
Java Sound, Audio File Conversion

Baldwin shows you how to convert audio data from one audio file type to another.

Published: September 2, 2003

By Richard G. Baldwin

Java Programming Notes # 2024

 Preface

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 What's Next?

 Complete Program Listing

Preface

This series of lessons is designed to teach you how to use the Java Sound API. The first lesson

in the series was entitled Java Sound, An Introduction. The previous lesson was entitled Java

Sound, Creating, Playing, and Saving Synthetic Sounds.

Two types of audio data

Two different types of audio data are supported by the Java Sound API:

 Sampled audio data

 Musical Instrument Digital Interface (MIDI) data

The two types of audio data are very different. I am concentrating on sampled audio data at this

point in time. I will defer my discussion of MIDI until later.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

mailto:Baldwin@DickBaldwin.com
http://www.developer.com/java/other/article.php/1565671
http://www.developer.com/java/other/article.php/2226701
http://www.developer.com/java/other/article.php/2226701
http://softwaredev.earthweb.com/java

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

Material in earlier lessons

Earlier lessons in this series showed you how to:

 Create, play, and save synthetic sounds, making use of the features of the java.nio

package to help with the byte manipulations.

 Use methods of the AudioSystem class to write more robust audio programs.

 Play back audio files, including those that you create using a Java program, and those that

you acquire from other sources.

 Capture microphone data into audio files types of your own choosing.

 Capture microphone data into a ByteArrayOutputStream object.

 Use the Sound API to play back previously captured audio data.

 Identify the mixers available on your system.

 Specify a particular mixer for use in the acquisition of audio data from a microphone.

 Understand the use of lines and mixers in the Java Sound API.

This lesson will show you how to perform file conversions among different audio file types.

Preview

Audio file type is different from audio encoding

Numerous audio file types have been defined in recent years, including AU files, AIF files, and

WAV files. However, when trying to determine if a particular audio file will be satisfactory for

a particular application, simply knowing the file type isn't sufficient. You must also know how

the audio data is encoded within the file.

Stated simply, the file type specification indicates how the bytes are physically arranged within

the file. The encoding specification indicates how the audio information is arranged within the

bytes. Not all file types can accommodate all encodings. However, many file types can

accommodate several different encodings.

As it turns out, file types are the less complex of the two topics. I will deal with file types in this

lesson. I will begin dealing with encodings in the next lesson.

Information on different file types

Here are descriptions of some of the file types supported by Sun's Java, as found at the High-

Tech Dictionary of File Types:

 AU - A sound file format used on Sun Microsystems or other UNIX computers.

http://www.dickbaldwin.com/
http://www.computeruser.com/resources/dictionary/filetypes.html
http://www.computeruser.com/resources/dictionary/filetypes.html

 AIF - Audio Interchange File Format or AIFF (filename extension). A format developed

by Apple Computer for storing high-quality sampled audio and musical instrument

information. It can be played on PC and Mac. (Note that the Sun Java API treats the

common filename extension for this type as AIF.)

 WAV - Sound file. (As you can see, the HighTech Dictionary doesn't have much to say

about this file type. I will add that most of the sound files that are provided by Microsoft

in a typical Windows installation are WAV files.)

Format descriptions

You can view a technical description of the format of an AU file, including information about

how the bytes are arranged in the file, at Header file for Audio, .au.

You can view a similar technical description for an AIFF file format here. Finally, you can view

a technical description of the format of a WAV file at The Canonical WAVE File Format.

Of course, if you fire up your Google search engine, you can find many other descriptions of

these and other file formats as well.

General information about sampled sound

You will find some very interesting information about sampled sound published by Marc Boots-

Ebenfield at Sound Formats. Included on the web site is the following factoid regarding CD

quality music.

"On a Music CD the music is sampled at 44.1 KHz using 16 bit words or 705,600

bits for each second of sound. At 8 bits to the byte that would mean that 1 second

of CD quality music would occupy 88,200 bytes or 88 Kb of your floppy disc

which holds 1.2 Mb of data. That means that you could hold 13 seconds of CD

quality music on a floppy- (uncompressed)!"

