
Java Sound, Creating, Playing, and Saving Synthetic Sounds

Baldwin shows you how to create, play, and save synthetic sounds, making use of the features of

the java.nio package to help with the byte manipulations. Seven different sample sounds are

provided and explained.

Published: June 17, 2003

By Richard G. Baldwin

Java Programming Notes # 2022

 Preface

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 Complete Program Listing

Preface

This series of lessons is designed to teach you how to use the Java Sound API. The first lesson

in the series was entitled Java Sound, An Introduction. The previous lesson was entitled Java

Sound, Writing More Robust Audio Programs.

Two types of audio data

Two different types of audio data are supported by the Java Sound API:

 Sampled audio data

 Musical Instrument Digital Interface (MIDI) data

The two types of audio data are very different. I am concentrating on sampled audio data at this

point in time. I will defer my discussion of MIDI until later.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

mailto:Baldwin@DickBaldwin.com
http://www.developer.com/java/other/article.php/1565671
http://www.developer.com/java/other/article.php/2205521
http://www.developer.com/java/other/article.php/2205521

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

Material in earlier lessons

Earlier lessons in this series showed you how to:

 Use methods of the AudioSystem class to write more robust audio programs.

 Play back audio files, including those that you create using a Java program, and those that

you acquire from other sources.

 Capture microphone data into audio files types of your own choosing.

 Capture microphone data into a ByteArrayOutputStream object.

 Use the Sound API to play back previously captured audio data.

 Identify the mixers available on your system.

 Specify a particular mixer for use in the acquisition of audio data from a microphone.

 Understand the use of lines and mixers in the Java Sound API.

Preview

What are synthetic sounds?

Synthetic sounds, (as opposed to sounds that you record via a microphone), are sounds that you

create by executing a mathematical algorithm.

How does this differ from MIDI sounds?

Generally speaking, (but not entirely), MIDI sounds are designed to provide a computer-

generated simulation of musical instruments. Even in those cases where MIDI sounds may not

be intended to simulate real musical instruments, MIDI sounds are generally intended to

somehow fit into the domain of making music.

Synthetic sounds, as discussed in this lesson, are more comparable to what you may consider to

be sound effects. For example, synthetic sounds might be appropriate for including in a

computer game, or for gaining someone's attention when they download your web page.

For example, the Windows operating system makes various sounds when the user performs

certain operations with the mouse or keyboard (Critical Stop, Default Beep, Exclamation,

etc.). While some of those sounds may have been recorded via a microphone, many of those

sounds appear to have been generated synthetically.

Why create synthetic sounds?

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/

I'm publishing this lesson for several reasons. The first reason is simply that creating and

listening to synthetic sounds can be lots of fun. It is fun to write a new algorithm that produces

synthetic sounds, and then to listen and hear what it sounds like.

Reason 2: Creating synthetic sounds is easy

In addition to being fun, creating synthetic sounds can be relatively easy. For example, while it

is also fun to create and view animated graphics, creating animated graphics requires a lot of

work. Once you know how to do it, it is much easier to create interesting sounds than it is to

create interesting animations.

The sample program that I will discuss in this lesson contains algorithms for creating seven

different sounds. The code for each algorithm is very similar to the code for every other

algorithm. None of the algorithms contain more than one page of code, and they all sound very

different

Reason 3: Will need in the future

In the near future, I plan to write a tutorial lesson explaining the technical aspects of the different

encoding schemes used with the different audio formats (ALAW, PCM_SIGNED,

PCM_UNSIGNED, and ULAW for example).

To explain the different encoding schemes, it will be necessary to have audio data that is both

deterministic and repeatable. I will apply different encoding schemes to the same deterministic

audio samples, and will show numbers to explain the differences between the encoding

schemes. Algorithms similar to those explained in this lesson will suffice for providing the audio

data.

Discussion and Sample Code

The user interface

The user interface for the sample program that I will discuss in this lesson is shown in Figure 1.

Figure 1 GUI for current version of the program

Seven different synthetic sounds

The center panel in the GUI contains radio buttons that allow the user to select from seven

different synthetic sounds (hopefully you will add many more):

 Tones - This sound consists of a two-second monaural mixture of sinusoids at three

frequencies.

 Stereo Panning - This one-second stereo sound begins in the left speaker and pans across

to the right speaker with a shift in the frequency from high to low in the process

 Stereo Pingpong - This one-second stereo sound switches rapidly back and forth between

the two speakers shifting frequency in the process.

 FM Sweep - This monaural sound starts at 100 Hz and does a linear frequency shift up to

1000 Hz during a two-second period.

 Decay Pulse - This two-second monaural sound is a pulse whose amplitude decays in a

linear fashion from a maximum value at the beginning to zero at the end of one-second

elapsed time. There is no sound during the second half of the period.

 Echo Pulse - This two-second monaural sound consists a primary pulse (based on the

Decay Pulse algorithm) and several echoes that decrease in intensity over time.

 WaWa Pulse - This two-second monaural sound is similar to the Echo Pulse described

above, except that two of the three echoes were added in with a 180-degree phase

shift. This produces a decidedly different effect.

Listen or write to file

The bottom panel in the GUI contains two radio buttons that allow the user to specify whether

she wants to listen to the sound immediately or to write it into an audio file of type AU. A text

field is provided to allow for specifying a name for the file. (The default file name is junk.au.)

Generate and Play or File

The top panel in the GUI contains two buttons that allow the user to first generate a sound as

specified by the radio buttons in the center panel, and then to either play the sound or write it into

an audio file, depending on which radio button has been selected in the bottom panel.

Having generated a sound, the user can listen to it repeatedly and then write it into a file if

desired.

The top panel also contains an elapsed-time meter that shows the length of the sound in

milliseconds each time it is played.

Default case

As you can see from Figure 1, the default case on startup is to generate a Tones sound and Listen

to the sound when the Play/File button is clicked.

Operating instructions

Here are the operating instructions for the program:

 Start the program.

 Select a sound from the center panel, or accept the Tones default.

 Select Listen or File in the bottom panel, or accept the Listen default.

 Click the Generate button in the top panel to generate the sound and store it in memory.

 Click the Play/File button in the top panel one or more times. If you previously selected

Listen in the bottom panel, the file will be played each time you click the button. If you

previously selected File in the bottom panel, an audio file of type AU will be written with

the name showing in the text field.

 Play back the recorded audio file, if any. You should be able to play back the file using a

media player such as the Windows Media Player, or a Java program such as the program

named AudioPlayer02 that I discussed in an earlier lesson entitled Java Sound, Playing

Back Audio Files using Java.

Will discuss the program in fragments

The sample program that I will discuss in this lesson is named AudioSynth01. As usual, I will

discuss this program in fragments. A complete listing of the program is shown in Listing 49 near

the end of the lesson.

Similar to previous programs

The program named AudioSynth01 contains many elements that are similar to other programs

that I have discussed in earlier lessons in this series. (You are strongly encouraged to review

those earlier lessons.)

Although I will discuss the entire program briefly to establish the context, I will concentrate my

detailed discussion on those aspects of the new program having to do with the creation,

playback, and recording of synthetic sound.

The controlling class named AudioSynth01

The class definition for the controlling class begins in Listing 1.

public class AudioSynth01 extends

JFrame{

 AudioFormat audioFormat;

 AudioInputStream audioInputStream;

 SourceDataLine sourceDataLine;

Listing 1

http://www.developer.com/java/other/article.php/2173111
http://www.developer.com/java/other/article.php/2173111

The code in Listing 1 includes the declaration of three instance variables used to create a

SourceDataLine object that feeds data to the speakers on playback. I have discussed

SourceDataLine objects in several previous lessons, so I won't discuss the instance variables

further in this lesson.

Audio format parameters

The instance variables in Listing 2 are audio format parameters with their default values. Some

of these values are modified later by the code in the algorithms that generate the sound. The

values for each parameter allowed by Java SDK 1.4.1 are shown in comments following the

declaration of each parameter.

 float sampleRate = 16000.0F;

 //Allowable

8000,11025,16000,22050,44100

 int sampleSizeInBits = 16;

 //Allowable 8,16

 int channels = 1;

 //Allowable 1,2

 boolean signed = true;

 //Allowable true,false

 boolean bigEndian = true;

 //Allowable true,false

Listing 2

Although I have used format parameters in several previous lessons, I haven't had much to say

about them to this point. I will discuss the format parameters in the following paragraphs with

respect to the impact that they have on the generation of synthetic sound.

Sample rate

I have discussed the sampling rate in general in my tutorial lesson entitled Digital Signal

Processing (DSP) in Java, Sampled Time Series. Rather than to repeat that discussion, I will

simply refer you to that earlier lesson.

(By the way, you will find an index to all of my tutorial lessons at

www.DickBaldwin.com)

The higher the sampling rate, the more samples are required for a fixed amount of time, the more

memory is required, and the more computational demands are placed on the computer to be able

to handle the audio data in real time.

For this lesson, I chose a sampling rate of 16000 samples per second as a reasonable compromise

between the minimum allowable rate of 8000 samples per second and the highest allowable rate

of 44,100 samples per second.

http://www.dickbaldwin.com/dsp/Dsp00104.htm
http://www.dickbaldwin.com/dsp/Dsp00104.htm
http://www.dickbaldwin.com/

Sample size in bits

Java SDK 1.4.1 allows sample sizes of eight bits or 16 bits. Using signed PCM encoding, (which

I elected to use), an 8-bit sample can record a dynamic range of only 127 to 1. In other words,

the loudest sound can only be 127 times as loud as the quietest sound, assuming that the range of

sounds is perfectly balanced within the allowable range of the digitizer.

(In addition, Java type short is a natural fit for 16-bit signed PCM encoding with

big-endian byte order.)

I elected to use 16-bit signed samples (based on type short), which provide a dynamic range of

32,767 to 1.

Number of channels

Java SDK 1.4.1 allows both monaural (one channel) and stereo (two channel) sound. I will show

you how to use both in this lesson.

Signed or unsigned data

Java allows for the use of either signed or unsigned audio data. However, because Java does not

support unsigned integer types (as does C and C++), extra work is required to create synthetic

sound for unsigned data. Therefore, I elected to use signed 16-bit data for all of the synthetic

sound examples that I will discuss in this lesson.

Big-endian or little-endian

Java SDK 1.4.1 supports both big-endian and little-endian audio data. However, according to

Roedy Green,

"Everything in Java binary format files is stored big-endian, MSB(Most

Significant Byte) first. This is sometimes called network order. This is good news.

This means if you use only Java, all files are done the same way on all platforms

Mac, PC, Solaris, etc. You can freely exchange binary data electronically over

the Internet or on CD/floppy without any concerns about endianness. The

problem comes when you must exchange data files with some program not written

in Java that uses little-endian order, most commonly C on the PC. Some platforms

use big-endian order internally (Mac, IBM 390); some use little-endian order

(Intel). Java hides that internal endianness from you. "

Because Java inherently creates big-endian data, you must do a lot of extra work to create little-

endian audio data in Java. Therefore, I elected to create all of the synthetic sounds in this lesson

in big-endian order.

PCM, ALAW, or ULAW encoding

http://mindprod.com/jglossendian.html

Of the available encoding schemes, linear PCM is not only the simplest, it is also the default for

one of the constructors for the AudioFormat class. I used that constructor in this sample

program. Therefore, I used linear PCM encoding for all the synthetic samples in this lesson.

