
Getting Started with the PictureExplorer Class

Learn about a picture explorer class that allows you to determine the numeric color
values for any pixel in a picture by placing a cursor on the pixel. The pixel position is
controlled by clicking or dragging the mouse within the picture, clicking buttons, or
typing coordinate values. You can also zoom in and out to view the pixel in more or
less detail, and you can see the actual color of the pixel in a large square.

Published: March 19, 2009
By Richard G. Baldwin

Java Programming Notes # 362

 Preface
o General
o What you have learned from earlier lessons
o What you will learn in this lesson
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
o The purpose of the PictureExplorer class
o Reducing the confusion

 Discussion and sample code
o The sample program named Java362a
o The big picture view of the GUI
o The PictureExplorer class

 The constructor
 The createWindow method
 The createAndInitPictureFrame method
 The setUpMenuBar method

 Run the program
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

mailto:Baldwin@DickBaldwin.com

Preface

General

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters into videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

What you have learned from earlier lessons

If you have studied the earlier lessons in this series, you have learned about Turtle
objects and their ability to move around in a world or a picture and to draw lines as they
are moving. You have learned all about the World class, the Picture class and its
superclass named SimplePicture.

By learning about the constructors and methods of the SimplePicture class, you have
learned that objects of the Picture class are useful for much more than simply serving
as living quarters for turtles. They are also useful for manipulating images in interesting
and complex ways.

What you will learn in this lesson

Near the end of the previous lesson, I told you that there remained only one significant
method of the SimplePicture class that I had not yet
explained: the explore method.

The explore method and the PictureExplorer class

The explore method consists of a single statement that
creates an object of the PictureExplorer class. The
PictureExplorer class is a large and complex
class. From an educational viewpoint, the
PictureExplorer class is a very significant class
because it provides an event-driven graphical user
interface (GUI), which is an extremely important Java programming topic. It also
incorporates objects of anonymous inner classes as listener objects, which is also a
very important Java topic.

Pixel Editor Program

See the lesson titled A Pixel
Editor Program in
Java: Multimedia
Programming with Java in
Resources for a non-trivial
application of a
PictureExplorer object.

I will begin my explanation of the PictureExplorer class in this lesson.

Source code listings

A complete listing of Ericson's PictureExplorer class is provided in Listing 13 near the
end of the lesson. A complete listing of a very simple program named Java362a that I
will use to illustrate the behavior of the PictureExplorer class is provided in Listing 14.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Screen output produced by the show method.
 Figure 2. Screen output produced by the explore method.
 Figure 3. Resized PictureExplorer GUI with Zoom menu exposed.

Listings

 Listing 1. Background color for the PictureExplorer class.
 Listing 2. Background color for other Ericson classes.
 Listing 3. Background color for the program named Java362a.
 Listing 4. Source code for the program named Java362a.
 Listing 5. Beginning of the PictureExplorer class.
 Listing 6. Private instance variables of the PictureExplorer class.
 Listing 7. The constructor for the PictureExplorer class.
 Listing 8. The createWindow method.
 Listing 9. The createAndInitPictureFrame method.
 Listing 10. Beginning of the setUpMenuBar method.
 Listing 11. Register an action listener on the menu items.
 Listing 12. Complete the construction of the menu.
 Listing 13. Source code for Ericson's PictureExplorer class.
 Listing 14. Source code for the program named Java362a.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

http://www.dickbaldwin.com/toc.htm

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

In this and the lessons that follow, you will learn about the PictureExplorer class, which
allows you to determine the numeric color values for any pixel in a picture by placing a
cursor on the pixel. The pixel position is controlled by clicking or dragging the mouse
within the picture, clicking buttons, or typing coordinate values. You can also zoom in
and out to view the pixel in more or less detail and you can see the actual color of the
pixel in a large square.

I will use a very simple sample program to illustrate the creation of an object of the
PictureExplorer class.

The program named Java362a begins by creating a new Picture object with known
dimensions using input from an image file in the current directory. Then it calls the
show method on the object to produce the screen output shown in Figure 1.

