
Java Sound, Getting Started, Part 2, Capture using Specified

Mixer

Baldwin shows you how to use the Java Sound API to capture audio data from a microphone and

how to save that data in a ByteArrayOutputStream object. He also shows you how to identify the

mixers available on your system, and how to specify a particular mixer for use in the acquisition

of audio data from the microphone.

Published: February 18, 2003

By Richard G. Baldwin

Java Programming Notes # 2012

 Preface

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 Complete Program Listing

Preface

This series of lessons is designed to teach you how to use the Java Sound API. The first lesson

in the series was entitled Java Sound, An Introduction. The previous lesson was entitled Java

Sound, Getting Started, Part 1, Playback. This lesson, entitled Java Sound, Getting Started, Part

2, Capture using Specified Mixer, is a follow-on to the previous lesson.

Two types of audio data

Two different types of audio data are supported by the Java Sound API:

 Sampled audio data

 Musical Instrument Digital Interface (MIDI) data

The two types of audio data are very different. I am concentrating on sampled audio data at this

point in time. I will defer my discussion of MIDI until later.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

mailto:Baldwin@DickBaldwin.com
http://www.developer.com/java/other/article.php/1565671
http://www.developer.com/java/other/article.php/1572251
http://www.developer.com/java/other/article.php/1572251

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

Preview

The Java Sound API is based on the concept of lines and mixers. In this lesson, I will provide a

program that you can use to first capture and then to play back sound.

The previous lesson provided a detailed discussion of the playback section of the

program. However, that lesson didn't expose the use of a mixer. Rather, that lesson made use of

class methods of the AudioSystem class, which abstract the use of mixers to the background.

In this lesson, I will provide a detailed explanation of the code used to capture audio data from a

microphone. Even though it isn't necessary, this lesson will also expose the specification of a

particular mixer to capture the audio data.

Discussion and Sample Code

Mixers

Here is part of what Sun has to say about a mixer:

"A mixer is an audio device with one or more lines. It need not be designed for

mixing audio signals. A mixer that actually mixes audio has multiple input

(source) lines and at least one output (target) line. The former are often instances

of classes that implement SourceDataLine, and the latter, TargetDataLine. Port

objects, too, are either source lines or target lines. A mixer can accept

prerecorded, loopable sound as input, by having some of its source lines be

instances of objects that implement the Clip interface."

Lines

Sun has this to say about the Line interface:

"A line is an element of the digital audio "pipeline," such as an audio input or

output port, a mixer, or an audio data path into or out of a mixer. The audio data

flowing through a line can be mono or multichannel (for example, stereo). ... A

line can have controls, such as gain, pan, and reverb."

Some important terms

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/

The above quotations from Sun mention the following terms:

 TargetDataLine

 Mixer

 Port

 Controls

Figure 1 shows how these terms can come together to form a simple audio input system.

Figure 1 An audio input system

In Figure 1, a Mixer object is configured with one or more ports, some controls, and a

TargetDataLine object.

What is a TargetDataLine?

The terminology used here can be very confusing. A TargetDataLine object is a streaming

mixer output object.

(The object provides output from the mixer, not output from the program. In fact,

it often serves as input to the program.)

An object of this type delivers audio data from the mixer, serving as input to other parts of the

program.

Audio data input to the program

The data provided by the TargetDataLine object can be pushed into some other program

construct in real time. The actual destination of the audio data can be any of a variety of

destinations such as an audio file, a network connection, or a buffer in memory.

(A sample program in this lesson reads audio data from a TargetDataLine object

and writes it into a ByteArrayInputStream object in memory.)

Based on a program from a previous lesson

In a previous lesson, I provided and discussed a program that captures audio data from a

microphone port, stores that data in memory, and plays the captured data back through a speaker

port. That lesson discussed the playback portion of the program in detail, but did not discuss the

data-capture portion of the program.

A slightly modified version of that program will be discussed in this lesson. A copy of the

modified program is shown in Listing 12 near the end of this lesson. This lesson will discuss the

data-capture portion of the program in detail.

An explicit Mixer object

The previous version of the program didn't make explicit use of a Mixer object. Therefore, it

wasn't possible to see how the concept of a Mixer entered into the program. (A Mixer was

implicitly used, but was not identified as such.)

Even though it wasn't necessary for the successful operation of the program, I modified this

version of the program to show the explicit use of a Mixer object.

The graphical user interface (GUI)

A large portion of this program is dedicated to creating a graphical user interface, which is used

to control the operation of the program. Since that code is straightforward, I won't discuss those

parts of the program.

The data-capture side of the program

As mentioned earlier, I provided a detailed discussion of the playback side of the program in the

previous lesson. I will provide a detailed discussion of the data-capture side of the program in

this lesson.