I plan to publish a future lesson that will explain the differences between the different audio

encoding schemes supported by Java.

An audio data buffer for synthetic data

Listing 3 shows the declaration and initialization of a byte array with a length of 64000 bytes.

 byte audioData[] = new

byte[16000*4];

Listing 3

Each of the synthetic sound data generators deposits the synthetic sound data in this array when

it is invoked.

At 16-bits per sample and 16000 samples per second, this array can contain two seconds of

monaural (one-channel) data or one second of stereo (two-channel) data.

For simplicity, all of the synthetic data generators in this sample program fill this array when

called upon to generate synthetic sound data. Thus, the stereo samples are only half as long as

the monaural samples.

(You can change the length of the audio data by changing the size of this

array. However, for reasons that I will mention later, you should make the size of

the array an even multiple of four.)

The GUI components

I'm not going to spend much time discussing the GUI or its components. However, I will skim

over the GUI code very lightly to establish the context.

The instance variables in Listing 4 hold references to components that appear in the top panel in

Figure 1.

 final JButton generateBtn =

 new

JButton("Generate");

 final JButton playOrFileBtn =

 new

JButton("Play/File");

 final JLabel elapsedTimeMeter =

 new

JLabel("0000");

Listing 4

Radio buttons in the center of the GUI

The instance variables in Listing 5 hold references to radio buttons that appear in the center of

the GUI in Figure 1.

 final JRadioButton tones =

 new

JRadioButton("Tones",true);

 final JRadioButton stereoPanning =

 new JRadioButton("Stereo

Panning");

 final JRadioButton stereoPingpong =

 new JRadioButton("Stereo

Pingpong");

 final JRadioButton fmSweep =

 new

JRadioButton("FM Sweep");

 final JRadioButton decayPulse =

 new

JRadioButton("Decay Pulse");

 final JRadioButton echoPulse =

 new

JRadioButton("Echo Pulse");

 final JRadioButton waWaPulse =

 new

JRadioButton("WaWa Pulse");

Listing 5

If you update the program to add new synthetic sound data generators (which I hope that you do),

this is where you establish the radio buttons for the new generators.

Components in the bottom panel of the GUI

The instance variables in Listing 6 hold references to the two radio buttons and the text field that

appear in the bottom panel of the GUI in Figure 1.

 final JRadioButton listen =

 new

JRadioButton("Listen",true);

 final JRadioButton file =

 new

JRadioButton("File");

 final JTextField fileName =

 new

JTextField("junk",10);

Listing 6

The main method

The main method is shown in Listing 7. This method simply instantiates an object of the

controlling class.

 public static void main(String

args[]){

 new AudioSynth01();

 }//end main

Listing 7

The constructor

The constructor begins in Listing 8.

 public AudioSynth01(){//constructor

 final JPanel controlButtonPanel =

new JPanel();

 controlButtonPanel.setBorder(

BorderFactory.createEtchedBorder());

Listing 8

The code in Listing 8 instantiates a JPanel object, which will contain the two buttons and the

label in the top panel. Note the use of the setBorder method to create a border on the JPanel

object as shown in Figure 1.

The center panel in the GUI

The code in Listing 9 instantiates a JPanel object that will be used to create a physical grouping

of the radio buttons in the center of the GUI. The code also instantiates a ButtonGroup object

that will be used to group the radio buttons into a logical, mutually exclusive group.

 final JPanel synButtonPanel = new

JPanel();

 final ButtonGroup synButtonGroup =

 new

ButtonGroup();

 final JPanel centerPanel = new

JPanel();

Listing 9

In addition, the code in Listing 9 instantiates another JPanel object that will be used for cosmetic

purposes, to cause the radio buttons to be centered horizontally in the center of the GUI in Figure

1.

JPanel and ButtonGroup for the bottom panel of the GUI

The code in Listing 10 instantiates a JPanel object with an etched border to hold the components

in the bottom panel of the GUI.

 final JPanel outputButtonPanel =

new JPanel();

 outputButtonPanel.setBorder(

BorderFactory.createEtchedBorder());

 final ButtonGroup

outputButtonGroup =

 new

ButtonGroup();

Listing 10

The code in Listing 10 also instantiates a ButtonGroup object that will be used to group the two

radio buttons in the bottom panel into a logical, mutually exclusive group.

Don't play before generating a synthetic sound

It would not work for the user to attempt to play a synthetic sound before generating such a

sound. The code in Listing 11 disables the Play/File button (see Figure 1) to prevent this from

happening.

 playOrFileBtn.setEnabled(false);

Listing 11

As you will see later, this button is enabled after the first synthetic sound is generated by the

user.

Register action listener on the Generate button

The code in listing 12 instantiates an anonymous action listener object and registers it for action

events on the Generate button.

 generateBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

ActionEvent e){

 //Don't allow Play during

generation

playOrFileBtn.setEnabled(false);

 //Generate synthetic data

 new

SynGen().getSyntheticData(

audioData);

 //Now it is OK for the user

to listen

 // to or file the synthetic

audio data.

playOrFileBtn.setEnabled(true);

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

Listing 12

I have discussed code similar to this in several previous lessons.

For purposes of this lesson, the three most significant lines of code in Listing 12 are those

highlighted in boldface. Two of those lines of code first disable, and later enable the Play/File

button. The purpose is to prevent the user from attempting to play the synthetic sound or to store

it in a file while it is being generated.

Generate the synthetic sound

The most important code in Listing 12 is the code that instantiates an object of the class SynGen,

and invokes the getSyntheticData method on that object. This is the statement that actually

causes the synthetic sound to be generated.

Note that the method invocation passes the byte array named audioData to the method. This is a

64000-byte array, which will be filled with synthetic sound data when the getSyntheticData

method returns.

At this point, I am going to depart from my discussion of the constructor for the controlling class

and discuss the synthetic sound generator class named SynGen. I will return to a discussion of

the constructor later.

The SynGen class

Listing 13 shows the beginning of the SynGen class. Note that this is an inner class, defined

within the controlling class named AudioSynth01. As a result, methods of objects instantiated

from this class have direct access to the instance variables of the controlling class. This results in

less parameter passing than would be the case if this were a top-level class.

class SynGen{

 ByteBuffer byteBuffer;

 ShortBuffer shortBuffer;

 int byteLength;

Listing 13

An object of the SynGen class can be used to generate a variety of different synthetic sound

signals. Each time the getSyntheticData method is called on an object of this class, the method

will fill the audioData array (see Listing 3) with the samples for a synthetic signal.

Type ByteBuffer

Listing 13 also shows the declaration of three instance variables. The types of the first two,

ByteBuffer and ShortBuffer, are new to the java.nio package, which was released in Java SDK,

version 1.4.

(Among other things this means that you must be using Java version 1.4 or later

to successfully compile and execute this program.

To learn more about the capabilities of the java.nio package, see my tutorial

lessons beginning with number 1780, Understanding the Buffer class in Java. See

my web site for an index to the other lessons in that series.)

The new capabilities of the java.nio package make the task of translating back and forth between

signed 16-bit short data and bytes somewhat easier than would otherwise be the case.

The getSyntheticData method

Listing 14 shows the beginning of the getSyntheticData method that was invoked earlier in

Listing 12.

 void getSyntheticData(byte[]

synDataBuffer){

 byteBuffer =

ByteBuffer.wrap(synDataBuffer);

 shortBuffer =

byteBuffer.asShortBuffer();

http://www.developer.com/java/other/article.php/1367031
http://www.dickbaldwin.com/

 byteLength = synDataBuffer.length;

Listing 14

Note that this method receives an incoming parameter, which is a reference to the 64000-byte

array named audioData discussed earlier in Listing 3. This is the array in which the synthetic

data generators deposit the synthetic sound data for use by other parts of the program.

Preparing the arrays for use

The code in Listing 14 begins by wrapping the incoming audioData array in a ByteBuffer

object. Then a ShortBuffer object is created as a short view of the ByteBuffer object.

This makes it possible to store short data directly into the audioData array by invoking the put

method on the ShortData view of the array.

Getting the length of the audio data in bytes

The code in Listing 14 also gets and saves the required length of the synthetic sound data in

bytes. This value will be used in the algorithms to be discussed later.

Choose a synthetic data algorithm

The code in Listing 15 decides which synthetic data generator method to invoke based on which

radio button the user has selected in the center of the GUI in Figure 1.

(If you add more methods for other synthetic sound types, you need to add

corresponding radio buttons to the GUI and add statements here to test the new

radio buttons.)

 if(tones.isSelected()) tones();

 if(stereoPanning.isSelected())

stereoPanning();

 if(stereoPingpong.isSelected())

stereoPingpong();

 if(fmSweep.isSelected())

fmSweep();

 if(decayPulse.isSelected())

decayPulse();

 if(echoPulse.isSelected())

echoPulse();

 if(waWaPulse.isSelected())

waWaPulse();

 }//end getSyntheticData method

Listing 15

Synthetic data generator method names

The names of the synthetic data generator methods that correspond to each of the buttons are

highlighted in boldface in Listing 15. I will discuss each of those methods in the paragraphs that

follow.

Listing 15 also signals the end of the getSyntheticData method.

The tones method

Listing 16 shows the beginning of the method named tones, which corresponds to the radio

button labeled Tones in Figure 1. This method generates a monaural tone, two seconds in

length, consisting of the sum of three sinusoids at different frequencies.

This is a relatively simple synthetic sound. One of my main reasons for including it in this

lesson is to introduce you to the concept of using sinusoids as sources for synthetic sound.

I have also discussed sinusoids in detail in my tutorial lesson entitled Periodic Motion and

Sinusoids. Rather than to repeat that discussion, I will simply refer you to that earlier lesson.

 void tones(){

 channels = 1;//Java allows 1 or 2

 int bytesPerSamp = 2;

 sampleRate = 16000.0F;

 // Allowable

8000,11025,16000,22050,44100

 int sampLength =

byteLength/bytesPerSamp;

Listing 16

Monaural versus stereo data

Before getting into the use of sinusoids, however, there is some general housekeeping that I need

to take care of.

To begin with, the code in Listing 16 sets the audio format instance variable named channels

(see Listing 2) to a value of 1. This causes the audio data produced by this method to be later

interpreted as monaural data instead of stereo data.

The number of bytes per sample

http://www.dickbaldwin.com/dsp/Dsp00100.htm
http://www.dickbaldwin.com/dsp/Dsp00100.htm

Each channel requires two 8-bit bytes per 16-bit sample. Since this method produces one-

channel (monaural) data, Listing 16 sets the value of bytesPerSamp to 2. (for stereo data, the

number of bytes per sample would be 4).

The sampling rate

As mentioned earlier, Listing 16 sets the sampling rate to 16000 samples per second as a

reasonable compromise between the lowest and highest allowable sampling rates.

The length of the audio data in samples

Finally, the code in Listing 16 computes and saves the required length of the synthetic sound

data in samples by dividing the length of the audioData array (byteLength, see Listing 14) by

the number of bytes per sample (bytesPerSamp).

The required number of samples is saved in the variable named sampLength.

Generate the synthetic data

Listing 17 contains a for loop. Each iteration of the loop:

 Generates a data sample as type double.

 Casts that data to type short.

