println(ex);

 System.exit(1);//terminate

program

 }//end else

 }//end catch

 }//end run

Listing 10

And that is the end of the run method.

The display method

Recall that we are still discussing the code in the Animate class, from which Thread objects are

instantiated to perform the actual animation of the stick man.

The display method begins is listing 11. Before getting into the details of the code, however,

consider the following overview. When the display method is invoked, it causes a specified

image to be displayed. Then the thread goes to sleep for a prescribed period of time.

If the thread is interrupted (by code in the mouseExited method) while the display method is

displaying the image, the code in the display method throws an InterruptedException and

terminates.

If the thread wakes up prior to being interrupted, it returns normally and animation continues.

If the thread goes to sleep and is interrupted before it wakes up, it automatically throws an

InterruptedException, causing the display method to terminate.

Transfer of control

In any case that an exception is thrown while control is within the display method, animation is

terminated, and control is transferred to the catch block that begins in Listing 9.

The code in the display method

The beginning of the display method is shown in Listing 11.

 void display(int image,int delay)

 throws

InterruptedException{

 //Select and display an image.

 label.setIcon(images[image]);

 label.repaint();

Listing 11

The display method receives two incoming parameters of type int. The first parameter is an

index into the array containing the ImageIcon objects. The second parameter is the number of

milliseconds to sleep after displaying the image specified by the first parameter.

The two statements in Listing 11 set and display an image. This code is identical to the code

discussed earlier in Listing 5. Therefore, I won't discuss it further here.

Checking the interrupt status

If control reaches this point, and the interrupt method has been invoked on this Thread object

since its instantiation (meaning that the mouseExited method has been invoked) the interrupt

status of the thread will have been set to true.

The code in Listing 12 invokes the interrupted method to check the interrupt status of the

thread. This code purposely throws an InterruptedException if the interrupt status is true.

if(Thread.currentThread().interrupted())

 throw(new

InterruptedException());

Listing 12

This will immediately terminate the display method and transfer control to the catch block that

begins in Listing 9.

Go to sleep

If the interrupt status of the thread is false, the code in Listing 13 causes the Thread object to go

to sleep for the prescribed number of milliseconds.

 //Delay specified number of

msec.

 //Terminate animation

automatically if

 // interrupted while asleep.

Thread.currentThread().sleep(delay);

 }//end display method

Listing 13

This will cause the current image to be displayed until the thread wakes up and returns normally,

or until the thread is interrupted by the code in the mouseExited method.

Behavior when asleep

If the thread is not interrupted while it is asleep, it will wake up after the prescribed number of

milliseconds and return normally to the code in Listing 8.

If the thread is interrupted while it is asleep, it will wake up immediately, throw an

InterruptedException, and transfer control to the catch block that begins is Listing 9. As

mentioned earlier, this will stop the animation, which is the desired result of invoking the

interrupt method within the mouseExited method.

End of the Animate class definition

With the exception of one more curly brace, that ends the definition of the inner class named

Animate. (I won't waste your time by showing you that curly brace. You can view it in Listing

15 near the end of the lesson.)

The main method

Finally, the main method for this program is shown in Listing 14.

 public static void main(String[]

args){

 new Animate04();

 }//end main

Listing 14

All that the main method does is invoke the constructor to instantiate a new object of the

controlling class named Animate04.

Let's recap

To recap, here is what happens when the constructor for the Animate04 class is invoked and the

object is instantiated:

 The JLabel object, which was initialized to display the default image, is added to the

content pane of the JFrame object.

 An object of the anonymous class (stored in the class file named Animate04$1.class) is

instantiated and registered as a mouse listener on the content pane of the JFrame

object. This object contains specified behavior for the mouseEntered and mouseExited

methods. The other three methods declared in the MouseListener interface are defined

with empty bodies. Thus, if invoked, these three methods will return immediately

without performing any action.

 Property values are established for the following properties: defaultCloseOperation, title,

and size.

 The visible property is set to true, which causes the JFrame object, and the JLabel

object that it contains to appear on the screen.

A quiescent state

At this point, the program enters a quiescent state, waiting for the user to cause an event of some

type. There are dozens of different types of event that the user can cause to occur. However,

only two of those event types will be processed by the program. All the rest will be ignored.

(Actually, only one event type, MouseEvent, will be processed. The animation

behavior of the program is based on two sub-categories of the MouseEvent

type. To avoid unnecessary complexity, I will refer to them simply as two events.)

Two events that will be processed

The two events that will be processed by the program are two sub-categories of the event type

MouseEvent:

 mouseEntered - occurs when the mouse pointer enters the area of the screen occupied by

the content pane of the JFrame object.

 mouseExited - occurs when the mouse pointer exits the area of the screen occupied by

the content pane of the JFrame object.