As you will see later, the data-capture portion of the program captures audio data from the

microphone and stores it in a ByteArrayOutputStream object. Then the playback method

named playAudio, (which was discussed in a previous lesson), plays back the audio data that is

stored in the ByteArrayOutputStream object. I made very few changes to the playback side of

the program. Therefore, the discussion in the previous lesson should suffice for your

understanding of the playback side of the program.

The user interface

When this program is executed, the GUI shown in Figure 2 appears on the screen. As you can

see, this GUI contains three buttons:

 Capture

 Stop

 Playback

Figure 2 Program GUI

Input data from a microphone is captured and saved in a ByteArrayOutputStream object when

the user clicks the Capture button.

Data capture stops when the user clicks the Stop button.

Playback of the captured data begins when the user clicks the Playback button.

Available Mixers

Not all computers provide the same set of mixers. This version of the program displays a list of

mixers available on the machine at runtime. The following list of mixers was produced when the

program was run on my machine:

Java Sound Audio Engine

Microsoft Sound Mapper

Modem #0 Line Record

ESS Maestro

Thus, my machine had the four mixers listed above available at the time the program was run

(your computer may display a different list of mixers)

Using a specific mixer

After displaying the list of available mixers, the program gets and uses one of the available

mixers from the list. This is different from the version of the program discussed in a previous

lesson. That version of the program simply asked for a compatible mixer rather than identifying

a specific mixer.

Some mixers work and some don't

I determined experimentally that either of the following mixers could be successfully used in this

program on my machine:

Microsoft Sound Mapper

ESS Maestro

I also determined experimentally that neither of the following mixers would work in this

program on my machine:

Java Sound Audio Engine

Modem #0 Line Record

These two mixers fail at runtime for different reasons.

The Java Sound Audio Engine mixer failed due to a data format compatibility problem (it may

have been possible to correct this failure by specifying a different data format, but I didn't try).

The Modem #0 Line Record mixer failed due to an "Unexpected Error."

The program was tested using Java SDK 1.4.1_01 under Win2000.

Will discuss in fragments

Those of you who follow my work will not be surprised to learn that I will discuss this program

in fragments. A complete listing of the program is shown in Listing 12 near the end of the

lesson.

The class named AudioCapture02

The class definition for the controlling class begins in Listing 1.

public class AudioCapture02 extends

JFrame{

 boolean stopCapture = false;

 ByteArrayOutputStream

byteArrayOutputStream;

 AudioFormat audioFormat;

 TargetDataLine targetDataLine;

 AudioInputStream audioInputStream;

 SourceDataLine sourceDataLine;

Listing 1

The instance variables

The code in Listing 1 declares several instance variables. One of those variables, named

stopCapture, controls the starting and stopping of the data capture process.

The value of this variable is initialized to false. The value is later changed to true when the user

clicks the Stop button in the GUI. The code in the data-capture thread terminates when the value

of this variable changes to true.

The use of the other instance variables declared in Listing 1 will become obvious as they appear

in the code.

The method named captureAudio

Now I am going to discuss the method named captureAudio. This is the method that is invoked

when the user clicks the Capture button in the GUI. This method captures audio input data from

a microphone and saves that data in a ByteArrayOutputStream object for later playback.

The beginning of the method named captureAudio is shown in Listing 2.

Display available mixers

The code fragment in Listing 2 uses the getMixerInfo method of the AudioSystem class to get

and display a list of the available mixers in the system at the time the program is run.

 private void captureAudio(){

 try{

 Mixer.Info[] mixerInfo =

AudioSystem.getMixerInfo();

 System.out.println("Available

mixers:");

 for(int cnt = 0; cnt <

mixerInfo.length;

cnt++){

 System.out.println(mixerInfo[cn

t].

getName());

 }//end for loop

Listing 2

An array of Mixer.Info objects

The getMixerInfo method populates and returns a reference to an array object, which contains

references to objects of type Mixer.Info. Each such object contains information about one of the

available mixers. The length property of the array object indicates the number of available

mixers. According to Sun:

"The Mixer.Info class represents information about an audio mixer, including the

product's name, version, and vendor, along with a textual description. This

information may be retrieved through the getMixerInfo method of the Mixer

interface."

I told you some of what Sun has to say about the Mixer interface earlier.

Display the list of available mixers

The code in Listing 2 also iterates on the array object to display the name of each mixer currently

available in the system. As indicated earlier, this code produced the following screen output

when the program was run on my machine, indicating that four mixers were currently available:

Available mixers:

Java Sound Audio Engine

Microsoft Sound Mapper

Modem #0 Line Record

ESS Maestro

A reference to a Mixer.Info object describing each of these mixers is contained in the array

object referred to by the reference variable named mixerInfo in Listing 2. I will make use of the

contents of one of the array elements later to select a specific mixer for use by the program.