 Invokes the put method on the ShortBuffer object to store the sample in the byte array

named audioData (see Listing 3 and Listing 12).

 for(int cnt = 0; cnt < sampLength;

cnt++){

 double time = cnt/sampleRate;

 double freq = 950.0;//arbitrary

frequency

 double sinValue =

 (Math.sin(2*Math.PI*freq*time) +

Math.sin(2*Math.PI*(freq/1.8)*time) +

Math.sin(2*Math.PI*(freq/1.5)*time))/3.0;

shortBuffer.put((short)(16000*sinValue));

 }//end for loop

 }//end method tones

Listing 17

The loop iterates once for each required data sample, producing the required number of synthetic

data samples before terminating.

(A similar loop structure is used for all of the synthetic data generator

methods. Generally, it is the code within the body of the loop that determines the

nature of the synthetic sound that is produced.)

Arguments to the Math.sin method

During each iteration of the for loop, the code in Listing 17 calculates the time in seconds, by

dividing the sample number by the number of samples per second.

(As discussed earlier, for this monaural case, the time will range from zero to two

seconds before the for loop terminates.)

This time value is multiplied by three different frequency values, a factor of 2, and the constant

PI to produce three different values in radians to be used as arguments to the Math.sin method.

(If this terminology isn't familiar to you, please review Periodic Motion and

Sinusoids before going further.)

The three values in radians are passed to three separate invocations of the Math.sin method to

produce the sum of three separate sine values as type double. This sum is divided by 3 to

produce the numeric average of the three sine values.

The numeric average of the three sine values is multiplied by the constant 16000, cast to type

short, and put into the output array.

Why was type short used?

The type short is inherently a signed 16-bit type with big-endian byte order in Java, which is

exactly what we need for the audio data format that I elected to use.

Why was the constant value of 16000 used?

I wanted the sound to be loud enough to hear easily. I also wanted to make certain that I didn't

overflow the maximum value that can be contained in a value of type short.

The maximum value produced by the Math.sin method is 1.0. Thus, the maximum possible

value in the average of the three sine values is also 1.0. The constant value of 16000 was chosen

because it is approximately half the maximum value that can be contained in a value of type

short. Thus, the maximum value that this algorithm can produce is approximately half the

maximum value that can be contained in type short.

(These are very important considerations, because integer arithmetic overflow

can destroy what might otherwise be a good synthetic sound algorithm.)

Why was a frequency 950 Hz used?

http://www.dickbaldwin.com/dsp/Dsp00100.htm
http://www.dickbaldwin.com/dsp/Dsp00100.htm

The frequency of 950 Hz was chosen because it is well within the spectral hearing range of most

people, and it is within the spectral reproduction range of most computer speakers. However, the

choice was arbitrary. Any other frequency that meets the above requirements should work just

as well.

Play and/or modify the sound

If you generate and play the sound, you should hear a monaural tone, two seconds in length.

You can change the sound by modifying the frequency (950) in Listing 17, and by changing the

factors used to specify different frequencies (1.8 and 1.5) in Listing 17.

You can change the length of the sound by changing the size of the array referred to by

audioData in Listing 3.

(Increase the length of the array to make the sound longer than two seconds, and

decrease the length of the array to make the sound shorter than two seconds. For

reasons having to do with audio frame size, you should make certain that the size

of the array is evenly divisible by four.)

The quality of the playback

Despite everything that I have done in my attempts to improve the quality of the playback, I hear

extraneous clicking noises when the sound is played back by this program, and by other Java

programs written by other people. This may indicate that my computer is too slow to provide the

audio data to the speakers in real time, although I'm not certain that is the cause of the problem.

In any event, I get much better playback quality by saving the synthetic sound in an audio file

and using a media player such as the Windows Media Player, or the RealOne media player to

play back the synthetic sound.

A visual analysis

When creating synthetic sounds, it is often useful to perform a visual analysis of the sound's

waveform, and to measure the spectral content of the sound to confirm that your algorithm is

performing as expected.

(For example, your algorithm may have experienced integer overflow without you

having realized it.)

Numerous audio tools are available for downloading that you can use for this purpose. (If you

are ambitious, you can even write your own.) Some are free, some are not free, some are free for

an evaluation period only, some are free for certain features and are not free for other features,

and some are free for some other combination of the above.

AudioSuite 4.20.3

I am going to show you some pictures that were produced with the unregistered evaluation

version of AudioSuite 4.20.3, which can be downloaded free of charge. This is an extremely

powerful set of audio tools.

(Some of the features have a timeout period in the unregistered

version. Fortunately, many of the features, such as waveform plotting, do not

expire in the unregistered version.)

The raw waveform for the tones method

The raw waveform of the complete two-second audio signal produced by the tones method is

shown in Figure 2. This is a plot of signal amplitude on the vertical versus time on the

horizontal.

Figure 2 Raw waveform for tones method

Because of the horizontal compression that was required to include the entire waveform in this

narrow format, the waveform shown in Figure 2 isn't very enlightening.

A more enlightening waveform

Figure 3 shows a very small portion of the beginning of the waveform greatly expanded along

the horizontal (time) axis.

http://www.glowingcoast.co.uk/audio/index.htm

Figure 3 Time-expanded waveform for tones method

This representation of the waveform is much more enlightening. If you plot the sum of the three

sinusoids that were added together in Listing 17 to produce the synthetic sound, this is what you

should see.

(Note that the waveform shown in Figure 3 is periodic, with almost five periods of

the waveform showing. It also exhibits an odd (as opposed to even) symmetry

within each period.)

Spectrum analysis

The synthetic sound produced by the code in Listing 17 consists of the sum of three sinusoids at

frequencies of 950 Hz, 527 Hz, and 633 Hz.

Figure 4 Spectrum analysis

Figure 4 shows the result of performing a spectrum analysis on a portion of the two-second

synthetic sound signal. (Figure 4 plots energy on the vertical axis versus frequency on the

horizontal axis.) Note the peaks in the spectrum at 950 Hz, 527 Hz, and 633 Hz.

(This is just what I would expect, which confirms that my algorithm behaves as I

intended for it to behave.)

The stereoPanning method

The stereoPanning method generates a one-second stereo speaker sweep, starting with a

relatively high frequency tone on the left speaker and moving across to a lower frequency tone

on the right speaker. Among other things, this method will teach you how to generate synthetic

sound data that will later be interpreted as two-channel or stereo data.

The beginning of the stereoPanning method is shown in Listing 18.

 void stereoPanning(){

 channels = 2;

 int bytesPerSamp = 4;

 sampleRate = 16000.0F;

 // Allowable

8000,11025,16000,22050,44100

 int sampLength =

byteLength/bytesPerSamp;

Listing 18

Similar to the tones method so far

This method begins just like the tones method discussed earlier, except:

 The code in Listing 18 sets the value of channels to 2 instead of 1. As a result, the

synthetic data produced by this method will be interpreted as stereo data by the playback

code later.

 The code in Listing 18 sets the value of bytesPerSamp to 4 instead of 2. One sample is

considered to contain the data for both channels (this may more properly be referred to as

a frame). One sample for each channel requires two bytes. Thus, the sample (frame) for

both channels requires four bytes.

An important note

(There is nothing in the synthetic data produced by these generator methods that

indicates the number of channels. These methods simply produce byte data and

store that data in an array object of type byte. The synthetic data must be

constructed by these generator methods in such a way that it will be correct for

the number of channels specified in the audio format when the data is either

played back or written to an audio file later. The purpose of setting channels in

these methods is to properly set the audio format for the playback loop to be

executed later in the program.)

Creating a stereo sweep

The for loop that is typical of these generator methods begins in Listing 19.

 for(int cnt = 0; cnt < sampLength;

cnt++){

 double rightGain =

16000.0*cnt/sampLength;

 double leftGain = 16000.0 -

rightGain;

Listing 19

This method generates two channels of data. One channel will ultimately be supplied to each

speaker at playback. The apparent sweep from the left speaker to the right speaker is

accomplished by:

 Causing the strength of the signal applied to the left speaker to decrease from a maximum

value to zero over the (one second) time span of the signal.

 Causing the strength of the signal applied to the right speaker to increase from zero to the

maximum value over the time span of the signal.

Time-varying gains

The code in Listing 19 computes the time-varying gain to be applied to the data for each channel

during each iteration of the for loop. This code is straightforward and shouldn't be difficult to

understand. The gain for the left channel varies from 16000 to zero while the gain for the right

channel varies from zero to 16000.

Time and frequency

The code in Listing 20 calculates the time and sets the frequency to be used in the arguments for

the Math.sin methods later.

 double time = cnt/sampleRate;

 double freq = 600;//An arbitrary

frequency

Listing 20

(It occurred to me during the writing of this lesson that because the frequency

doesn't vary with time, it would have been more logical to set the frequency value

prior to entering the for loop. However, by the time I had that epiphany I was too

far down the road to go back and change everything.)

Generate data for the left speaker

The required format of the byte data for stereo sound signals consists of alternating left speaker

and right speaker samples, beginning with the data for the left speaker. (Again, the set of

combined samples for both channels is often referred to as a frame.) The bytes in a single frame

are interpreted to be one sample for each of the two channels that occur at the same point in time.

Thus, the code in Listing 21:

 Generates a double sine value for the left speaker at the correct frequency for the left

speaker.

 Multiplies that sine value by the time-varying leftGain value for the left speaker.

 Casts the double value to type short.

 Puts the two bytes that constitute the sample for the left speaker into the output array.

 double sinValue =

Math.sin(2*Math.PI*(freq)*time);

 shortBuffer.put(

(short)(leftGain*sinValue));

Listing 21

(This will be followed by putting two bytes that constitute the corresponding

sample for the right speaker into the next two bytes in the output array.)

Generate data for the right speaker

The code in Listing 22:

 Generates a double sine value for the right speaker at the correct frequency for the right

speaker (0.8 times the frequency of the left speaker).

 Multiplies that sine value by the time-varying rightGain value for the right speaker.

 Casts the double value to type short.

 Puts the two bytes that constitute the sample for the right speaker in the output array,

immediately following the two bytes that were put there by the code in Listing 21.

 sinValue =

Math.sin(2*Math.PI*(freq*0.8)*time);

 shortBuffer.put(

(short)(rightGain*sinValue));

 }//end for loop

 }//end method stereoPanning

Listing 22

The code in Listing 22 also signals the end of the method named stereoPanning.

The waveform

Recall that this is a one-second, two-channel stereo sound. At the beginning, all of the sound

comes from the left speaker, and at the end of one second, all the sound comes from the right

speaker.

Between the beginning and the end, the sound coming from the left speaker decreases from

maximum to zero in a liner fashion. During that same period, the sound coming from the right

speaker increases from zero to maximum in a linear fashion.

Also, the pitch of the sound from the right speaker is lower than the pitch of the sound from the

left speaker, because the signal for the right speaker has a lower frequency. This causes the

sound to appear to sweep from the left to the right, changing pitch in the process.

This is shown by the waveforms in Figure 5 and Figure 6.

Figure 5 Raw waveforms from the stereoPanning method

Figure 5 shows the waveform of the left-channel signal in red and shows the waveform of the

right-channel signal in blue. This representation of the waveforms clearly shows the change in

sound level for each channel during the one-second period. However, because of the horizontal

compression, Figure 5 doesn't show anything about the frequency or pitch of the sound from the

two channels.

Expanded waveform

Figure 6 shows a small slice in time from both waveforms near the one-half second point, with a

greatly expanded time scale.