If the above estimate is correct, then about fifteen floppy disks would be required to contain a

typical three-minute song in uncompressed CD quality format. (That fact will be more important

in the future lessons on encoding than in this lesson.)

A non-technical aside

As another interesting factoid, The American Heritage® Book of English Usage is not very fond

of this usage of the word factoid.

Discussion and Sample Code

The user interface

The user interface for this program is very simple. This program is designed to be executed from

the command line as follows:

http://www.opengroup.org/public/pubs/external/auformat.html
http://www.borg.com/~jglatt/tech/aiff.htm
http://ccrma-www.stanford.edu/CCRMA/Courses/422/projects/WaveFormat/
http://www.google.com/
http://www.brynmawr.edu/Acads/Langs/llc/soundformats.htm
http://www.bartleby.com/64/C003/0120.html

Usage: java AudioFileConvert01 inputFile outputFile

The program named AudioFileConvert01

Before getting into the details of the program code, I will describe the program and show you

some examples produced by running the program.

This program demonstrates the ability to write a Java program to convert one audio file type to a

different audio file type. Run the program by entering the following at the command line:

java AudioFileConvert01 inputFile outputFile

Input and output file types

The type of output file that is created depends on the output file name extension, such as au,

wav, or aif.

On the other hand, the type of the input file does not depend on the input file name or

extension. The actual type of the input file is determined by the program irrespective of the

name of the file or the extension given to that file.

Playback of the output file

You should be able to play the output file with any standard media player that can handle the file

type, or with a program written in Java, such as the program named AudioPlayer02 that was

developed in an earlier lesson.

Operational examples

The following paragraphs show sample screen outputs for different input and output file

types. Note that line breaks were manually inserted to force the material to fit in this narrow

publication format.

Valid input file with invalid file extension

In the first example, shown in Figure 1, a valid input wav file named ringout was forced to have

the invalid extension .txt. However, the program successfully determined the type of the wav

file on the fly, and the wav file was successfully converted to an au file.

(You may recognize the primary name of this file as being one of the sound files

commonly included in a standard Windows installation. I simply made a copy of

the file named ringout.wav and changed the extension before running this

experiment.)

java AudioFileConvert01 ringout.txt

junk.au

 Input file: ringout.txt

 Output file: junk.au

 Output type: au

 Output type is supported

 Input file format:

 WAVE (.wav) file, byte length: 5212,

 data format: PCM_UNSIGNED, 11025.0

Hz,

 8 bit, mono, audio data

 Bytes written: 5191

 Output file format:

 AU (.au) file, byte length: 5191,

 data format: PCM_SIGNED, 11025.0 Hz,

 8 bit, mono, audio data, frame

length: 5167
Figure 1

Encoding information is displayed

You will see the code that produced the output in Figure 1 later when I discuss the program. As

you can see from the output, the code in this program gets and displays encoding information

(PCM_UNSIGNED, 8 bit, mono, etc.) on both the input file and the output file in addition to the

file type. However, this program makes no attempt to purposely change the encoding. (As I

mentioned earlier, I will begin dealing with encoding in the next lesson.)

Conversion of an AU file to a WAV file

In the example shown in Figure 2, the input file was a stereo au file produced by a sample

program from an earlier lesson. The au file was successfully converted to a wav file.

java AudioFileConvert01 junk3.au

junk.wav

 Input file: junk3.au

 Output file: junk.wav

 Output type: wav

 Output type is supported

 Input file format:

 AU (.au) file, byte length: 64024,

 data format: PCM_SIGNED, 16000.0 Hz,

16 bit,

 stereo, big-endian, audio data,

 frame length: 16000

 Bytes written: 64044

 Output file format:

 WAVE (.wav) file, byte length: 64044,

 data format: PCM_SIGNED, 16000.0 Hz,

16 bit,

 stereo, little-endian, audio data
Figure 2

The fact that these files are stereo (two-channel) files is indicated by the encoding information

that is displayed in Figure 2.