The audio data format

Quite a lot of setup is required to facilitate the capture of audio data. Listing 3 begins the process

of getting everything set up to capture audio data from the microphone.

One of the things that are required is a specification of the format of the audio data. The code in

Listing 3 invokes the getAudioFormat method to get an object of type AudioFormat and save

its reference in the instance variable named audioFormat.

 audioFormat = getAudioFormat();

Listing 3

The method named getAudioFormat

At this point, I will briefly discuss the method named audioFormat. (This discussion will be

brief because I discussed this method in a previous lesson.)

The entire getAudioFormat method is shown in Listing 4.

 private AudioFormat

getAudioFormat(){

 float sampleRate = 8000.0F;

 int sampleSizeInBits = 16;

 int channels = 1;

 boolean signed = true;

 boolean bigEndian = false;

 return new AudioFormat(sampleRate,

sampleSizeInBits,

 channels,

 signed,

 bigEndian);

 }//end getAudioFormat

Listing 4

Aside from some initialized variable declarations, the code in Listing 3 consists of a single

executable statement.

An AudioFormat object

The getAudioFormat method creates and returns an object of the AudioFormat class.

(I don't believe that there is any guarantee that a given set of audio format

parameters will work on all systems, since the system sound card is a part of the

process. There are many brands and types of system sound cards. If these format

parameters don't work for you, try some of the other allowable parameter values,

which are presented below.)

What does Sun have to say?

Here is part of what Sun has to say about the AudioFormat class:

"AudioFormat is the class that specifies a particular arrangement of data in a

sound stream. By examining the information stored in the audio format, you can

discover how to interpret the bits in the binary sound data."

Two constructors are available

The AudioFormat class has two constructors. (I elected to use the simpler of the two.) For this

constructor, the required parameters are:

 Sample rate in samples per second. (Allowable values include 8000, 11025, 16000,

22050, and 44100 samples per second.)

 Sample size in bits. (Allowable values include 8 and 16 bits per sample.)

 Number of channels. (Allowable values include 1 channel for mono and 2 channels for

stereo.)

 Signed or unsigned data. (Allowable values include true and false for signed data or

unsigned data.)

 Big-endian or little-endian order. (This has to do with the order in which the data bytes

are stored in memory. You can learn about this topic here.)

As you can see in Listing 4, this method specifies the following parameters for the new

AudioFormat object:

 8000 samples per second

 16 bits per sample

 1 channel (mono)

 Signed data

 Little-endian order

Default data encoding is linear PCM

There are several ways that binary audio data can be encoded into the available bits. The

simplest way is known as linear PCM. The constructor that I used constructs an AudioFormat

object with a linear PCM encoding and the parameters listed above (I will have more to say

about linear PCM encoding and other encoding schemes in future lessons).

Now back to the captureAudio method

Having established an audio data format, the next step is to get an object of type DataLine.Info,

as shown in Listing 5.

 DataLine.Info dataLineInfo =

 new

DataLine.Info(

TargetDataLine.class,

audioFormat);

Listing 5

The DataLine.Info class extends the Line.Info class. Let's begin our investigation by taking a

look at some of what Sun has to say about the Line.Info class.

"A Line.Info object contains information about a line. The only information

provided by Line.Info itself is the Java class of the line. A subclass of Line.Info

adds other kinds of information about the line. This additional information

depends on which Line subinterface is implemented by the kind of line that the

Line.Info subclass describes."

The code in Listing 5 instantiates a new object of the DataLine.Info class, which is one of the

subclasses of Line.Info.

http://mindprod.com/jglossendian.html

DataLine.Info class

Here is part of what Sun has to say about the DataLine.Info class:

"Besides the class information inherited from its superclass, DataLine.Info

provides additional information specific to data lines. This information includes:

 the audio formats supported by the data line

 the minimum and maximum sizes of its internal buffer

Because a Line.Info knows the class of the line it describes, a DataLine.Info

object can describe DataLine subinterfaces such as SourceDataLine,

TargetDataLine, and Clip. You can query a mixer for lines of any of these types,

passing an appropriate instance of DataLine.Info as the argument to a method

such as Mixer.getLine(Line.Info)."

DataLine.Info constructor

Three overloaded constructors are available for a DataLine.Info object. Two of them allow you

to specify buffer size information. I elected to use the simplest of the three, which doesn't

require the specification of buffer information, but uses default buffer sizes instead.