Figure 6 Expanded waveforms from the stereoPanning method

Figure 6 confirms that each of the two sounds is a simple sinusoid, as shown in Listing 21 and

Listing 22. Also, Figure 6 confirms that the frequency of the sinusoid on the right channel is

approximately eighty-percent of the frequency of the sinusoid on the left channel as indicated by

Listing 22.

(There are nine positive peaks in the waveform for the left channel in Figure 6

and only 7 positive peaks in the waveform for the right channel in the same time

period.)

The stereoPingpong method

The stereoPingpong method uses stereo to switch a sound back and forth between the left and

right speakers at a rate of about eight switches per second. On my system, this is a much better

demonstration of the sound separation between the two speakers than is the demonstration

produced by the stereoPanning method.

The sounds produced are at different frequencies. As a result, the sounds produced are similar to

that of U.S. emergency vehicles.

Following discussions will be more abbreviated

Now that you understand the fundamental structure of these generator methods, the discussion of

the remaining methods should go more quickly than the discussion of the first two methods.

The beginning of the stereoPingpong method is shown in Listing 23.

 void stereoPingpong(){

 channels = 2;//Java allows 1 or 2

 int bytesPerSamp = 4;//Based on

channels

 sampleRate = 16000.0F;

 // Allowable

8000,11025,16000,22050,44100

 int sampLength =

byteLength/bytesPerSamp;

 double leftGain = 0.0;

 double rightGain = 16000.0;

Listing 23

Time varying gains

Much of the code in Listing 23 is similar or identical to the code that you have seen in the

previous generator methods.

As was the case with the method named stereoPanning this method generates two channels of

data. Each channel will ultimately be supplied to each speaker at playback. The apparent switch

from one speaker to the other speaker is accomplished by causing the strength of the signal

applied to one speaker to go to zero at the same time that the strength of the signal applied to the

other speaker goes to its maximum value.

The code in Listing 23 declares and initializes two variables named leftGain and rightGain,

which are used for this purpose. Note that the left gain value is initialized to 0.0, while the right

gain value is initialized to 16000. These values will be periodically swapped between the two

channels in the for loop that follows.

The for loop

The typical for loop begins in Listing 24. During each iteration of this loop, one data sample is

produced for each channel, and the samples are put into successive bytes in the output array.

 for(int cnt = 0; cnt < sampLength;

cnt++){

 if(cnt % (sampLength/8) == 0){

 //swap gain values

 double temp = leftGain;

 leftGain = rightGain;

 rightGain = temp;

 }//end if

Listing 24

Computing the time-varying gains

The code in Listing 24 computes the gain for each channel during each iteration of the for loop.

This code uses the modulus operator to swap the gain values between the left and right channels

each time the iteration counter value is an even multiple of one-eighth of the sample length. For

the audioData array of 64000 bytes, this amounts to one swap of the gain values every 2000

samples, or eight times during the one-second elapsed time of the sound.

Remainder of the for loop

The remainder of the for loop is shown in Listing 25.

 double time = cnt/sampleRate;

 double freq = 600;//An arbitrary

frequency

 //Generate data for left speaker

 double sinValue =

Math.sin(2*Math.PI*(freq)*time);

 shortBuffer.put(

(short)(leftGain*sinValue));

 //Generate data for right

speaker

 sinValue =

Math.sin(2*Math.PI*(freq*0.8)*time);

 shortBuffer.put(

(short)(rightGain*sinValue));

 }//end for loop

 }//end stereoPingpong method

Listing 25

The code in Listing 25 is essentially the same as code that I discussed in conjunction with an

earlier generator method. Therefore, I won't discuss it further.

Waveforms

Figure 7 shows the waveforms for the left (red) and right (blue) channels of the synthetic sound

produced by the method named stereoPingpong. In Figure 7, you can see the signals for each of

the channels being switched on and off in an alternating manner.

(When the left channel is on, the right channel is off, and vice versa.)

Figure 7 Waveforms from stereoPingpong method

Because of the horizontal compression, you can't tell anything about the frequencies involved in

Figure 7.

Figure 8 shows a time-expanded waveform display of a very small time slice taken at one of the

transition points where the left channel is being turned off and the right channel is being turned

on.

Figure 8 Time-expanded waveforms from stereoPingpong method

If you measure the time between the peaks on the two signals, you can confirm that the

frequency of the right channel is lower than the frequency of the left channel, as indicated in

Listing 25.

Some background on the fmSweep method

I have spent a good portion of my career doing digital signal processing (DSP). During part of

that time, I worked in the submarine sonar business.

There are fundamentally two types of sonar systems, active and passive. Active sonar systems

are the ones that you usually see in the movies, where a ship transmits a ping into the water and

listens for an echo that comes back from other objects in the water, such as submarines.

Passive sonar is not frequently shown in the movies because it doesn't appear to do

anything. With a passive sonar, the system, (including the human operator), simply listens for

sounds in the water, and tries to identify those sounds as friendly or unfriendly.

Typically surface ships use active sonar and submarines use passive sonar.

Different types of pings

The actual sound pulse that is put into the water by an active sonar can take on many different

waveforms. One waveform that is fairly popular is a linear FM sweep. This is a waveform

where a carrier frequency undergoes frequency modulation from a low frequency to a higher

frequency, or vice versa. This particular waveform has a number of desirable characteristics

having to do with underwater physics, digital signal processing, Doppler effects, etc.

(By the way, the sound produced by an active sonar is a good example of

synthetic sound. The sound is not produced by someone banging on a piece of

steel with a hammer and recording the resulting sound through a

microphone. Rather, the sound is produced by evaluating some sort of algorithm

using some sort of electronic device, and then converting the results of that

evaluation into sound pressure waves in the water.)

The fmSweep method

This method generates a monaural linear frequency sweep that begins at 100 Hz and changes

linearly up to 1000 Hz during the two-second elapsed time period of the sound.

The fmSweep method begins in Listing 26.

 void fmSweep(){

 channels = 1;//Java allows 1 or 2

 int bytesPerSamp = 2;//Based on

channels

 sampleRate = 16000.0F;

 // Allowable

8000,11025,16000,22050,44100

 int sampLength =

byteLength/bytesPerSamp;

 double lowFreq = 100.0;

 double highFreq = 1000.0;

Listing 26

Listing 26 initializes the typical variables. In addition, Listing 26 declares and initializes

variables containing the low and high frequency values that will be used in the for loop that

follows.

Generate the synthetic sound

The synthetic sound data is generated by the for loop shown in Listing 27.

 for(int cnt = 0; cnt < sampLength;

cnt++){

 double time = cnt/sampleRate;

 double freq = lowFreq +

 cnt*(highFreq-

lowFreq)/sampLength;

 double sinValue =

Math.sin(2*Math.PI*freq*time);

shortBuffer.put((short)(16000*sinValue));

 }//end for loop

 }//end method fmSweep

Listing 27

The thing that is new and different in Listing 27 is the statement that is highlighted in

boldface. This statement computes a new frequency value to be used during each iteration. The

frequency value changes linearly from low to high during the two-second elapsed time interval

for the sound.

Waveform

Figure 9 shows a time-expanded waveform for the beginning of the signal produced by the

fmSweep method.

(Note that in this format, instead of drawing lines, the graphics program fills in

the entire area under the curve.)

Figure 9 Time-expanded waveform from fmSweep method

By observing the distance between the peaks in Figure 9, this waveform confirms the

implementation of the algorithm in Listing 27. The frequency of the sine wave increases with

time.

The decayPulse method

The sound produced by this method is significantly different from the sounds produced by the

previous methods. The previous methods have produced sounds, which had essentially constant

intensity during the entire elapsed time period of the sound (although that intensity may have

been allocated between two different channels).

The decayPulse method generates a monaural pulse for which the intensity decays over

time. The decay function is linear with respect to time. The pulse begins with a maximum

amplitude. The amplitude of the pulse decreases linearly with time and goes to zero at the end of

one second.

The pulse is made up of the sum of three sinusoids at different frequencies.

The decayPulse method begins in Listing 28, by initializing the typical values.

 void decayPulse(){

 channels = 1;//Java allows 1 or 2

 int bytesPerSamp = 2;//Based on

channels

 sampleRate = 16000.0F;

 // Allowable

8000,11025,16000,22050,44100

 int sampLength =

byteLength/bytesPerSamp;

Listing 28

Generate the synthetic sound

The for loop, which is used to generate the sound, begins in Listing 29.

 for(int cnt = 0; cnt < sampLength;

cnt++){

 double scale = 2*cnt;

 if(scale > sampLength) scale =

sampLength;

Listing 29

The scale variable

The code in Listing 29 declares and initializes a variable named scale. The value of scale

determines the rate of decay of the resulting pulse. Large values of scale cause the pulse to

decay rapidly, while small values of scale cause the pulse to decay less rapidly.

(For example, to increase the rate of decay, change the literal constant 2 to a

larger value. To decrease the rate of decay, change the literal constant 2 to a

smaller value.)

By virtue of the manner in which scale is used later in the algorithm, it is necessary to clip the

value of scale at a maximum value of sampLength. This is also accomplished by the code in

Listing 29.

Time-varying gain

As with some of the previous methods, this method also uses a time-varying gain value. In this

case, the time-varying gain describes a decay function that decays in a linear fashion with respect

to time. The statement that computes the time-varying gain value is shown in Listing 30.

(This value varies with time because it is based on the value of scale, which varies

with time as shown in Listing 29.)

 double gain =

 16000*(sampLength-

scale)/sampLength;

Listing 30

The remaining code

The remaining code in the for loop is shown in Listing 31. This code is very similar to what you

have seen previously, and should not require further explanation.

 double time = cnt/sampleRate;

 double freq = 499.0;//an arbitrary

freq

 double sinValue =

 (Math.sin(2*Math.PI*freq*time) +

Math.sin(2*Math.PI*(freq/1.8)*time) +

Math.sin(2*Math.PI*(freq/1.5)*time))/3.0;

shortBuffer.put((short)(gain*sinValue));

 }//end for loop

 }//end method decayPulse

Listing 31

Waveform

Figure 10 shows the single-channel, two-second waveform produced by the decayPulse method.

Figure 10 Waveform from decayPulse method

As you can see in Figure 10, the amplitude of the signals goes from maximum to zero in a linear

fashion during the first one-second of the two-second interval covered by the synthetic

sound. This confirms the algorithm defined in Listings 29, 30, and 31.

(This synthetic sound makes use of sinusoidal functions that are similar to those

used in the tones method, except that the base frequency is lower. If I were to

show a time-expanded view of the waveform, it would look similar to that shown

in Figure 3)

The echoPulse method

The echoPulse method generates a monaural triple-frequency pulse that decays in a linear

fashion with time. The synthetic sound data generated by this method begins the same as the

sound data produced by the previously discussed method named decayPulse. However, with

this method, three echoes can be heard over time with the amplitude of the echoes decreasing

with time.

The beginning of the echoPulse method, including the initialization of the typical variables, is

shown in Listing 32.

 void echoPulse(){

 channels = 1;//Java allows 1 or 2

 int bytesPerSamp = 2;//Based on

channels

 sampleRate = 16000.0F;

 // Allowable

8000,11025,16000,22050,44100

 int sampLength =

byteLength/bytesPerSamp;

Listing 32

The time-delay factors

The sound data produced by this method consists of the sum of four pulses occurring at different

times. The first pulse occurs at zero time. The remaining three pulses are delayed relative to the

previous pulse, and have a lower amplitude than the previous pulse.