Conversion of a WAV file to an AIF file

A standard Windows monaural wav file was successfully converted to an aif file, as shown in

Figure 3

java AudioFileConvert01 ringout.wav

junk.aif

 Input file: ringout.wav

 Output file: junk.aif

 Output type: aif

 Output type is supported

 Input file format:

 WAVE (.wav) file, byte length: 5212,

 data format: PCM_UNSIGNED, 11025.0

Hz, 8 bit,

 mono, audio data

 Bytes written: 5221

 Output file format:

 AIFF (.aif) file, byte length: 5221,

 data format: PCM_SIGNED, 11025.0 Hz,

8 bit,

 mono, audio data, frame length: 5167
Figure 3

An unsupported output file type

In the example shown in Figure 4, the specified output file type, xyz, is not supported by the Java

Sound API (nor by any other system that I am aware of). Therefore, the program aborted,

providing a list of the output file types that are supported for writing by the system.

java AudioFileConvert01 junk3.au

junk.xyz

 Input file: junk3.au

 Output file: junk.xyz

 Output type: xyz

 Output type not supported.

 Supported audio file types: au aif

wav
Figure 4

Note that the Java implementation on my system at the time of this writing only supports file

types au, aif, and wav.

An unsupported input file type

In the example shown in Figure 5, the input file claimed by virtue of its name and extension to be

a wav file. However, it was not a valid audio file. Rather, it was simply a text file that I

renamed to cause it to impersonate a wav file. This caused the program to throw an

UnsupportedAudioFileException and abort.

Once again, the program determined the type of the input file by examining the contents of the

file, and not by examining the file's name or extension.

java AudioFileConvert01 invalidFile.wav

junk.au

 Input file: invalidFile.wav

 Output file: junk.au

 Output type: au

 Output type is supported

 javax.sound.sampled.

 UnsupportedAudioFileException: could not

get

 audio input stream from input stream

 at javax.sound.sampled.AudioSystem.

 getAudioInputStream(AudioSystem.java:756)

 at AudioFileConvert01.

 main(AudioFileConvert01.java:84)
Figure 5

Getting usage information

In Figure 6, the program was run with no command-line arguments, causing the program to

provide usage information and abort.

java AudioFileConvert01

Usage: java AudioFileConvert01

 inputFile

outputFile
Figure 6

This program was tested using SDK 1.4.1 under WinXP

The class named AudioFileConvert01

The controlling class for the program begins in Listing 1. As usual, I will discuss the program in

fragments. You can view a listing of the entire program in Listing 11 near the end of the lesson.

The program is relatively straightforward consisting of the main method and the following static

methods (these methods were declared static so that they can be invoked from inside the main

method):

 getTargetTypesSupported - returns a list of the audio file types that can be written by

the system.

 getTargetType - returns the type of a specified output file based on the filename

extension.

 showFileType - Examines a File object representing a physical audio file and displays

information about the file.

The main method

Listing 1 contains the beginning of the main method. The code in Listing 1 examines the

number of command-line arguments entered by the user, and displays usage information if the

user didn't enter any arguments.

public class AudioFileConvert01{

 public static void main(String[]

args){

 if(args.length != 2){

 System.out.println(

 "Usage: java

AudioFileConvert01 "

 + "inputFile

outputFile");

 System.exit(0);

 }//end if

 System.out.println("Input file: "

+ args[0]);

 System.out.println("Output file:

"+ args[1]);

Listing 1

In addition, the code in Listing 1 displays the input and output file names provided by the user

when those file names are entered as command-line arguments.

Get and test output file type

The output file type is determined by the filename extension provided by the user. The code in

Listing 2 isolates the filename extension as type String and displays the extension on the screen.

 String outputTypeStr =

args[1].substring(args[1].

lastIndexOf(".") + 1);

 System.out.println("Output type: "

 +

outputTypeStr);

 AudioFileFormat.Type outputType =

getTargetType(outputTypeStr);

Listing 2

More importantly, the code in Listing 2 invokes the getTargetType method, passing the

filename extension as a String parameter to that method.

The getTargetType method

The getTargetType method checks to see if the system is capable of writing the file type

indicated by the extension. If so, it returns an AudioFileFormat.Type object matching that

extension. If not, it returns null.