According to Sun, the constructor that I elected to use:

"Constructs a data line's info object from the specified information, which

includes a single audio format."

Note the two parameters passed to the constructor for the new DataLine.Info object in Listing

5. As you can see, the DataLine.Info object instantiated in Listing 5 describes a line of type

TargetDataLine, with the format that was specified earlier.

What is a TargetDataLine?

TargetDataLine is a sub-interface of DataLine, which in turn, is a sub-interface of

Line. Therefore, before getting into the details of TargetDataLine, we need to take a look at the

DataLine interface.

The DataLine interface

Here is part of what Sun has to say about the DataLine interface:

"DataLine adds media-related functionality to its superinterface, Line. This

functionality includes transport-control methods that start, stop, drain, and flush

the audio data that passes through the line."

For example, the drain method is used in the playback side of this program to ensure that the

internal buffer of a line is empty before closing the line.

"Data lines are used for output of audio by means of the subinterfaces

SourceDataLine or Clip, which allow an application program to write data.

Similarly, audio input is handled by the subinterface TargetDataLine, which

allows data to be read."

This quotation from Sun is of particular interest to us because we will be using TargetDataLine

to capture audio input data from a microphone.

There are several other interesting aspects of the DataLine interface, which we will use in future

lessons. Therefore, I won't discuss them in this lesson.

The TargetDataLine interface

Figure 5 instantiates a DataLine.Info object that describes a line of type TargetDataLine. Here

is part of what Sun has to say about the TargetDataLine interface:

"A target data line is a type of DataLine from which audio data can be read. The

most common example is a data line that gets its data from an audio capture

device. (The device is implemented as a mixer that writes to the target data line.)"

We are discussing the code in this program that captures audio data from a microphone. In

concert with the above quotation, the combination of the microphone and a mixer can be viewed

as an audio capture device, which captures audio data from a microphone and writes that data to

a TargetDataLine object. Later on, you will see code that reads the audio data from the

TargetDataLine object and transfers it to a ByteArrayOutputStream object.

Confusing terminology

It is very important to keep the naming convention straight, because it may be just the reverse of

what you would expect. Here is what Sun has to say regarding the naming convention for the

TargetDataLine interface:

"Note that the naming convention for this interface reflects the relationship

between the line and its mixer. From the perspective of an application, a target

data line may act as a source for audio data."

Similarly, here is what Sun has to say about the SourceDataLine interface with respect to the

naming convention:

"From the perspective of an application, a source data line may act as a target

for audio data."

The target is a source and the source is a target.

Are you confused yet?

From the viewpoint of the application, (as opposed to the viewpoint of the mixer) a

TargetDataLine is the source of audio data (such as data captured from a microphone).

From the viewpoint of the application (as opposed to the viewpoint of the mixer), a

SourceDataLine is a target for audio data (such as a speaker).

Getting a TargetDataLine object

Sun goes on to tell us:

"The target data line can be obtained from a mixer by invoking the getLine

method of Mixer with an appropriate DataLine.Info object."

That is exactly what we are going to do later.

An internal buffer ...

A TargetDataLine object has an internal buffer that is used to temporarily store the input audio

data until it is read by the application. Sun has a few cautions for us regarding the use of that

buffer:

"The TargetDataLine interface provides a method for reading the captured data

from the target data line's buffer. Applications that record audio should read

data from the target data line quickly enough to keep the buffer from overflowing,

which could cause discontinuities in the captured data that are perceived as

clicks. ... If the buffer does overflow, the oldest queued data is discarded and

replaced by new data."

Hopefully your computer will be fast enough to capture the input audio data from the

microphone without buffer overflow. My computer is not a particularly fast one, and it seems to

capture the data at 8000 samples per second with no problems.

Selecting an available mixer

As I promised earlier, this program is going to select one of the available mixers, which was not

the case in the version of the program discussed in a previous lesson. The earlier version of the

program simply requested access to a compatible mixer without specifying any particular mixer.

Also, as I mentioned earlier, I determined experimentally that only two of the four available

mixers on my machine would work in this program.

An array of Mixer.Info data

Earlier in the program, we created and populated an array object whose elements refer to

Mixer.Info objects that describe the four available mixers on my machine (your machine may

contain different mixers). The code in Listing 6 gets a reference to a Mixer object described by

the Mixer.Info object at index 3 of the array.

 Mixer mixer = AudioSystem.

getMixer(mixerInfo[3]);

Listing 6

A brute force experiment

By simply recompiling and running the program with different index values in Listing 6, I

identified the two mixers that will work on my machine as those whose description was stored at

index 1 and index 3 in the array. However, that may not be the case on your machine. You may

need to perform a similar experiment to identify the compatible mixers.