The delays (in samples) that are applied to the three delayed pulses are controlled by the three

variables that are declared and initialized in Listing 33.

 int cnt2 = -8000;

 int cnt3 = -16000;

 int cnt4 = -24000;

Listing 33

The first pulse begins at the beginning of the sound data. The second pulse begins at sample

number 8000. The third pulse begins at sample number 16000, and the fourth pulse begins at

sample number 24000. All three pulses have the same waveform with decreased amplitude.

The echoPulseHelper Method

Because this method is required to generate four separate pulses instead of just one, I elected to

break a portion of the code out and put it into a helper method named echoPulseHelper.

The entire echoPulseHelper Method is shown in Listing 34.

 double echoPulseHelper(int cnt,int

sampLength){

 //The value of scale controls the

rate of

 // decay - large scale, fast decay.

 double scale = 2*cnt;

 if(scale > sampLength) scale =

sampLength;

 double gain =

 16000*(sampLength-

scale)/sampLength;

 double time = cnt/sampleRate;

 double freq = 499.0;//an arbitrary

freq

 double sinValue =

 (Math.sin(2*Math.PI*freq*time) +

 Math.sin(2*Math.PI*(freq/1.8)*time)

+

Math.sin(2*Math.PI*(freq/1.5)*time))/3.0;

 return(short)(gain*sinValue);

 }//end echoPulseHelper

Listing 34

This code in this method is identical to code in the decayPulse method and should not require an

explanation.

Now back to the echoPulse method

Returning to the discussion of the echoPulse method, the code in Listing 35 shows the beginning

of the for loop that is used to generate the synthetic sound data.

 for(int cnt1 = 0; cnt1 <

sampLength;

cnt1++,cnt2++,cnt3++,cnt4++){

 double val = echoPulseHelper(

cnt1,sampLength);

Listing 35

Update all counter values

Two things are worth noting in Listing 35. The first is that all four counter values are

incremented in the update clause of the for loop. This not only includes the counter named cnt1

that is used in the conditional clause of the for loop, it also includes the other three counters that

were declared and initialized in Listing 33.

Call the echoPulseHelper method

The second thing that is worthy of note is that the code in Listing 35 calls the echoPulseHelper

method, passing cnt1 as a parameter, to get a value for each iteration of the for loop. Each call

to the echoPulseHelper method passes a value of the counter. The value returned by the method

is the correct value for that particular iteration of the for loop.

Get and add value for first delayed pulse

For positive values of cnt2, the code in Listing 36 calls the echoPulseHelper method to get a

value for the first delayed pulse, and adds that value to the value produced earlier by the code in

Listing 35.

 if(cnt2 > 0){

 val += 0.7 * echoPulseHelper(

cnt2,sampLength);

 }//end if

Listing 36

A time delay is implemented

Recall that the vale of cnt2 was initialized to -8000 in Listing 33, and that the value of cnt2 is

incremented at the end of each iteration of the for loop in Listing 35.

Because of the conditional clause in the if statement in Listing 36, the code in Listing 36

contributes nothing to the synthetic sound data until the for loop has gone through the required

number of iterations to cause the value of cnt2 to go positive. At that point in time, the code in

Listing 36 begins calling the echoPulseHelper method to get the values for another pulse. These

values are scaled down by 0.7 and added to the values produced by the code in Listing 35. The

result is that a second, attenuated pulse is generated and added to the first pulse at that point in

time.

Add two more time-delayed pulses

The code in Listing 37 causes two more time-delayed pulses to be generated and added to the

synthetic sound data beginning around sample number 16000 and sample number 24000. These

pulses are scaled by attenuation factors of 0.49 and 0.34 respectively.

 if(cnt3 > 0){

 val += 0.49 * echoPulseHelper(

cnt3,sampLength);

 }//end if

 if(cnt4 > 0){

 val += 0.34 * echoPulseHelper(

cnt4,sampLength);

 }//end if

 shortBuffer.put((short)val);

 }//end for loop

 }//end method echoPulse

Listing 37

Listing 37 also contains the requisite call to the put method to cause the synthetic sound data to

be deposited in the audioData array during each iteration of the for loop.

Waveform

Figure 11 shows the waveform produced by the echoPulse method.

Figure 11 Waveform from echoPulse method

Is this what you expected?

This may not be what you expected to see for this method. You may have expected the three

pulses that were added in after a time delay to be more obvious. However, this is one of the

reasons that a visual analysis of the synthetic signal produced by your algorithm is very valuable.

Why aren't the pulses more obvious?

Remember that the output produced by the echoPulseHelper method (Listing 34) is simply a

sequence of positive and negative values. Four versions of the output from the echoPulseHelper

method, three with time delays, were added together.

Remember also that the underlying waveform for each of the sequences produced by the

echoPulseHelper method is a pseudo-periodic function with an odd symmetry (a periodic

function with an amplitude that decreases linearly with time).

Is cancellation possibility?

Were it not for the decreasing amplitude, there are certain time delays where the registration

between two of the sequences would be such that the positive and negative values belonging to

one sequence would exactly cancel the positive and negative values belonging to the other

sequence.

Therefore, in the absence of a decreasing amplitude, when two of the sequences are added

together, one with a time delay and the other without a time delay, the sum could be:

 All zero values

 Values that are exactly double the original values

 Values in between the two extremes, depending on the exact amount of time delay

involved

Low side of the range

For the time delays used in this method, the values resulting from adding the sequences seem to

be on the low side of that allowable range.

(The result will be different for the waveform for the waWaPulse method to be

discussed later.)

Again, this is a reason that the ability to examine the waveform is very valuable when creating

synthetic sound signals. Although it would be possible to determine the result analytically by

hand, that would require a very tedious effort.

The waWaPulse method

The waWaPulse method is identical to the method named echoPulse, except that the algebraic

sign was switched on the amplitude of two of the echoes before adding them to the composite

synthetic signal. This resulted in some differences in the synthetic sound data.

The entire waWaPulse method can be viewed in Listing 49 near the end of the lesson. Listing

38 shows only the for loop portion of the method, with the code that is different from the

echoPulse method highlighted in boldface.

 for(int cnt1 = 0; cnt1 <

sampLength;

cnt1++,cnt2++,cnt3++,cnt4++){

 double val = waWaPulseHelper(

cnt1,sampLength);

 if(cnt2 > 0){

 val += -0.7 * waWaPulseHelper(

cnt2,sampLength);

 }//end if

 if(cnt3 > 0){

 val += 0.49 * waWaPulseHelper(

cnt3,sampLength);

 }//end if

 if(cnt4 > 0){

 val += -0.34 *

waWaPulseHelper(

cnt4,sampLength);

 }//end if

 shortBuffer.put((short)val);

 }//end for loop

Listing 38

Waveform

The waveform produced by the waWaPulse method is shown in Figure 12. Compare this to the

waveform produced by the echoPulse method in Figure 11, and you should notice a striking

difference between the two.

Figure 12 Waveform from waWaPulse method

It appears that in this case, the time delays used, in combination with the algebraic signs on the

scale factors caused the waveforms to add constructively, whereas the waveforms in Figure 11

seem to have added destructively.

You should also be able to notice that difference when listing to the synthetic sounds produced

by the echoPulse and waWaPulse methods.

(Because of constructive and destructive addition when adding delayed

waveforms together, sometimes seemingly small changes can make big differences

is a synthetic sound.)

Creating your own synthetic sounds

Once again, I encourage you to use this program as a framework to create and experiment with

synthetic sounds of your own design.

You may find some ideas for synthetic sound algorithms on the Audio Effects web page.

(Note that the Wah-Wah effect described there has no relationship to my method

named waWaPulse. I used that simply as a unique method name. The author of

the Audio Effects page used it as the actual name of an audio effect.)

Now back to the constructor for the controlling class

That concludes the explanation of the methods that are used to generate the different kinds of

synthetic sound data. Now it is time to return to the discussion of the constructor where I left off

with Listing 12.

http://users.iafrica.com/k/ku/kurient/dsp/effects.html
http://users.iafrica.com/k/ku/kurient/dsp/effects.html

At this point, you understand how the following statement in Listing 12 causes the array named

audioData to be filled with synthetic sound data according to the radio button that is selected in

the center of Figure 1:

new SynGen().getSyntheticData(audioData);

Play or file the synthetic sound data

The code in Listing 39 instantiates an ActionListener object and registers it on the Play/File

button shown in Figure 1. If you have been studying the previous lessons in this series, you will

understand this style of programming using anonymous objects instantiated from anonymous

classes.

In any event, in the context of this lesson, the most important code in Listing 39 is the statement

that is highlighted in boldface.

 playOrFileBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

ActionEvent e){

 //Play or file the data

synthetic data

 playOrFileData();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

Listing 39

The boldface statement in Listing 39 invokes the playOrFileData method each time the user

clicks the Play/File button in Figure 1.

The playOrFileData method

Once again, I'm going to depart from a purely sequential explanation of the program code and

discuss the method named playOrFileData. I will return to a discussion of the constructor later.

The playOrFileData method plays or files the synthetic sound data that has been generated and

saved in an array in memory. If a decision is made to file the data, it is written to an audio file of

type AU.

(Much of the material that follows has been discussed in previous lessons, so I

will discuss it only briefly here.)

The beginning of the playOrFileData method is shown in Listing 40.

 private void playOrFileData() {

 try{

 InputStream byteArrayInputStream

=

 new

ByteArrayInputStream(

audioData);

Listing 40

The code in Listing 40 gets a ByteArrayInputStream object based on the synthetic sound data

previously generated and stored in the array referred to by audioData.

Establish the audio format

The code in Listing 41 instantiates an AudioFormat object, based on the values stored in the

audio format variables of Listing 2. This is the audio format that will be used when playing back

the synthetic sound data, or when writing that data into an audio file.

 audioFormat = new AudioFormat(

sampleRate,

sampleSizeInBits,

channels,

signed,

bigEndian);

Listing 41

Recall that the values stored in some of these variables may have been modified by the code in

the synthetic sound data generator methods. For example, those methods that generate monaural

sound data will have set the value of channels to 1, while the methods that generate stereo data

will have set the value of channels to 2.

Thus, the format values set by the generator methods will be used to either play the audio data

back, or to write that data into an audio file.

Instantiate an audio input stream

The code in Listing 42 instantiates a required AudioInputStream object based on the data in the

ByteArrayInputStream, and the audio format established from the default values in Listing 2

and the modified values that were set by the synthetic sound data generator program that

produced the data.

 audioInputStream = new

AudioInputStream(

byteArrayInputStream,

 audioFormat,

audioData.length/audioFormat.

getFrameSize());

Listing 42

Get a SourceDataLine object

A SourceDataLine object handles the actual real-time delivery of the data to the speakers. The

code in Listing 43 gets a SourceDataLine object.

 DataLine.Info dataLineInfo =

 new

DataLine.Info(

SourceDataLine.class,

audioFormat);

 //Geta SourceDataLine object

 sourceDataLine =

(SourceDataLine)

AudioSystem.getLine(

dataLineInfo);

Listing 43

I have discussed code similar to that in Listing 43 in several previous lessons, so I won't discuss

it further here.