The mouseEntered event

A mouseEntered event causes an object to be instantiated from the Thread class named

Animate. Once the object is instantiated, the run method of the Thread object is started. The

run method runs continuously, causing the stick man to be animated, until the Thread object is

interrupted.

The mouseExited event

A mouseExited event causes the interrupt method to be invoked on the Thread object. This

causes the run method of the Thread object to terminate, which in turn causes the animation of

the stick man to stop.

This also causes the Thread object to die a natural death. Once the Thread object is no longer

alive, the mouseExited method makes the Thread object eligible for garbage collection, and

displays the default image on the label on the JFrame object.

Run the Program

At this point, you may find it interesting to compile and run the Animate04 program shown in

Listing 15 near the end of the lesson. Because I tested the program using SDK version 1.4.1, I

recommend that you compile and run it using that version or a later version of the SDK.

You should be able to copy and paste the program into your editor. Then store it in a file named

Animate04.java.

The stick-man images

In order to compile and run the program, you will also need to download the three image files

shown below. You should be able to download them individually by right-clicking on them and

saving them on your local disk.

Save them under the following file names in the same directory containing your source code file

and compiled files:

 java1470a.gif

 java1470b.gif

 java1470c.gif

Summary

In this lesson, I taught you how to do frame animation. Equally important, I also taught you

about event-driven programming, multi-threaded programming, ordinary inner classes,

anonymous inner classes, exception handling, and image icons.

Complete Program Listing

A complete listing of the program is shown in Listing 11.

/*File Animate04.java

Revised 01/07/03

Illustrates frame animation. Stick figure

dances when user point to the image with the

mouse. Stick figure stops dancing when mouse

pointer exits the image.

Also illustrates:

 Event-driven programming

 Multi-threaded programming

 Ordinary inner classes

 Anonymous inner classes

 Image icons

Tested using SDK 1.4.1 under Win 2000.

**/

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class Animate04 extends JFrame{

 Thread animate;//Store ref to animation thread

 ImageIcon images[] = {//An array of images

 new ImageIcon("java1470a.gif"),

 new ImageIcon("java1470b.gif"),

 new ImageIcon("java1470c.gif")};

 JLabel label = new JLabel(images[0]);

 //---//

 public Animate04(){//constructor

 getContentPane().add(label);

 //Use an anonymous inner class to register a

 // mouse listener

 getContentPane().addMouseListener(

 new MouseAdapter(){

 public void mouseEntered(MouseEvent e){

 //Get a new animation thread and start

 // the animation on it.

 animate = new Animate();

 animate.start();

 }//end mouseEntered

 public void mouseExited(MouseEvent e){

 //Terminate the animation.

 animate.interrupt();

 //Let the thread die a natural death.

 // Then make it eligible for garbage

 // collection.

 while (animate.isAlive()){}//loop;

 animate = null;

 //Restore default image.

 label.setIcon(images[0]);

 label.repaint();

 }//end MouseExited

 }//end new MouseAdapter

);//end addMouseListener()

 //End definition of anonymous inner class

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 setTitle("Copyright 2003, R.G.Baldwin");

 setSize(250,200);

 setVisible(true);

 }//end constructor

 //---//

 public static void main(String[] args){

 new Animate04();

 }//end main

 //---//

 //Ordinary inner class to animate the image

 class Animate extends Thread{

 public void run(){//begin run method

 try{

 //The following code will continue to

 // loop until the animation thread is

 // interrupted by the mouseExited

 // method.

 while(true){

 //Display several images in succession.

 display(1,500);

 display(0,500);

 display(2,500);

 display(0,500);

 }//end while loop

 }catch(Exception ex){

 if(ex instanceof InterruptedException){

 //Do nothing. This exception is

 // expected on mouseExited.

 }else{//Unexpected exception occurred.

 System.out.println(ex);

 System.exit(1);//terminate program

 }//end else

 }//end catch

 }//end run

 //---//

 //This method displays an image and sleeps

 // for a prescribed period of time. It

 // terminates and throws an

 // InterruptedException when interrupted

 // by the mouseExited method.

 void display(int image,int delay)

 throws InterruptedException{

 //Select and display an image.

 label.setIcon(images[image]);

 label.repaint();

 //Check interrupt status. If interrupted

 // while not asleep, force animation to

 // terminate.

 if(Thread.currentThread().interrupted())

 throw(new InterruptedException());

 //Delay specified number of msec.

 //Terminate animation automatically if

 // interrupted while asleep.

 Thread.currentThread().sleep(delay);

 }//end display method

 //---//

 }//end inner class named Animate

}//end class Animate04

Listing 15

Copyright 2003, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and private

consultant whose primary focus is a combination of Java, C#, and XML. In addition to the many

platform and/or language independent benefits of Java and C# applications, he believes that a

combination of Java, C#, and XML will become the primary driving force in the delivery of

structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:Baldwin@DickBaldwin.com