Figure 1. Screen output produced by the show method.

Call the explore method

After that, the program calls the explore method on the Picture object to produce the
screen output shown in Figure 2.

Figure 2. Screen output produced by the explore method.

You learned all about the show method of the SimplePicture class in earlier lessons
(see Resources). We will be mainly interested in explore method and the
PictureExplorer class in this and the next few lessons.

The explore method

The explore method of the SimplePicture class
contains a single statement, which instantiates an object
of the PictureExplorer class. As soon as that object is
instantiated, the GUI shown in Figure 2 appears on the
screen.

The purpose of the PictureExplorer class

The purpose of an object of the PictureExplorer class
is to allow you to determine the numeric color values for any pixel in a picture by placing
a cursor on the pixel. The pixel position is controlled by clicking or dragging the mouse

Attribution

The PictureExplorer class
was originally created for
the Jython Environment for
Students (JES). It was
modified to work with
DrJava by Barbara
Ericson. Copyright Georgia
Institute of Technology
2004.

within the picture, clicking buttons, or typing coordinate values. You can also zoom in
and out to view the pixel in more or less detail and you can see the actual color of the
pixel in a large square.

More specifically, an object of the PictureExplorer class will:

 Display a Picture object in the format shown in Figure 2.
 Let you explore the picture by displaying the x, y, red, green, and blue values of

the pixel at the cursor:
o When you click a mouse button within the picture, or
o When you press and hold a mouse button while moving the cursor within

the picture.
 Let you zoom in or out, showing the individual pixels in more or less detail.
 Let you type in x and y coordinate values to see the color at that location.
 Let you adjust the location of the cursor one pixel at a time by clicking previous

and next buttons to specify a new pair of x and y coordinate values.
 Let you view the color of the pixel at the cursor in a large colored square. (See

the nearly black square in Figure 2.)

An object of the PictureExplorer class is a powerful tool for examining pixel colors in a
picture.

An excellent educational example

As I mentioned earlier, and as indicated by the behavior described above, the
PictureExplorer class is a large and complex class containing a significant amount of
event-driven GUI code. It even instantiates event-listener objects from anonymous
classes, which is a very important Java programming topic. Therefore, the
PictureExplorer class is an excellent class to be studied for an understanding of the
use of event-driven GUI programming in the real world.

Reducing the confusion

The PictureExplorer class contains a private inner class named
PictureExplorerFocusTraversalPolicy, which I will also explain at some point in this
series of lessons. It also makes heavy use of a class named ImageDisplay from
Ericson's library.

Because I will be switching back and forth among code fragments extracted from
Ericson's PictureExplorer class, code fragments extracted from other classes in
Ericson's library, and code fragments extracted from my sample programs, things can
get confusing.

Background color for the PictureExplorer class

In an attempt to reduce the confusion, I will present code fragments extracted from
Ericson's PictureExplorer class against the background color shown in Listing 1.

Listing 1. Background color for the PictureExplorer class.

I will present code fragments from the

PictureExplorer

class against this background color.

Background color for other Ericson classes

Similarly, I will present code fragments extracted from other classes in Ericson's library
against the background color shown in Listing 2.

Listing 2. Background color for other Ericson classes.

I will present code fragments from other

Ericson classes

against this background color.

Background color for my sample programs

Finally, I will present code fragments extracted from my sample programs against the
background color shown in Listing 3.

Listing 3. Background color for the program named Java362a.

I will present code fragments from my sample

programs

against this background color.

In the event that I need to distinguish among more than three classes in the same
lesson, I will come up with a fourth color and explain its use at the time.

Discussion and sample code

The sample program named Java362a

The purpose of this simple program is to support an explanation of the PictureExplorer
class.

Normally, I break programs down and explain them in fragments. However, this
program is so short and so simple that the program is shown in its entirety in Listing
4. (It is also provided in Listing 14 near the end of the lesson for easy reference.)