Play the data, or write it into an audio file

The code in Listing 44 examines the radio buttons at the bottom of the GUI in Figure 1 to decide

whether to play the synthetic sound data back immediately, or to write that data into an audio file

of type AU.

 if(listen.isSelected()){

 new ListenThread().start();

 }else{

 //Write the synthetic data to

an audio

 // file of type AU.

Listing 44

If the user has selected the Listen button on the bottom of the GUI, the code in Listing 44

instantiates a ListenThread object and starts it running to play back the synthetic sound data

immediately.

Otherwise, the code in Listing 44 writes the synthetic sound data to an audio file of type AU.

The ListenThread class

The code in the ListenThread method is so similar to code used to play back audio data in

previous lessons that there is no point in discussing it here. You can view a complete listing of

the ListenThread class in Listing 49 near the end of the lesson. If you don't understand that

code, please go back and review the previous lessons in this series.

Playback quality

Some comments regarding playback quality are in order. One of the aspects of playing back

synthetic sound data (as opposed to microphone data) is that you can know exactly what it

should sound like, and you can play the same data back repeatedly and listen to it more than

once. This makes it possible to identify playback quality problems that might not be as obvious

when playing back microphone data.

My computer is several years old, and is not very fast. Whenever I use this program to play back

the synthetic data, I hear clicks in the playback that are not in the data.

(I can confirm that the clicks are not in the data by saving the data into a file and

playing it back using a media player such as the Windows Media Player, or the

RealOne Player.)

Although I'm not certain, this may indicate that my computer is incapable of delivering the audio

data to the speakers in real time using the playback loop in the ListenThread class.

Furthermore, I have experimented with similar playback loops written by others, including code

snippets that are available on the Sun site, and am unable to eliminate this problem.

I mention this here so that you can be on the lookout for similar problems when you compile and

execute this program on your system.

An audio output file of type AU

Now, going back and picking up with the else clause in Listing 44, I will explain the code that

writes the synthetic sound data into an audio file of type AU.

The code in Listing 45 disables both of the buttons at the top of the GUI in Figure 1 to prevent

them from firing action events while the data is being written to the disk file.

 generateBtn.setEnabled(false);

playOrFileBtn.setEnabled(false);

Listing 45

Write the file

The code that writes the data into the audio file is shown in Listing 46. This code is very simple.

 try{

 AudioSystem.write(

 audioInputStream,

AudioFileFormat.Type.AU,

 new

File(fileName.getText() +

".au"));

 }catch (Exception e) {

 e.printStackTrace();

 System.exit(0);

 }//end catch

Listing 46

This code makes use of the static write method of the AudioSystem class to transfer the data

from the AudioInputStream object (provided as the first parameter) to the audio file.

(The AudioInputStream object was instantiated in Listing 42.)

The type of the audio file is specified as the second parameter to the write method.

(This code writes an audio file of type AU by default. If your system doesn't

support that file type, you can easily write a different file type by modifying the

second parameter.)

The name of the audio file is extracted from the text field at the bottom of the GUI in Figure 1,

and provided as the third parameter to the write method.

Enable the Generate and Play/File buttons

After the file has been written, the code in Listing 47 enables both of the buttons at the top of the

GUI in Figure 1 to get the system ready for another operation.

 generateBtn.setEnabled(true);

playOrFileBtn.setEnabled(true);

 }//end else

Listing 47

Except for a catch block that you can view in Listing 49 near the end of the lesson, the code in

Listing 47 signals the end of the playOrFile method.

Return to the constructor again

Returning once again to the place in the constructor where I left off in Listing 39, the code in

Listing 48:

 Adds two buttons and a text field to a panel, which will appear at the top of the GUI.

 Adds seven radio buttons to a mutually exclusive group, which will appear in the center

of the GUI. If you add a new generator method to the program, you will need to create a

new radio button and add it to this group.

 Adds the seven radio buttons to a panel, which will appear centered horizontally in the

center of the GUI. You will also need to make an addition here if you add a new

generator method to the program.

 Adds two radio buttons to a mutually exclusive group, which will appear at the bottom of

the GUI.

 Adds the two radio buttons and a text field to a panel, which will appear at the bottom of

the GUI.

 Adds the three panels to the content pane at the North, Center, and South locations in the

JFrame object that constitutes the GUI.

 Takes care of a few more odds and ends necessary to make the GUI appear on the screen

with the correct title, correct size, etc.

The code to accomplish these tasks is straightforward, so I won't discuss it in detail here.

//Continue discussion of the constructor

here

 //Add two buttons and a text field to

a

 // panel in the North of the GUI.

 controlButtonPanel.add(generateBtn);

controlButtonPanel.add(playOrFileBtn);

controlButtonPanel.add(elapsedTimeMeter);

 //Add radio buttons to a mutually

exclusive

 // group in the Center of the GUI.

Make

 // additions here if you add new

synthetic

 // generator methods.

 synButtonGroup.add(tones);

 synButtonGroup.add(stereoPanning);

 synButtonGroup.add(stereoPingpong);

 synButtonGroup.add(fmSweep);

 synButtonGroup.add(decayPulse);

 synButtonGroup.add(echoPulse);

 synButtonGroup.add(waWaPulse);

 //Add radio buttons to a panel and

 // center it in the Center of the

GUI. Make

 // additions here if you add new

synthetic

 // generator methods.

 synButtonPanel.setLayout(

 new

GridLayout(0,1));

 synButtonPanel.add(tones);

 synButtonPanel.add(stereoPanning);

 synButtonPanel.add(stereoPingpong);

 synButtonPanel.add(fmSweep);

 synButtonPanel.add(decayPulse);

 synButtonPanel.add(echoPulse);

 synButtonPanel.add(waWaPulse);

 //Note that the centerPanel has

center

 // alignment by default.

 centerPanel.add(synButtonPanel);

 //Add radio buttons to a mutually

exclusive

 // group in the South of the GUI.

 outputButtonGroup.add(listen);

 outputButtonGroup.add(file);

 //Add radio buttons to a panel in

 // the South of the GUI.

 outputButtonPanel.add(listen);

 outputButtonPanel.add(file);

 outputButtonPanel.add(fileName);

 //Add the panels containing

components to the

 // content pane of the GUI in the

appropriate

 // positions.

 getContentPane().add(

controlButtonPanel,BorderLayout.NORTH);

 getContentPane().add(centerPanel,

BorderLayout.CENTER);

getContentPane().add(outputButtonPanel,

BorderLayout.SOUTH);

 //Finish the GUI. If you add more

radio

 // buttons in the center, you may

need to

 // modify the call to setSize to

increase

 // the vertical component of the GUI

size.

 setTitle("Copyright 2003,

R.G.Baldwin");

setDefaultCloseOperation(EXIT_ON_CLOSE);

 setSize(250,275);

 setVisible(true);

 }//end constructor

 //-------------------------------------

------//

}//end outer class AudioSynth01.java

Listing 48

The code in Listing 48 also signals the end of the constructor and the end of the program.

Run the Program

At this point, you may find it useful to compile and run the program shown in Listing 49 near the

end of the lesson. Operating instructions were provided earlier in the section entitled Operating

instructions.

If you use a media player, such as the Windows Media Player, to play back your file, be sure to

release the old file from the media player before attempting to create a new file with the same

name and extension. Otherwise, the program will not be able to create the new file, and a

runtime error will occur.

Also be aware that this program makes use of Java features in the java.nio package, which was

first released in Java version 1.4. Therefore, you must be running version 1.4 or later to

successfully compile and run this program.

Summary

In this lesson, I showed you how to create synthetic sound data and how to play it back

immediately, or to save it in an audio file of type AU.

Because this lesson is somewhat long and complex, I will recap the essence of creating, playing,

and filing synthetic sound in this summary section.

First you need an algorithm to create the data

To create synthetic sound, you must write an algorithm that will place bytes of synthetic sound

data into an array of type byte. The values of the bytes must represent the synthetic sound

samples.

Keep the audio format in mind

When you create the bytes that represent the synthetic sound samples, you must keep in mind the

audio format that will be used to play back the data, or to save the data into an audio file. You

must arrange the bytes in the byte array in a manner that is consistent with that format.

Audio format attributes

An audio format consists of the following attributes. (The choices supported by Java version 1.4

are listed.)

 Encoding scheme, ALAW, PCM_SIGNED, PCM_UNSIGNED, OR ULAW

 Sample rate, 8000, 11025, 16000, 22050, or 44100 samples per second.

 Sample size, 8 bits or 16 bits

 Number of channels, 1 or 2

 Signed or unsigned for PCM encoding.

 Big-endian or little-endian byte order

Some formats are easy

Some formats are much easier to handle in Java than others. This is particularly true if your

algorithm requires the use of arithmetic operations.

For example, Java data of type short is naturally compatible with PCM_SIGNED, 16-bit, big-

endian format.

(Due to its ease of use, this is the format that was used for all the samples in this

lesson.)

Java data of type byte is naturally compatible with PCM_SIGNED, 8-bit, big-endian format.

(This format is also relatively easy to use, but it has very limited dynamic

range. Integer overflow is a constant potential problem when doing 8-bit

arithmetic. For that reason, this format was not used for any of the samples in

this lesson.)

Some formats are more difficult

If you want to use ALAW or ULAW encoding, PCM_UNSIGNED, or little-endian byte order,

you are going to have to expend some extra programming effort to convert the data that is

naturally produced by Java arithmetic operations to the other format parameters.

Generate the synthetic sound data

Having defined an algorithm, and having chosen an audio format, you must generate the

synthetic sound data samples and store them in the byte array with an arrangement that matches

the chosen format parameters.

The java.nio package can be very useful

If you are creating 16-bit audio data samples as type short, you can use the capabilities of the

java.nio package to help you with the translation from 16-bit data to bytes in the array. Without

the java.nio capabilities, you would probably need to perform bitwise operations to handle that

translation.

Arrangement for monaural and stereo data samples

For single-channel (monaural) data, the audio data samples follow one another in the byte array.

For two-channel (stereo) data, the data in the byte array must consist of alternating data samples

from each of the two channels, beginning with a sample from the left channel.

Make certain that the size of the byte array is correct for an integer number of samples for the

number of channels specified in the format.

(A byte array size that is a multiple of four bytes should handle both monaural

and stereo data for either 8-bit or 16-bit samples.)

Playback or file writing

To playback the synthetic sound data, or to write it into an audio file, you will need to:

 Instantiate an AudioFormat object using the format parameters that you used to arrange

your data in the byte array.

 Instantiate a ByteArrayInputStream object based on the byte array that contains your

data samples.

 Instantiate an AudioInputStream object based on your ByteArrayInputStream object

and your AudioFormat object.

File writing only

To write the data to an audio file, invoke the write method of the AudioSystem class, passing

the following as parameters:

 Your AudioInputStream object.

 The audio file type as a constant defined in the AudioFileFormat.Type class.

 A File object that supplies the name and extension for your file.

Playback of synthetic sound data

Having instantiated your AudioFormat object and your AudioInputStream object from above,

to play back the data from within the same program:

 Instantiate a DataLine.Info object that describes a SourceDataLine according to the

AudioFormat object.

 Get and save a SourceDataLine object by invoking the getLine method of the

AudioSystem class, passing your DataLine.Info object as a parameter.