At this point, I am going to put the main method on hold and discuss the method named

getTargetType.

The AudioFileFormat.Type class

Listing 3 contains the entire method named getTargetType.

 private static AudioFileFormat.Type

 getTargetType(String

extension){

 AudioFileFormat.Type[]

typesSupported =

AudioSystem.getAudioFileTypes();

 //System.out.println("length: " +

typesSupported.length);

 for(int i = 0; i <

typesSupported.length;

i++){

if(typesSupported[i].getExtension().

equals(extension)){

 return typesSupported[i];

 }//end if

 }//end for loop

 return null;//no match

 }//end getTargetType

Listing 3

The first thing to note about the code in Listing 3 is that the getTargetType method returns a

reference to an object of type AudioFileFormat.Type.

(In case you are unfamiliar with the notation where there is a period in a class

name, this indicates that the Type class is an inner class of the class named

AudioFileFormat. If you are unfamiliar with inner classes, see the tutorial

lessons on that topic on my web site.)

What does Sun have to say?

Here is what Sun has to say about this class:

"An instance of the Type class represents one of the standard types of audio files.

Static instances are provided for the common types."

Static instances are provided for the following types:

 AIFC

 AIFF

 AU

 SND

 WAVE

It is interesting to note that even though five different audio file types are identified as the

common types in this class, only three of those types are currently supported for writing on my

machine running SDK 1.4.1 under WinXP.

An array of AudioFileFormat.Type object references

The code in Listing 3 invokes the method named getAudioFileTypes, which is a static method

of the AudioSystem class. This method returns a list containing "the file types for which file

writing support is provided by the system." This list is stored in an array of type

AudioFileFormat.Type.

(Listing 3 contains a statement with a call to the println method that has been

commented out. When this statement is enabled on my system, it reports that the

length of the array is three, indicating that only three file types are currently

supported for writing on my System. You will see the names of those three types

later.)

The getExtension method

The AudioFileFormat.Type class provides a method named getExtension, which returns "the

common file name extension" for an object of the type. The code in Listing 3 uses a for loop to

search the array of AudioFileFormat.Type objects looking for a match to the file name

extension received as an incoming parameter by the getTargetType method.

If a match is found, the AudioFileFormat.Type object corresponding to that match is returned

by the getTargetType method. Otherwise, null is returned by the method.

http://www.dickbaldwin.com/

Testing the return value

Returning our attention to the code in the main method, the code in Listing 4 tests to determine

if a null value was returned by the getTargetType method. If not, the program displays the

message:

Output type is supported

//Continue with main method

 if(outputType != null){

 System.out.println(

 "Output type is

supported");

 }else{

 System.out.println(

 "Output type not

supported.");

 getTargetTypesSupported();

 System.exit(0);

 }//end else

Listing 4

If a null value was returned by the getTargetType method, the program displays the following

message and then invokes the method named getTargetTypesSupported to display a list of the

file types that are supported for writing by the system.

Output type not supported.

The getTargetTypesSupported method

The purpose of the method named getTargetTypesSupported is to get and display a list of the

file types supported for writing by the system.

Once again, I'm going to put the main method on hold while I discuss the method named

getTargetTypesSupported, shown in Listing 5.

 private static void

getTargetTypesSupported(){

 AudioFileFormat.Type[]

typesSupported =

AudioSystem.getAudioFileTypes();

 System.out.print(

 "Supported audio

file types:");

 for(int i = 0; i <

typesSupported.length;

i++){

 System.out.print(" " +

typesSupported[i].getExtension());

 }//end for loop

 System.out.println();

 }//end getTargetTypesSupported

Listing 5

Get and display common filename extensions

The code in Listing 5 shouldn't require much in the way of an explanation. This code is very

similar to the code in Listing 3. In Listing 5, however, after getting an array of

AudioFileFormat.Type objects representing the file types supported for writing by the system,

the code simply gets and displays the common filename extension for each of those types.

For the example discussed previously (see Figure 4) where I purposely told the program to write

an unsupported output file type (xyz), the code in Listings 4 and 5 produced the output shown in

Figure 7.

 Output type not supported.