Listing 4. Source code for the program named Java362a.

public class Main{

 public static void main(String[] args){

 //Construct a new 460x345 Picture object.

 Picture pix1 = new

Picture("ScaledBeach460x345.jpg");

 pix1.show();//display the picture in the

show format

 //Display the picture again in the explore

format.

 pix1.explore();

 }//end main method

}//end class Main

Create a Picture object and display it with the show method

A Picture object having dimensions of 450x345 pixels is created by reading an image
file in the current directory. Then the show method is called on the Picture object
producing the screen output shown in Figure 1.

Following that, the explore method is called on the object, producing the screen output
shown in Figure 2.

As I mentioned earlier, the explore method simply creates a new object of the
PictureExplorer class. The GUI shown in Figure 2 appears on the screen as soon as
that object is created. Figure 3 shows another view of the GUI with the Zoom menu
pulled down and the GUI resized to a smaller size with scrollbars showing.

The big picture view of the GUI

Because things are going to become progressively more complicated, it will probably be
worthwhile for us to step back and take a big-picture look at the GUI shown in Figure 3.

A JFrame object

The onscreen window that you see in Figure 3 is the visual manifestation of a JFrame
object. Basically, a JFrame object consists of the following parts:

 A banner at the top containing some built-in control components (three buttons
on the right and a menu on the left) and optionally containing a String title.

 A rectangular area under the banner that can contain one or more menu labels
side-by-side. This area is collapsed if you elect not to provide menus.

 A content area underneath the menu area.
 A border around the outer edges.

The menu

A JMenuBar object has been placed in the menu area for the JFrame object shown in
Figure 3. A single JMenu object has been added to the menu bar with a label of
Zoom. Seven JMenuItem objects have been added to the JMenu object.

The content area

The content area (immediately below the menu area) has a default BorderLayout
object as the layout manager. This layout manager makes it possible to place one
component in the CENTER and four additional components in the NORTH, SOUTH,
EAST, and WEST locations. In this case, there is one component in the CENTER and
one component in the NORTH location. There are no components in the EAST,
SOUTH, and WEST locations. (Keep in mind that each of the five allowable
components can themselves contain other components.)

A JScrollPane object in the CENTER location

The component in the CENTER is an object of the JScrollPane class. Without getting
into the details at this point, the scroll pane makes it possible to view and scroll an
object of Ericson's ImageDisplay class. ImageDisplay is a subclass of the JPanel
class with the ability to render and display an Image object.

You will learn more about the detailed structure of the component in the CENTER later,
including the details of the mouse and mouse motion listener objects registered on the
component.

A JPanel object in the NORTH location

The component in the NORTH location of the JFrame object's content area is a JPanel
object with the layout manager also set to BorderLayout. This JPanel object contains
two smaller JPanel objects, one in its NORTH location and one in its SOUTH
location. There are no components in the CENTER, EAST, or WEST locations of the
JPanel object.

A JPanel object is also a container that can contain other components. However, there
is no content pane associated with a JPanel object. Other components are added
directly to the JPanel object.

The locationPanel and the colorInfoPanel

The JPanel object in the NORTH location (of the JPanel object in the NORTH location
of the content pane) is referred to in this class as the locationPanel. The construction
of this panel is very complex with numerous components and numerous registered
listener objects.

The JPanel object in the SOUTH location of that same panel is referred to as the
colorInfoPanel. The construction of this panel is less complex than the construction of

the locationPanel. Among other things, this panel is completely passive with no
registered listener objects.

The locationPanel and the FlowLayout manager

The layout manager for the locationPanel is an object of the FlowLayout class. With
this layout manager, you can add any number of components to the container
component and they will position themselves in horizontal rows. If there are too many
components to fit on one row, some will spill over to the next row. You can cause the
components on the rows to be aligned to the left, right, or center.