 Spawn a thread that uses a playback loop to transfer the data from the

AudioInputStream object to the SourceDataLine object in real time. An example of

such a thread has been discussed in several previous lessons, and is also provided in the

class definition for the ListenThread class in Listing 49 near the end of the lesson.

Complete Program Listing

A complete listing of the program is shown in Listing 49.

/*File AudioSynth01.java

Copyright 2003, R.G.Baldwin

This program demonstrates the ability to create

synthetic audio data, and to play it back

immediately, or to store it in an AU file for

later playback.

A GUI appears on the screen containing the

following components in the North position:

Generate button

Play/File button

Elapsed time meter (JTextField)

Several radio buttons appear in the Center

position of the GUI. Each radio button selects

a different format for synthetic audio data.

The South position of the GUI contains the

following components:

Listen radio button

File radio button

File Name text field

Select a radio button from the Center and click

the Generate button. A short segment of

synthetic audio data will be generated and saved

in memory. The segment length is two seconds

for monaural data and one second for stereo data,

at 16000 samp/sec and 16 bits per sample.

To listen to the audio data, select the Listen

radio button in the South position and click the

Play/File button. You can listen to the data

repeatedly if you so choose. In addition to

listening to the data, you can also save it in

an audio file.

To save the audio data in an audio file of type

AU, enter a file name (without extension) in the

text field in the South position, select the

File radio button in the South position, and

click the Play/File button.

You should be able to play the audio file back

with any standard media player that can handle

the AU file type, or with a program written in

Java, such as the program named AudioPlayer02

that was discussed in an earlier lesson.

Tested using SDK 1.4.0 under Win2000

**/

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import javax.sound.sampled.*;

import java.io.*;

import java.nio.channels.*;

import java.nio.*;

import java.util.*;

public class AudioSynth01 extends JFrame{

 //The following are general instance variables

 // used to create a SourceDataLine object.

 AudioFormat audioFormat;

 AudioInputStream audioInputStream;

 SourceDataLine sourceDataLine;

 //The following are audio format parameters.

 // They may be modified by the signal generator

 // at runtime. Values allowed by Java

 // SDK 1.4.1 are shown in comments.

 float sampleRate = 16000.0F;

 //Allowable 8000,11025,16000,22050,44100

 int sampleSizeInBits = 16;

 //Allowable 8,16

 int channels = 1;

 //Allowable 1,2

 boolean signed = true;

 //Allowable true,false

 boolean bigEndian = true;

 //Allowable true,false

 //A buffer to hold two seconds monaural and one

 // second stereo data at 16000 samp/sec for

 // 16-bit samples

 byte audioData[] = new byte[16000*4];

 //Following components appear in the North

 // position of the GUI.

 final JButton generateBtn =

 new JButton("Generate");

 final JButton playOrFileBtn =

 new JButton("Play/File");

 final JLabel elapsedTimeMeter =

 new JLabel("0000");

 //Following radio buttons select a synthetic

 // data type. Add more buttons if you add

 // more synthetic data types. They appear in

 // the center position of the GUI.

 final JRadioButton tones =

 new JRadioButton("Tones",true);

 final JRadioButton stereoPanning =

 new JRadioButton("Stereo Panning");

 final JRadioButton stereoPingpong =

 new JRadioButton("Stereo Pingpong");

 final JRadioButton fmSweep =

 new JRadioButton("FM Sweep");

 final JRadioButton decayPulse =

 new JRadioButton("Decay Pulse");

 final JRadioButton echoPulse =

 new JRadioButton("Echo Pulse");

 final JRadioButton waWaPulse =

 new JRadioButton("WaWa Pulse");

 //Following components appear in the South

 // position of the GUI.

 final JRadioButton listen =

 new JRadioButton("Listen",true);

 final JRadioButton file =

 new JRadioButton("File");

 final JTextField fileName =

 new JTextField("junk",10);

 //---//

 public static void main(

 String args[]){

 new AudioSynth01();

 }//end main

 //---//

 public AudioSynth01(){//constructor

 //A panel for the North position. Note the

 // etched border.

 final JPanel controlButtonPanel =

 new JPanel();

 controlButtonPanel.setBorder(

 BorderFactory.createEtchedBorder());

 //A panel and button group for the radio

 // buttons in the Center position.

 final JPanel synButtonPanel = new JPanel();

 final ButtonGroup synButtonGroup =

 new ButtonGroup();

 //This panel is used for cosmetic purposes

 // only, to cause the radio buttons to be

 // centered horizontally in the Center

 // position.

 final JPanel centerPanel = new JPanel();

 //A panel for the South position. Note the

 // etched border.

 final JPanel outputButtonPanel =

 new JPanel();

 outputButtonPanel.setBorder(

 BorderFactory.createEtchedBorder());

 final ButtonGroup outputButtonGroup =

 new ButtonGroup();

 //Disable the Play button initially to force

 // the user to generate some data before

 // trying to listen to it or write it to a

 // file.

 playOrFileBtn.setEnabled(false);

 //Register anonymous listeners on the

 // Generate button and the Play/File button.

 generateBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 //Don't allow Play during generation

 playOrFileBtn.setEnabled(false);

 //Generate synthetic data

 new SynGen().getSyntheticData(

 audioData);

 //Now it is OK for the user to listen

 // to or file the synthetic audio data.

 playOrFileBtn.setEnabled(true);

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 playOrFileBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 //Play or file the data synthetic data

 playOrFileData();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 //Add two buttons and a text field to a

 // physical group in the North of the GUI.

 controlButtonPanel.add(generateBtn);

 controlButtonPanel.add(playOrFileBtn);

 controlButtonPanel.add(elapsedTimeMeter);

 //Add radio buttons to a mutually exclusive

 // group in the Center of the GUI. Make

 // additions here if you add new synthetic

 // generator methods.

 synButtonGroup.add(tones);

 synButtonGroup.add(stereoPanning);

 synButtonGroup.add(stereoPingpong);

 synButtonGroup.add(fmSweep);

 synButtonGroup.add(decayPulse);

 synButtonGroup.add(echoPulse);

 synButtonGroup.add(waWaPulse);

 //Add radio buttons to a physical group and

 // center it in the Center of the GUI. Make

 // additions here if you add new synthetic

 // generator methods.

 synButtonPanel.setLayout(

 new GridLayout(0,1));

 synButtonPanel.add(tones);

 synButtonPanel.add(stereoPanning);

 synButtonPanel.add(stereoPingpong);

 synButtonPanel.add(fmSweep);

 synButtonPanel.add(decayPulse);

 synButtonPanel.add(echoPulse);

 synButtonPanel.add(waWaPulse);

 //Note that the centerPanel has center

 // alignment by default.

 centerPanel.add(synButtonPanel);

 //Add radio buttons to a mutually exclusive

 // group in the South of the GUI.

 outputButtonGroup.add(listen);

 outputButtonGroup.add(file);

 //Add radio buttons to a physical group in

 // the South of the GUI.

 outputButtonPanel.add(listen);

 outputButtonPanel.add(file);

 outputButtonPanel.add(fileName);

 //Add the panels containing components to the

 // content pane of the GUI in the appropriate

 // positions.

 getContentPane().add(

 controlButtonPanel,BorderLayout.NORTH);

 getContentPane().add(centerPanel,

 BorderLayout.CENTER);

 getContentPane().add(outputButtonPanel,

 BorderLayout.SOUTH);

 //Finish the GUI. If you add more radio

 // buttons in the center, you may need to

 // modify the call to setSize to increase

 // the vertical component of the GUI size.

 setTitle("Copyright 2003, R.G.Baldwin");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 setSize(250,275);

 setVisible(true);

 }//end constructor

 //---//

 //This method plays or files the synthetic

 // audio data that has been generated and saved

 // in an array in memory.

 private void playOrFileData() {

 try{

 //Get an input stream on the byte array

 // containing the data

 InputStream byteArrayInputStream =

 new ByteArrayInputStream(

 audioData);

 //Get the required audio format

 audioFormat = new AudioFormat(

 sampleRate,

 sampleSizeInBits,

 channels,

 signed,

 bigEndian);

 //Get an audio input stream from the

 // ByteArrayInputStream

 audioInputStream = new AudioInputStream(

 byteArrayInputStream,

 audioFormat,

 audioData.length/audioFormat.

 getFrameSize());

 //Get info on the required data line

 DataLine.Info dataLineInfo =

 new DataLine.Info(

 SourceDataLine.class,

 audioFormat);

 //Get a SourceDataLine object

 sourceDataLine = (SourceDataLine)

 AudioSystem.getLine(

 dataLineInfo);

 //Decide whether to play the synthetic

 // data immediately, or to write it into

 // an audio file, based on the user

 // selection of the radio buttons in the

 // South of the GUI..

 if(listen.isSelected()){

 //Create a thread to play back the data and

 // start it running. It will run until all

 // the data has been played back

 new ListenThread().start();

 }else{

 //Disable buttons until existing data

 // is written to the file.

 generateBtn.setEnabled(false);

 playOrFileBtn.setEnabled(false);

 //Write the data to an output file with

 // the name provided by the text field

 // in the South of the GUI.

 try{

 AudioSystem.write(

 audioInputStream,

 AudioFileFormat.Type.AU,

 new File(fileName.getText() +

 ".au"));

 }catch (Exception e) {

 e.printStackTrace();

 System.exit(0);

 }//end catch

 //Enable buttons for another operation

 generateBtn.setEnabled(true);

 playOrFileBtn.setEnabled(true);

 }//end else

 }catch (Exception e) {

 e.printStackTrace();

 System.exit(0);

 }//end catch

 }//end playOrFileData

//===//

//Inner class to play back the data that was

// saved.

class ListenThread extends Thread{

 //This is a working buffer used to transfer

 // the data between the AudioInputStream and

 // the SourceDataLine. The size is rather

 // arbitrary.

 byte playBuffer[] = new byte[16384];

 public void run(){

 try{

 //Disable buttons while data is being

 // played.

 generateBtn.setEnabled(false);

 playOrFileBtn.setEnabled(false);

 //Open and start the SourceDataLine

 sourceDataLine.open(audioFormat);

 sourceDataLine.start();

 int cnt;

 //Get beginning of elapsed time for

 // playback

 long startTime = new Date().getTime();

 //Transfer the audio data to the speakers

 while((cnt = audioInputStream.read(

 playBuffer, 0,

 playBuffer.length))

 != -1){

 //Keep looping until the input read

 // method returns -1 for empty stream.

 if(cnt > 0){

 //Write data to the internal buffer of

 // the data line where it will be

 // delivered to the speakers in real

 // time

 sourceDataLine.write(

 playBuffer, 0, cnt);

 }//end if

 }//end while

 //Block and wait for internal buffer of the

 // SourceDataLine to become empty.

 sourceDataLine.drain();

 //Get and display the elapsed time for

 // the previous playback.

 int elapsedTime =

 (int)(new Date().getTime() - startTime);

 elapsedTimeMeter.setText("" + elapsedTime);

 //Finish with the SourceDataLine

 sourceDataLine.stop();

 sourceDataLine.close();

 //Re-enable buttons for another operation

 generateBtn.setEnabled(true);

 playOrFileBtn.setEnabled(true);

 }catch (Exception e) {

 e.printStackTrace();

 System.exit(0);

 }//end catch

 }//end run

}//end inner class ListenThread

//===//

//Inner signal generator class.