 Supported audio file types: au aif

wav
Figure 7

(Note that the list of supported file types in Figure 7 includes only three of the five

types identified by static instances of the AudioFileFormat.type class.)

The input file type

Returning once again to the main method, the code in Listing 6 begins dealing with the input

file.

(Note that the determination of the input file type does not depend on the file

name or extension. Rather, the program determines the type of the input file by

extracting information about the file from the information contained in the file

itself.)

Get an AudioInputStream object

The code in Listing 6 begins by getting a File object that represents the input file.

//Continue with main method

 File inputFileObj = new

File(args[0]);

 AudioInputStream audioInputStream

= null;

 try{

 audioInputStream = AudioSystem.

getAudioInputStream(inputFileObj);

 }catch (Exception e){

 e.printStackTrace();

 System.exit(0);

 }//end catch

Listing 6

Then the code in Listing 6 uses that File object to get an AudioInputStream object that can be

used to read the audio data in the input file.

I have discussed code involving AudioInputStream objects in several previous

lessons. Therefore, I won't bore you by discussing it again here.

Display file type information

The code in Listing 7 invokes the showFileType method for the purpose of displaying

information about the input file type.

 System.out.println("Input file

format:");

 showFileType(inputFileObj);

Listing 7

The showFileType method

Once again, I'm going to put the main method on hold while I discuss the method named

showFileType, shown in Listing 8.

 private static void

showFileType(File file){

 try{

 System.out.println(AudioSystem.

getAudioFileFormat(file));

 }catch(Exception e){

 e.printStackTrace();

 System.exit(0);

 }//end catch

 }//end showFileFormat

Listing 8

There isn't much to the showFileType method. It simply invokes the method named

getAudioFileFormat, which is a static method of the AudioSystem class, passing the File

object that represents the input file as a parameter to the method.

The getAudioFileFormat method

Here is what Sun has to say about the getAudioFileFormat method.

"Obtains the audio file format of the specified File. The File must point to valid

audio file data."

This method returns an object of type AudioFileFormat, whose reference is passed to the

println method for display.

The AudioFileFormat class

Here is what Sun has to say about an object of this class:

"An instance of the AudioFileFormat class describes an audio file, including the

file type, the file's length in bytes, the length in sample frames of the audio data

contained in the file, and the format of the audio data."

As is frequently the case, this class has an overridden toString method, which facilitates

displaying information about the contents of the object.

The screen output for a supported input file type

Figure 8 shows the screen output produced by Listings 7 and 8 for a supported audio input file of

type WAV:

 Input file format:

 WAVE (.wav) file, byte length: 5212,

 data format: PCM_UNSIGNED, 11025.0

Hz, 8 bit,

 mono, audio data
Figure 8

Note that this output contains the number of channels and the sampling frequency, which is not

mentioned in the quotation from sun in the previous section.

The screen output for an unsupported input file type

Figure 9 shows the screen output produced by Listing 6 when an attempt was made to get an

AudioInputStream object on a file that was not a valid audio file. (It was a text file of the type

produced by the Windows NotePad program.)

 javax.sound.sampled.

 UnsupportedAudioFileException: could not

get

 audio input stream from input stream

 at javax.sound.sampled.AudioSystem.

 getAudioInputStream(AudioSystem.java:756)

 at AudioFileConvert01.

 main(AudioFileConvert01.java:84)
Figure 9

In this case, the program didn't even make it far enough to invoke the showFileType method for

the purpose of displaying information about the file. Rather, it threw an

UnsupportedAudioFileException when the attempt was made to get an AudioInputStream

object on the input file.

The bottom line on file conversion

Returning once more to the main method, the code in Listing 9 illustrates the bottom line on

audio file conversion in Java.

(Note that I deleted the try and catch from Listing 9 in order to simplify the

presentation. You can view that code in Listing 11 near the end of the lesson.)

//Continue with main method

 int bytesWritten = 0;

 //delete try

 bytesWritten = AudioSystem.

write(audioInputStream,

outputType,

 new

File(args[1]));

 //delete catch

 System.out.println("Bytes written:

"

 +

bytesWritten);

Listing 9

The write method of the AudioSystem class

As it turns out, doing audio file conversion using the Java Sound API is relatively simple, as long

as you aren't trying to change encodings in the process. (As mentioned earlier, I will begin

discussing encodings in the next lesson.)