The population of the locationPanel

The locationPanel is primarily populated with the following components:

 A Box object (I will explain this at the appropriate time.)
 Some JLabel objects.
 Some JTextField objects.
 Some ImageIcon objects that are used to put the triangle images on the next

and previous buttons on the left and right ends of the text fields.
 Some JButton objects that serve as the next and previous buttons.

There are lots of event handlers registered on various components in the
locationPanel.

You will learn how all of the components are put together and how they behave later
when we dig into the code for the locationPanel in detail.

The colorInfoPanel

The colorInfoPanel is also a JPanel object, and the layout manager for the
colorInfoPanel is also an object of the FlowLayout class.

As I mentioned earlier, the colorInfoPanel is much simpler than the locationPanel and
is primarily populated with the following components:

 Some JLabel objects.
 Another JPanel object (the small nearly black square in Figure 3).

There are no listener objects registered on components on the colorInfoPanel.

Once again, you will learn how these components are put together and how they
behave later when we dig into the programming details for the colorInfoPanel.

The PictureExplorer class

A complete listing of the PictureExplorer class is provided in Listing 13 near the end of
the lesson. I will break the class down and explain it in fragments. The beginning of the
class is shown in Listing 5.

Listing 5. Beginning of the PictureExplorer class.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.awt.image.*;

import javax.swing.border.*;

public class PictureExplorer implements

 MouseMotionListener, ActionListener,

MouseListener{

The class implements three listener interfaces

The most significant thing about Listing 5 is that the class implements the following
listener interfaces:

 MouseMotionListener
 ActionListener
 MouseListenener

This means, among other things, that an object of the
class is a listener for a variety of event types fired by
components that it owns. In other words, it is a listener
on itself. This, in turn, means that the class must
provide concrete definitions for all of the event-handler
methods declared in the three interfaces listed above.

A quick look ahead

For example, a quick look ahead indicates that the object of the PictureExplorer class
is registered to listen for action events fired by the seven different menu items on the
Zoom menu. (See the upper-left corner of Figure 3, for the Zoom menu.) Also, the
same object of the PictureExplorer class is registered to listen for mouse events and
mouse motion events on the image display in the center
of the JFrame.

Anonymous classes

In addition, action listener objects instantiated from
anonymous classes are registered to listen for events
fired by the left and right arrow buttons on either side of
the text fields and on the text fields themselves.

A listener on itself
If you are unfamiliar with the

concept that an object of a

class can be a listener on itself,

see my earlier lesson titled

Component Events in

Resources.

Anonymous classes
For more information on

anonymous classes, see lessons

1636 through 1642 in

Resources.

Private instance variables of the PictureExplorer class

The PictureExplorer class declares a large number of private instance variables and
initializes a couple of them. They are shown in Listing 6 for later reference.

Listing 6. Private instance variables of the PictureExplorer class.

 // current x and y index

 private int xIndex = 0;

 private int yIndex = 0;

 //Main gui variables

 private JFrame pictureFrame;

 private JScrollPane scrollPane;

 //information bar variables

 private JLabel xLabel;

 private JButton xPrevButton;

 private JButton yPrevButton;

 private JButton xNextButton;

 private JButton yNextButton;

 private JLabel yLabel;

 private JTextField xValue;

 private JTextField yValue;

 private JLabel rValue;

 private JLabel gValue;

 private JLabel bValue;

 private JLabel colorLabel;

 private JPanel colorPanel;

 // menu components

 private JMenuBar menuBar;

 private JMenu zoomMenu;

 private JMenuItem twentyFive;

 private JMenuItem fifty;

 private JMenuItem seventyFive;

 private JMenuItem hundred;

 private JMenuItem hundredFifty;

 private JMenuItem twoHundred;

 private JMenuItem fiveHundred;

 /** The picture being explored */

 private DigitalPicture picture;

 /** The image icon used to display the

picture */

 private ImageIcon scrollImageIcon;

 /** The image display */

 private ImageDisplay imageDisplay;

 /** the zoom factor (amount to zoom) */

 private double zoomFactor;

 /** the number system to use, 0 means

starting at 0,

 * 1 means starting at 1 */

 private int numberBase=0;

There's not much to be said about the instance variables at this point. We will be
referring back to them as the explanation of the class progresses.