(There are more elegant ways to identify compatible mixers, but I decided to do it

by brute force now and to discuss the more elegant ways in a future lesson.)

After the code in Listing 6 executes, the variable named mixer contains a reference to an object

of type Mixer described as ESS Maestro on my machine.

(For whatever its worth, the sound subsystem on my machine is described in the

hardware properties as ESS Maestro2E MPU-401 Compatible.)

Get a TargetDataLine object

Now that we have our mixer, the next thing we need to do is to get a line. The code in Listing 7

invokes the getLine method on the Mixer object to get a TargetDataLine object.

 targetDataLine =

(TargetDataLine)

mixer.getLine(dataLineInfo);

targetDataLine.open(audioFormat);

 targetDataLine.start();

Listing 7

According to Sun, the getLine method of the Mixer interface requires an incoming parameter of

type Line.Info. The method:

"Obtains a line that is available for use and that matches the description in the

specified Line.Info object."

As you will recall from Listing 5, our Line.Info object describes a TargetDataLine. The code

in Listing 7 passes the Line.Info object that we created earlier in Listing 5 as a parameter to the

getLine method.

The getLine method returns a reference to an object as type Line. We must downcast it to type

TargetDataLine in order to use it.

Prepare the line for use

Once we have the TargetDataLine object, there are a couple more steps required to prepare it

for use. The code in Listing 7 invokes the open method on the line object passing our format

object as a parameter. According to Sun, this version of the open method

"Opens the line with the specified format, causing the line to acquire any required

system resources and become operational."

Two overloaded versions of the open method are available. The version that I elected to use

chooses a buffer size automatically. The other version requires the programmer to specify the

buffer size.

Invoke the start method

The code in Listing 7 also invokes the start method on the TargetDataLine object. According

to Sun, the start method

"Allows a line to engage in data I/O."

At this point, the audio system begins capturing data from the microphone, storing it in an

internal buffer, and making it available to the program.

Don't allow the internal buffer to overflow

The program must start reading data from that internal buffer very quickly, or the internal buffer

may overflow. As discussed earlier, the program must continue to read data from the internal

buffer at a sufficiently fast rate to keep the internal buffer from overflowing.

Capture some audio data

At this point, we have finally prepared everything necessary to make it possible to acquire audio

data from the microphone. The next step is to create a Thread object (to capture and save the

data), and to start the thread running.

The code in Listing 8 creates an object of the CaptureThread class, and starts it running.

 Thread captureThread = new

CaptureThread();

 captureThread.start();

Listing 8

Continue running until Stop

This thread will continue running and saving audio data until the user presses the Stop button.

(Note however, that the captured data is being saved in memory. If you allow it to

capture too much data, you may run out of memory.)

If you examine the code in Listing 12 near the end of the lesson, you will see that except for a

catch block, this is the end of the method named captureAudio. The code in the catch block is

very simple, so I won't discuss it here.

The CaptureThread class

Listing 9 shows the beginning of a class named CaptureThread. This class extends the Thread

class, and is used to read data from the line's internal buffer. The audio data read from that

buffer is saved in an object of type ByteArrayOutputStream.

class CaptureThread extends Thread{

 byte tempBuffer[] = new byte[10000];

Listing 9

The CaptureThread class declares one instance variable, which refers to an array object of type

byte. This object is used as an intermediate buffer in the process of moving audio data from the

line's internal buffer to the ByteArrayOutputStream object. The size of this array was set

rather arbitrarily to 10,000 bytes.

Concurrent operation

Because an object of this class is a Thread, it runs concurrently with the other threads in the

program. Thus, it runs concurrently with the thread that handles events resulting from clicking

the buttons on the GUI.

The run method

Every Thread class must define a method named run, which determines the behavior of the

thread. The beginning of the run method for the CaptureThread class is shown in Listing 10.

 public void run(){

 byteArrayOutputStream =

 new

ByteArrayOutputStream();

 stopCapture = false;

Listing 10

The code in the run method (Listing 10) begins by instantiating a new

ByteArrayOutputStream object and storing that object's reference in the instance variable

named byteArrayOutputStream.

If you use the GUI buttons to repeatedly cycle this program through the Capture/Stop/Playback

cycle, a new ByteArrayOutputStream object will be created and used each time you press the

Capture button.

The control variable named stopCapture

The most interesting thing in Listing 10 is the initialization of the boolean instance variable

(named stopCapture) to a value of false. This variable is used to control the duration of audio

data capture. Its value is switched from false to true by the event handler when the user presses

the Stop button.