(Much of the code in this program was provided to help you to understand what is

going on. A version of the program named AudioFileConvert02, with most of the

unnecessary code deleted, is shown in Listing 12 near the end of the lesson.)

The basics of file conversion

All that is really necessary to do a file conversion using the Java Sound API is:

 Get the names of the input and output files.

 Get an object of the class AudioFileFormat.Type, which defines the type of the output

file.

 Get an AudioInputStream object on the input file.

 Invoke the method named write shown in Listing 9 passing the above information as

parameters to the write method.

This will cause the input file to be read, and will cause the data from the input file to be written

into the output file in the specified format.

The write method

Here is what Sun has to say about the write method used in Listing 9, which is a static method

of the AudioSystem class:

"Writes a stream of bytes representing an audio file of the specified file type to the

external file provided"

Can be more general

In reality, this code could be made much more general than it is in this program. For example,

the AudioInputStream object doesn't have to be based on a file. The AudioInputStream

object could be based on a TargetDataLine object, or on any InputStream object capable of

supplying audio data according to a known AudioFormat.

Similarly, another overloaded version of the write method allows you to replace the File object

in the third parameter with any OutputStream object capable of accepting a stream of audio

data in a specified format.

The number of bytes written into the output file

The write method returns the number of bytes actually written. This value is displayed on the

screen by the last statement in Listing 9.

Information about the output file format

The code in Listing 10 displays information about the output file format.

 System.out.println("Output file

format:");

 showFileType(new File(args[1]));

 }//end main

Listing 10

Figure 10 shows a sample of the output produced by Listing 10 for one of the example cases

discussed earlier in this lesson:

 Output file format:

 WAVE (.wav) file, byte length: 64044,

 data format: PCM_SIGNED, 16000.0 Hz,

16 bit,

 stereo, little-endian, audio data
Figure 10

Run the Program

At this point, you may find it useful to compile and run the programs shown in Listings 11 and

12 near the end of the lesson. Operating instructions were provided earlier in the section entitled

The user interface.

If you use a media player, such as the Windows Media Player, to play back your file, be sure to

release the old file from the media player before attempting to create a new file with the same

name and extension. Otherwise, the program will not be able to create the new file, and a

runtime error will occur.

Also be aware that these programs were tested using SDK version 1.4.1. Therefore, I can't be

certain that they will compile and run correctly with earlier versions of Java.

Summary

In this lesson, I showed you how to convert audio data from one audio file type to another. The

essential steps involved in making such a conversion are:

 Get the names of the input and output files.

 Get an object of the class AudioFileFormat.Type, which defines the type of the output

file.

 Get an AudioInputStream object on the input file.

 Invoke the method named write shown in Listing 9 passing the above information as

parameters to the write method.

I also explained that this program could be made much more general either by basing the

AudioInputStream object on an InputStream object other than a file, or by causing the output

to be an OutputStream other than a file.

You should be able to play the output file produced by this program with any standard media

player that can handle the file type, or with a program written in Java, such as the program

named AudioPlayer02 that was developed in an earlier lesson.

What's Next?

In the next lesson, I will show you how to use mu-law encoding and decoding to compress and

restore 16-bit linear PCM samples.

Complete Program Listing

Complete listings of the two programs discussed in this lesson are shown in Listing 11 and

Listing 12.

/*File AudioFileConvert01.java

Copyright 2003, R.G.Baldwin

This program demonstrates the ability to write a

Java program to convert one audio file type to a

different audio file type.

Usage: java AudioFileConvert01

 inputFile outputFile

Output file type depends on the output file name

extension, such as au, wav, or aif.

Input file type does not depend on input file

name or extension. Actual type of input file is

determined by the program irrespective of name

or extension.

You should be able to play the output file with

any standard media player that can handle the

file type, or with a program written in Java,

such as the program named AudioPlayer02 that was

discussed in an earlier lesson.