//An object of this class can be used to

// generate a variety of different synthetic

// audio signals. Each time the getSyntheticData

// method is called on an object of this class,

// the method will fill the incoming array with

// the samples for a synthetic signal.

class SynGen{

 //Note: Because this class uses a ByteBuffer

 // asShortBuffer to handle the data, it can

 // only be used to generate signed 16-bit

 // data.

 ByteBuffer byteBuffer;

 ShortBuffer shortBuffer;

 int byteLength;

 void getSyntheticData(byte[] synDataBuffer){

 //Prepare the ByteBuffer and the shortBuffer

 // for use

 byteBuffer = ByteBuffer.wrap(synDataBuffer);

 shortBuffer = byteBuffer.asShortBuffer();

 byteLength = synDataBuffer.length;

 //Decide which synthetic data generator

 // method to invoke based on which radio

 // button the user selected in the Center of

 // the GUI. If you add more methods for

 // other synthetic data types, you need to

 // add corresponding radio buttons to the

 // GUI and add statements here to test the

 // new radio buttons. Make additions here

 // if you add new synthetic generator

 // methods.

 if(tones.isSelected()) tones();

 if(stereoPanning.isSelected())

 stereoPanning();

 if(stereoPingpong.isSelected())

 stereoPingpong();

 if(fmSweep.isSelected()) fmSweep();

 if(decayPulse.isSelected()) decayPulse();

 if(echoPulse.isSelected()) echoPulse();

 if(waWaPulse.isSelected()) waWaPulse();

 }//end getSyntheticData method

 //---//

 //This method generates a monaural tone

 // consisting of the sum of three sinusoids.

 void tones(){

 channels = 1;//Java allows 1 or 2

 //Each channel requires two 8-bit bytes per

 // 16-bit sample.

 int bytesPerSamp = 2;

 sampleRate = 16000.0F;

 // Allowable 8000,11025,16000,22050,44100

 int sampLength = byteLength/bytesPerSamp;

 for(int cnt = 0; cnt < sampLength; cnt++){

 double time = cnt/sampleRate;

 double freq = 950.0;//arbitrary frequency

 double sinValue =

 (Math.sin(2*Math.PI*freq*time) +

 Math.sin(2*Math.PI*(freq/1.8)*time) +

 Math.sin(2*Math.PI*(freq/1.5)*time))/3.0;

 shortBuffer.put((short)(16000*sinValue));

 }//end for loop

 }//end method tones

 //---//

 //This method generates a stereo speaker sweep,

 // starting with a relatively high frequency

 // tone on the left speaker and moving across

 // to a lower frequency tone on the right

 // speaker.

 void stereoPanning(){

 channels = 2;//Java allows 1 or 2

 int bytesPerSamp = 4;//Based on channels

 sampleRate = 16000.0F;

 // Allowable 8000,11025,16000,22050,44100

 int sampLength = byteLength/bytesPerSamp;

 for(int cnt = 0; cnt < sampLength; cnt++){

 //Calculate time-varying gain for each

 // speaker

 double rightGain = 16000.0*cnt/sampLength;

 double leftGain = 16000.0 - rightGain;

 double time = cnt/sampleRate;

 double freq = 600;//An arbitrary frequency

 //Generate data for left speaker

 double sinValue =

 Math.sin(2*Math.PI*(freq)*time);

 shortBuffer.put(

 (short)(leftGain*sinValue));

 //Generate data for right speaker

 sinValue =

 Math.sin(2*Math.PI*(freq*0.8)*time);

 shortBuffer.put(

 (short)(rightGain*sinValue));

 }//end for loop

 }//end method stereoPanning

 //---//

 //This method uses stereo to switch a sound

 // back and forth between the left and right

 // speakers at a rate of about eight switches

 // per second. On my system, this is a much

 // better demonstration of the sound separation

 // between the two speakers than is the

 // demonstration produced by the stereoPanning

 // method. Note also that because the sounds

 // are at different frequencies, the sound

 // produced is similar to that of U.S.

 // emergency vehicles.

 void stereoPingpong(){

 channels = 2;//Java allows 1 or 2

 int bytesPerSamp = 4;//Based on channels

 sampleRate = 16000.0F;

 // Allowable 8000,11025,16000,22050,44100

 int sampLength = byteLength/bytesPerSamp;

 double leftGain = 0.0;

 double rightGain = 16000.0;

 for(int cnt = 0; cnt < sampLength; cnt++){

 //Calculate time-varying gain for each

 // speaker

 if(cnt % (sampLength/8) == 0){

 //swap gain values

 double temp = leftGain;

 leftGain = rightGain;

 rightGain = temp;

 }//end if

 double time = cnt/sampleRate;

 double freq = 600;//An arbitrary frequency

 //Generate data for left speaker

 double sinValue =

 Math.sin(2*Math.PI*(freq)*time);

 shortBuffer.put(

 (short)(leftGain*sinValue));

 //Generate data for right speaker

 sinValue =

 Math.sin(2*Math.PI*(freq*0.8)*time);

 shortBuffer.put(

 (short)(rightGain*sinValue));

 }//end for loop

 }//end stereoPingpong method

 //---//

 //This method generates a monaural linear

 // frequency sweep from 100 Hz to 1000Hz.

 void fmSweep(){

 channels = 1;//Java allows 1 or 2

 int bytesPerSamp = 2;//Based on channels

 sampleRate = 16000.0F;

 // Allowable 8000,11025,16000,22050,44100

 int sampLength = byteLength/bytesPerSamp;

 double lowFreq = 100.0;

 double highFreq = 1000.0;

 for(int cnt = 0; cnt < sampLength; cnt++){

 double time = cnt/sampleRate;

 double freq = lowFreq +

 cnt*(highFreq-lowFreq)/sampLength;

 double sinValue =

 Math.sin(2*Math.PI*freq*time);

 shortBuffer.put((short)(16000*sinValue));

 }//end for loop

 }//end method fmSweep

 //---//

 //This method generates a monaural triple-

 // frequency pulse that decays in a linear

 // fashion with time.

 void decayPulse(){

 channels = 1;//Java allows 1 or 2

 int bytesPerSamp = 2;//Based on channels

 sampleRate = 16000.0F;

 // Allowable 8000,11025,16000,22050,44100

 int sampLength = byteLength/bytesPerSamp;

 for(int cnt = 0; cnt < sampLength; cnt++){

 //The value of scale controls the rate of

 // decay - large scale, fast decay.

 double scale = 2*cnt;

 if(scale > sampLength) scale = sampLength;

 double gain =

 16000*(sampLength-scale)/sampLength;

 double time = cnt/sampleRate;

 double freq = 499.0;//an arbitrary freq

 double sinValue =

 (Math.sin(2*Math.PI*freq*time) +

 Math.sin(2*Math.PI*(freq/1.8)*time) +

 Math.sin(2*Math.PI*(freq/1.5)*time))/3.0;

 shortBuffer.put((short)(gain*sinValue));

 }//end for loop

 }//end method decayPulse

 //---//

 //This method generates a monaural triple-

 // frequency pulse that decays in a linear

 // fashion with time. However, three echoes

 // can be heard over time with the amplitude

 // of the echoes also decreasing with time.

 void echoPulse(){

 channels = 1;//Java allows 1 or 2

 int bytesPerSamp = 2;//Based on channels

 sampleRate = 16000.0F;

 // Allowable 8000,11025,16000,22050,44100

 int sampLength = byteLength/bytesPerSamp;

 int cnt2 = -8000;

 int cnt3 = -16000;

 int cnt4 = -24000;

 for(int cnt1 = 0; cnt1 < sampLength;

 cnt1++,cnt2++,cnt3++,cnt4++){

 double val = echoPulseHelper(

 cnt1,sampLength);

 if(cnt2 > 0){

 val += 0.7 * echoPulseHelper(

 cnt2,sampLength);

 }//end if

 if(cnt3 > 0){

 val += 0.49 * echoPulseHelper(

 cnt3,sampLength);

 }//end if

 if(cnt4 > 0){

 val += 0.34 * echoPulseHelper(

 cnt4,sampLength);

 }//end if

 shortBuffer.put((short)val);

 }//end for loop

 }//end method echoPulse

 //---//

 double echoPulseHelper(int cnt,int sampLength){

 //The value of scale controls the rate of

 // decay - large scale, fast decay.

 double scale = 2*cnt;

 if(scale > sampLength) scale = sampLength;

 double gain =

 16000*(sampLength-scale)/sampLength;

 double time = cnt/sampleRate;

 double freq = 499.0;//an arbitrary freq

 double sinValue =

 (Math.sin(2*Math.PI*freq*time) +

 Math.sin(2*Math.PI*(freq/1.8)*time) +

 Math.sin(2*Math.PI*(freq/1.5)*time))/3.0;

 return(short)(gain*sinValue);

 }//end echoPulseHelper

 //---//

 //This method generates a monaural triple-

 // frequency pulse that decays in a linear

 // fashion with time. However, three echoes

 // can be heard over time with the amplitude

 // of the echoes also decreasing with time.

 //Note that this method is identical to the

 // method named echoPulse, except that the

 // algebraic sign was switched on the amplitude

 // of two of the echoes before adding them to

 // the composite synthetic signal. This

 // resulted in a difference in the

 // sound.

 void waWaPulse(){

 channels = 1;//Java allows 1 or 2

 int bytesPerSamp = 2;//Based on channels

 sampleRate = 16000.0F;

 // Allowable 8000,11025,16000,22050,44100

 int sampLength = byteLength/bytesPerSamp;

 int cnt2 = -8000;

 int cnt3 = -16000;

 int cnt4 = -24000;

 for(int cnt1 = 0; cnt1 < sampLength;

 cnt1++,cnt2++,cnt3++,cnt4++){

 double val = waWaPulseHelper(

 cnt1,sampLength);

 if(cnt2 > 0){

 val += -0.7 * waWaPulseHelper(

 cnt2,sampLength);

 }//end if

 if(cnt3 > 0){

 val += 0.49 * waWaPulseHelper(

 cnt3,sampLength);

 }//end if

 if(cnt4 > 0){

 val += -0.34 * waWaPulseHelper(

 cnt4,sampLength);

 }//end if

 shortBuffer.put((short)val);

 }//end for loop

 }//end method waWaPulse

 //---//

 double waWaPulseHelper(int cnt,int sampLength){

 //The value of scale controls the rate of

 // decay - large scale, fast decay.

 double scale = 2*cnt;

 if(scale > sampLength) scale = sampLength;

 double gain =

 16000*(sampLength-scale)/sampLength;

 double time = cnt/sampleRate;

 double freq = 499.0;//an arbitrary freq

 double sinValue =

 (Math.sin(2*Math.PI*freq*time) +

 Math.sin(2*Math.PI*(freq/1.8)*time) +

 Math.sin(2*Math.PI*(freq/1.5)*time))/3.0;

 return(short)(gain*sinValue);

 }//end waWaPulseHelper

 //---//

}//end SynGen class

//===//

}//end outer class AudioSynth01.java

Listing 49

Copyright 2003, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and private

consultant whose primary focus is a combination of Java, C#, and XML. In addition to the many

platform and/or language independent benefits of Java and C# applications, he believes that a

combination of Java, C#, and XML will become the primary driving force in the delivery of

structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

mailto:Baldwin@DickBaldwin.com

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

http://www.dickbaldwin.com/
mailto:Baldwin@DickBaldwin.com