As you will see shortly, when the value of stopCapture switches to true, the audio data capture

process is terminated.

(To simplify the discussion, I am going to omit the exception handling code in the

run method. That code is straightforward, and you can view it in Listing 12 near

the end of the lesson.)

Remaining code in the run method

Other than the exception handling code, the remaining code in the run method is shown in

Listing 11.

 while(!stopCapture){

 //Read data from the internal

buffer of

 // the data line.

 int cnt =

targetDataLine.read(tempBuffer,

 0,

tempBuffer.length);

 if(cnt > 0){

 //Save data in output stream

object.

byteArrayOutputStream.write(tempBuffer,

0,

cnt);

 }//end if

 }//end while

 byteArrayOutputStream.close();

 }//end run

}//end inner class CaptureThread

Listing 11

The code in the run method loops and captures audio data until the event handler on the Stop

button switches the value of stopCapture from false to true.

Here is what happens during each iteration of the while loop.

Get audio data from the TargetDataLine's internal buffer

The read method is invoked on the TargetDataLine object in an attempt to read enough bytes

from that object's internal buffer to fill the array object referred to by tempBuffer.

(It may not always be possible to read that many bytes from the line's internal

buffer. There simply may not be that many bytes of audio data available in the

internal buffer.)

The read method transfers the available bytes from the internal buffer into the array provided as

an incoming parameter.

(If the number of available bytes in the internal buffer exceeds the size of the

array, only the number required to fill the array are transferred. The surplus

bytes remain in the internal buffer and are available for the next read operation.)

Then the read method returns the number of bytes actually transferred as type int. That value is

saved in the variable named cnt.

Transfer the data to the ByteArrayOutputStream object

Then the code in the run method in Listing 11 invokes the write method on the

ByteArrayOutputStream object to transfer the bytes from the array referred to by tempBuffer

to the stream object referred to by byteArrayOutputStream.

Go back to the top of the loop

Then control transfers back to the top of the while loop where the value of stopCapture is tested

once again.

If the value of stopCapture is still false, that indicates that the Stop button has not been clicked

by the user. The process is repeated through another iteration.

However, if the user has clicked the Stop button, thus causing the value of stopCapture to

switch from false to true, the loop terminates. In this case, the ByteArrayOutputStream object

is closed, and the run method terminates. This causes the thread to die a natural death and

terminates the capture of audio data.

A clarification

Note, however, that I didn't invoke the stop method on the TargetDataLine object. As a result,

the line will continue acquiring audio data and making that data available in its internal buffer

until the program terminates.

Since the run method of the thread has ceased reading bytes from the line's internal buffer, the

buffer will simply overflow. It should be possible to restart the line and read audio data that was

acquired during the interval. However, this program was not designed to support that kind of

operation.

If you are concerned about the TargetDataLine continuing to consume resources, you could

insert the following statement in Listing 11 immediately following the end of the while loop:

targetDataLine.stop();

According to Sun, invocation of the stop method on a line:

"Stops the line. A stopped line should cease I/O activity."

What is a ByteArrayOutputStream object?

According to Sun, the ByteArrayOutputStream class

"implements an output stream in which the data is written into a byte array. The

buffer automatically grows as data is written to it."

It should be possible to run out of memory if an attempt is made to write too much data into the

byte array. However, the Sun documentation for SDK 1.4.1_01 doesn't tell us what happens in

that event. Hopefully, an OutOfMemory error would be thrown, which would cause this

program to terminate abnormally.

Let's recap

Let's recap the steps involved in capturing audio data from a microphone and saving that data in

a ByteArrayOutputStream object, as implemented by this program.

 Identify the available mixers, and save a Mixer.Info object describing a compatible

mixer.

 Instantiate an AudioFormat object that specifies a particular arrangement of audio data

bytes in a sound stream. Many options are available here.

 Instantiate a DataLine.Info object that describes an object of type TargetDataLine set

up for the AudioFormat described above.

 Invoke the getMixer method of the AudioSystem class to get a reference to a Mixer

object that matches the Mixer.Info object saved earlier.

 Invoke the getLine method on the Mixer object to get a TargetDataLine object that

matches the characteristics of the DataLine.Info object instantiated earlier.

 Invoke the open method on the TargetDataLine object, passing the AudioFormat

object as a parameter.

 Invoke the start method on the TargetDataLine object to cause the line to start

acquiring data from the microphone.

 Spawn and start a Thread object to transfer audio data in real time from the internal

buffer of the TargetDataLine object to a ByteArrayOutputStream object.

 When an appropriate amount of audio data has been captured, cause the Thread object to

stop transferring data from the TargetDataLine object to the ByteArrayOutputStream

object.