The following are sample screen outputs for

different input and output file types. Note that

line breaks were manually inserted to force the

material to fit in this narrow publication

format.

In this example, the valid input wav file was

forced to have an invalid file extension. The

wav file was successfully converted to

an au file.

java AudioFileConvert01 ringout.txt junk.au

Input file: ringout.txt

Output file: junk.au

Output type: au

Output type is supported

Input file format:

WAVE (.wav) file, byte length: 5212,

data format: PCM_UNSIGNED, 11025.0 Hz,

8 bit, mono, audio data

Bytes written: 5191

Output file format:

AU (.au) file, byte length: 5191,

data format: PCM_SIGNED, 11025.0 Hz,

8 bit, mono, audio data, frame length: 5167

In this example, the input file was a stereo au

file produced by a sample program from an earlier

lesson. The au file was successfully converted

to a wav file.

java AudioFileConvert01 junk3.au junk.wav

Input file: junk3.au

Output file: junk.wav

Output type: wav

Output type is supported

Input file format:

AU (.au) file, byte length: 64024,

data format: PCM_SIGNED, 16000.0 Hz, 16 bit,

stereo, big-endian, audio data,

frame length: 16000

Bytes written: 64044

Output file format:

WAVE (.wav) file, byte length: 64044,

data format: PCM_SIGNED, 16000.0 Hz, 16 bit,

stereo, little-endian, audio data

In this example, the input file was a standard

Windows wav file, which was successfully

converted to an aif file.

java AudioFileConvert01 ringout.wav junk.aif

Input file: ringout.wav

Output file: junk.aif

Output type: aif

Output type is supported

Input file format:

WAVE (.wav) file, byte length: 5212,

data format: PCM_UNSIGNED, 11025.0 Hz, 8 bit,

mono, audio data

Bytes written: 5221

Output file format:

AIFF (.aif) file, byte length: 5221,

data format: PCM_SIGNED, 11025.0 Hz, 8 bit,

mono, audio data, frame length: 5167

In this example, the output file was specified

with an unsupported type. Thus, the program

aborted, providing a list of the output file

types that are supported.

java AudioFileConvert01 junk3.au junk.xyz

Input file: junk3.au

Output file: junk.xyz

Output type: xyz

Output type not supported.

Supported audio file types: au aif wav

In this example, although the input file claimed

to be a wav file, it was not a valid audio file.

Rather, it was a text file that was renamed to

impersonate a wav file. This caused the program

to throw a runtime exception and abort.

java AudioFileConvert01 invalidFile.wav junk.au

Input file: invalidFile.wav

Output file: junk.au

Output type: au

Output type is supported

javax.sound.sampled.

UnsupportedAudioFileException: could not get

audio input stream from input stream

at javax.sound.sampled.AudioSystem.

getAudioInputStream(AudioSystem.java:756)

at AudioFileConvert01.

main(AudioFileConvert01.java:84)

In this example, the program was run with no

command-line parameters, causing the program to

provide usage information and abort.

java AudioFileConvert01

Usage: java AudioFileConvert01

 inputFile outputFile

Tested using SDK 1.4.1 under WinXP

**/

import java.io.*;

import javax.sound.sampled.*;

public class AudioFileConvert01{

 public static void main(String[] args){

 if(args.length != 2){

 System.out.println(

 "Usage: java AudioFileConvert01 "

 + "inputFile outputFile");

 System.exit(0);

 }//end if

 System.out.println("Input file: " + args[0]);

 System.out.println("Output file: "+ args[1]);

 //Output file type depends on output file

 // name extension.

 String outputTypeStr =

 args[1].substring(args[1].

 lastIndexOf(".") + 1);

 System.out.println("Output type: "

 + outputTypeStr);

 AudioFileFormat.Type outputType =

 getTargetType(outputTypeStr);

 if(outputType != null){

 System.out.println(

 "Output type is supported");

 }else{

 System.out.println(

 "Output type not supported.");

 getTargetTypesSupported();

 System.exit(0);

 }//end else

 //Note that input file type does not depend

 // on file name or extension.