 Optionally invoke the stop method on the TargetDataLine object to cause it to stop

acquiring audio data from the microphone.

Note that it isn't always necessary to explicitly specify a mixer as was done in this program. A

similar program in a previous lesson simply invoked the getLine method of the AudioSystem

class to get a TargetDataLine object for a particular data format on a compatible mixer. I

elected to explicitly specify a mixer in this program for illustration purposes only.

Run the Program

At this point, you may find it useful to compile and run the program shown in Listing 12 near the

end of the lesson.

Capture and playback audio data

This program demonstrates the ability to capture audio data from a microphone and to play it

back through the speakers on your computer. The usage instructions are simple:

 Start the program running. The simple GUI shown in Figure 2 will appear on the screen.

 Click the Capture button and speak into the microphone.

 Click the Stop button to terminate capturing data.

 Click the Playback button to play your captured voice back through the system speakers.

If you don't hear anything during playback, you may need to increase your speaker volume.

This program saves the data that it captures in memory, so be careful to avoid running out of

memory.

Summary

In this lesson, I showed you how to use the Java Sound API to capture audio data from a

microphone and how to save that data in a ByteArrayOutputStream object. I also showed you

how to identify the mixers available on your system, and how to specify a particular mixer for

use in the acquisition of audio data from the microphone.

Complete Program Listing

A complete listing of the program is shown in Listing 12.

/*File AudioCapture02.java

This program demonstrates the capture and

subsequent playback of audio data.

A GUI appears on the screen containing the

following buttons:

Capture

Stop

Playback

Input data from a microphone is captured and

saved in a ByteArrayOutputStream object when the

user clicks the Capture button.

Data capture stops when the user clicks the Stop

button.

Playback begins when the user clicks the Playback

button.

This version of the program gets and displays a

list of available mixers, producing the following

output:

Available mixers:

Java Sound Audio Engine

Microsoft Sound Mapper

Modem #0 Line Record

ESS Maestro

Thus, this machine had the four mixers listed

above available at the time the program was run.

Then the program gets and uses one of the

available mixers instead of simply asking for a

compatible mixer as was the case in a previous

version of the program.

Either of the following two mixers can be used in

this program:

Microsoft Sound Mapper

ESS Maestro

Neither of the following two mixers will work in

this program. The mixers fail at runtime for

different reasons:

Java Sound Audio Engine

Modem #0 Line Record

The Java Sound Audio Engine mixer fails due to a

data format compatibility problem.

The Modem #0 Line Record mixer fails due to an

"Unexpected Error"

Tested using SDK 1.4.0 under Win2000

**/

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import javax.sound.sampled.*;

public class AudioCapture02 extends JFrame{

 boolean stopCapture = false;

 ByteArrayOutputStream byteArrayOutputStream;

 AudioFormat audioFormat;

 TargetDataLine targetDataLine;

 AudioInputStream audioInputStream;

 SourceDataLine sourceDataLine;

 public static void main(String args[]){

 new AudioCapture02();

 }//end main

 public AudioCapture02(){//constructor

 final JButton captureBtn =

 new JButton("Capture");

 final JButton stopBtn = new JButton("Stop");

 final JButton playBtn =

 new JButton("Playback");

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

 playBtn.setEnabled(false);

 //Register anonymous listeners

 captureBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 captureBtn.setEnabled(false);

 stopBtn.setEnabled(true);

 playBtn.setEnabled(false);

 //Capture input data from the

 // microphone until the Stop button is

 // clicked.

 captureAudio();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 getContentPane().add(captureBtn);

 stopBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

 playBtn.setEnabled(true);

 //Terminate the capturing of input data

 // from the microphone.

 stopCapture = true;

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 getContentPane().add(stopBtn);

 playBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 //Play back all of the data that was

 // saved during capture.

 playAudio();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 getContentPane().add(playBtn);

 getContentPane().setLayout(new FlowLayout());

 setTitle("Capture/Playback Demo");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 setSize(250,70);

 setVisible(true);

 }//end constructor

 //This method captures audio input from a

 // microphone and saves it in a

 // ByteArrayOutputStream object.

 private void captureAudio(){

 try{

 //Get and display a list of

 // available mixers.

 Mixer.Info[] mixerInfo =

 AudioSystem.getMixerInfo();

 System.out.println("Available mixers:");

 for(int cnt = 0; cnt < mixerInfo.length;

 cnt++){

 System.out.println(mixerInfo[cnt].

 getName());

 }//end for loop

 //Get everything set up for capture

 audioFormat = getAudioFormat();

 DataLine.Info dataLineInfo =

 new DataLine.Info(

 TargetDataLine.class,

 audioFormat);

 //Select one of the available

 // mixers.