 File inputFileObj = new File(args[0]);

 AudioInputStream audioInputStream = null;

 try{

 audioInputStream = AudioSystem.

 getAudioInputStream(inputFileObj);

 }catch (Exception e){

 e.printStackTrace();

 System.exit(0);

 }//end catch

 System.out.println("Input file format:");

 showFileType(inputFileObj);

 int bytesWritten = 0;

 try{

 bytesWritten = AudioSystem.

 write(audioInputStream,

 outputType,

 new File(args[1]));

 }catch (Exception e){

 e.printStackTrace();

 System.exit(0);

 }//end catch

 System.out.println("Bytes written: "

 + bytesWritten);

 System.out.println("Output file format:");

 showFileType(new File(args[1]));

 }//end main

 private static void getTargetTypesSupported(){

 AudioFileFormat.Type[] typesSupported =

 AudioSystem.getAudioFileTypes();

 System.out.print(

 "Supported audio file types:");

 for(int i = 0; i < typesSupported.length;

 i++){

 System.out.print(" " +

 typesSupported[i].getExtension());

 }//end for loop

 System.out.println();

 }//end getTargetTypesSupported

 private static AudioFileFormat.Type

 getTargetType(String extension){

 AudioFileFormat.Type[] typesSupported =

 AudioSystem.getAudioFileTypes();

 for(int i = 0; i < typesSupported.length;

 i++){

 if(typesSupported[i].getExtension().

 equals(extension)){

 return typesSupported[i];

 }//end if

 }//end for loop

 return null;//no match

 }//end getTargetType

 private static void showFileType(File file){

 try{

 System.out.println(AudioSystem.

 getAudioFileFormat(file));

 }catch(Exception e){

 e.printStackTrace();

 System.exit(0);

 }//end catch

 }//end showFileFormat

}//end class

Listing 11

/*File AudioFileConvert02.java

Copyright 2003, R.G.Baldwin

This program demonstrates the ability to write a

Java program to convert one audio file type to a

different audio file type. This is an updated

version of AudioFileConvert01 in which all

unnecessary code has been removed.

Usage: java AudioFileConvert02

 inputFile outputFile

Output file type depends on the output file name

extension, such as au, wav, or aif.

Input file type does not depend on input file

name or extension. Actual type of input file is

determined by the program irrespective of name

or extension.

You should be able to play the output file with

any standard media player that can handle the

file type, or with a program written in Java,

such as the program named AudioPlayer02 that was

discussed in an earlier lesson.

Tested using SDK 1.4.1 under WinXP

**/

import java.io.*;

import javax.sound.sampled.*;

public class AudioFileConvert02{

 public static void main(String[] args){

 if(args.length != 2){

 System.out.println(

 "Usage: java AudioFileConvert02 "

 + "inputFile outputFile");

 System.exit(0);

 }//end if

 AudioFileFormat.Type outputType =

 getTargetType(args[1].substring(args[1].

 lastIndexOf(".") + 1));

 if(outputType == null){

 System.out.println(

 "Output type not supported.");

 System.exit(0);

 }//end else

 File inputFileObj = new File(args[0]);

 AudioInputStream audioInputStream = null;

 try{

 audioInputStream = AudioSystem.

 getAudioInputStream(inputFileObj);

 AudioSystem.write(audioInputStream,

 outputType,

 new File(args[1]));

 }catch (Exception e){

 e.printStackTrace();

 System.exit(0);

 }//end catch

 }//end main

 //---//

 private static AudioFileFormat.Type

 getTargetType(String extension){

 AudioFileFormat.Type[] typesSupported =

 AudioSystem.getAudioFileTypes();

 for(int i = 0; i < typesSupported.length;

 i++){

 if(typesSupported[i].getExtension().

 equals(extension)){

 return typesSupported[i];

 }//end if

 }//end for loop

 return null;//no match

 }//end getTargetType

 //---//

}//end class

Listing 12

Copyright 2003, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and private

consultant whose primary focus is a combination of Java, C#, and XML. In addition to the many

platform and/or language independent benefits of Java and C# applications, he believes that a

combination of Java, C#, and XML will become the primary driving force in the delivery of

structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:Baldwin@DickBaldwin.com