 Mixer mixer = AudioSystem.

 getMixer(mixerInfo[3]);

 //Get a TargetDataLine on the selected

 // mixer.

 targetDataLine = (TargetDataLine)

 mixer.getLine(dataLineInfo);

 //Prepare the line for use.

 targetDataLine.open(audioFormat);

 targetDataLine.start();

 //Create a thread to capture the microphone

 // data and start it running. It will run

 // until the Stop button is clicked.

 Thread captureThread = new CaptureThread();

 captureThread.start();

 } catch (Exception e) {

 System.out.println(e);

 System.exit(0);

 }//end catch

 }//end captureAudio method

 //This method plays back the audio data that

 // has been saved in the ByteArrayOutputStream

 private void playAudio() {

 try{

 //Get everything set up for playback.

 //Get the previously-saved data into a byte

 // array object.

 byte audioData[] = byteArrayOutputStream.

 toByteArray();

 //Get an input stream on the byte array

 // containing the data

 InputStream byteArrayInputStream =

 new ByteArrayInputStream(audioData);

 AudioFormat audioFormat = getAudioFormat();

 audioInputStream = new AudioInputStream(

 byteArrayInputStream,

 audioFormat,

 audioData.length/audioFormat.

 getFrameSize());

 DataLine.Info dataLineInfo =

 new DataLine.Info(

 SourceDataLine.class,

 audioFormat);

 sourceDataLine = (SourceDataLine)

 AudioSystem.getLine(dataLineInfo);

 sourceDataLine.open(audioFormat);

 sourceDataLine.start();

 //Create a thread to play back the data and

 // start it running. It will run until

 // all the data has been played back.

 Thread playThread = new PlayThread();

 playThread.start();

 } catch (Exception e) {

 System.out.println(e);

 System.exit(0);

 }//end catch

 }//end playAudio

 //This method creates and returns an

 // AudioFormat object for a given set of format

 // parameters. If these parameters don't work

 // well for you, try some of the other

 // allowable parameter values, which are shown

 // in comments following the declartions.

 private AudioFormat getAudioFormat(){

 float sampleRate = 8000.0F;

 //8000,11025,16000,22050,44100

 int sampleSizeInBits = 16;

 //8,16

 int channels = 1;

 //1,2

 boolean signed = true;

 //true,false

 boolean bigEndian = false;

 //true,false

 return new AudioFormat(

 sampleRate,

 sampleSizeInBits,

 channels,

 signed,

 bigEndian);

 }//end getAudioFormat

//===//

//Inner class to capture data from microphone

class CaptureThread extends Thread{

 //An arbitrary-size temporary holding buffer

 byte tempBuffer[] = new byte[10000];

 public void run(){

 byteArrayOutputStream =

 new ByteArrayOutputStream();

 stopCapture = false;

 try{//Loop until stopCapture is set by

 // another thread that services the Stop

 // button.

 while(!stopCapture){

 //Read data from the internal buffer of

 // the data line.

 int cnt = targetDataLine.read(tempBuffer,

 0,

 tempBuffer.length);

 if(cnt > 0){

 //Save data in output stream object.

 byteArrayOutputStream.write(tempBuffer,

 0,

 cnt);

 }//end if

 }//end while

 byteArrayOutputStream.close();

 }catch (Exception e) {

 System.out.println(e);

 System.exit(0);

 }//end catch

 }//end run

}//end inner class CaptureThread

//===================================//

//Inner class to play back the data

// that was saved.

class PlayThread extends Thread{

 byte tempBuffer[] = new byte[10000];

 public void run(){

 try{

 int cnt;

 //Keep looping until the input read method

 // returns -1 for empty stream.

 while((cnt = audioInputStream.read(

 tempBuffer, 0,

 tempBuffer.length)) != -1){

 if(cnt > 0){

 //Write data to the internal buffer of

 // the data line where it will be

 // delivered to the speaker.

 sourceDataLine.write(tempBuffer,0,cnt);

 }//end if

 }//end while

 //Block and wait for internal buffer of the

 // data line to empty.

 sourceDataLine.drain();

 sourceDataLine.close();

 }catch (Exception e) {

 System.out.println(e);

 System.exit(0);

 }//end catch

 }//end run

}//end inner class PlayThread

//===//

}//end outer class AudioCapture02.java

Listing 12

Copyright 2003, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and private

consultant whose primary focus is a combination of Java, C#, and XML. In addition to the many

platform and/or language independent benefits of Java and C# applications, he believes that a

combination of Java, C#, and XML will become the primary driving force in the delivery of

structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:Baldwin@DickBaldwin.com