The constructor

The PictureExplorer class provides only one constructor and it is shown in its entirety
in Listing 7.

Listing 7. The constructor for the PictureExplorer class.

 /**

 * Public constructor

 * @param picture the picture to explore

 */

 public PictureExplorer(DigitalPicture

picture){

 // set the fields

 this.picture=picture;

 zoomFactor=1;

 // create the window and set things up

 createWindow();

 }//end constructor

Save the incoming parameter

The constructor receives a reference to the Picture object that is to be displayed as the
interface type DigitalPicture. (Recall from an earlier lesson that the Picture class
implements the DigitalPicture interface. See the earlier lesson titled The DigitalPicture
Interface: Multimedia Programming with Java in Resources for more information.)

The incoming reference is stored in the instance variable named picture that was
declared in Listing 6.

Set the zoom factor

Then the constructor sets the value of the instance variable named zoomFactor to
1. This instance variable is used at startup to cause the picture to be displayed at its
natural size when the GUI first appears on the screen. (The user can modify this later
using the Zoom menu in the upper-left corner of Figure 3.)

Create the GUI window

Finally, the constructor in Listing 7 calls the createWindow method to begin the overall
construction process. When the createWindow method returns, the constructor returns
the new PictureExplorer object's reference to the explore method of the
SimplePicture class. However, the explore method doesn't save the reference in a
named reference variable. Therefore, the PictureExplorer object is an anonymous
object that will remain on the screen until the user clicks the X-button in the upper-right
corner of Figure 3.

The createWindow method

The createWindow method that is called by the constructor is shown in its entirety in
Listing 8.

Listing 8. The createWindow method.

 /**

 * Creates the JFrame and sets everything up

 */

 private void createWindow(){

 // create the picture frame and initialize

it

 createAndInitPictureFrame();

 // set up the menu bar

 setUpMenuBar();

 //create the information panel

 createInfoPanel();

 //creates the scrollpane for the picture

 createAndInitScrollingImage();

 // show the picture in the frame at the

size it needs

 // to be

 pictureFrame.pack();

 pictureFrame.setVisible(true);

 }//end createWindow method

A sequence of method calls

As you can see, the code in the createWindow method consists of:

 A sequence of four calls to other methods to construct various parts of the
PictureExplorer object.

 A call to the pack method to set the JFrame to the correct size.
 A call to the setVisible method to cause the JFrame object to become visible on

the screen.

I will explain each of those methods in sequence.

The createAndInitPictureFrame method

You have seen the term PictureFrame used in earlier lessons in this series (see
Resources). However, although the general intent is the same, the implementation of
the picture frame in this class is different from the implementation that you learned
about in conjunction with the show method (see Resources).

As you learned in an earlier lesson, the SimplePicture class has a private instance
variable named pictureFrame, which is of type PictureFrame. This instance variable
holds a reference to an object instantiated from Ericson's class named PictureFrame.

The PictureExplorer class also has a private instance variable named pictureFrame
(see Listing 6), but it is of type JFrame. It holds a reference to an object of the JFrame
class (not the PictureFrame class).

The JFrame object

That JFrame object is instantiated and its reference is assigned to the instance variable
named pictureFrame at the beginning of the method shown in Listing 9.

Listing 9. The createAndInitPictureFrame method.

 /**

 * Method to create and initialize the picture

frame

 */

 private void createAndInitPictureFrame(){

 pictureFrame = new JFrame(); // create the

JFrame

 //allow the user to resize it

 pictureFrame.setResizable(true);

 // use border layout

 pictureFrame.getContentPane().setLayout(

 new

BorderLayout());

 // when close stop

 pictureFrame.setDefaultCloseOperation(

JFrame.DISPOSE_ON_CLOSE);

 pictureFrame.setTitle(picture.getTitle());

 PictureExplorerFocusTraversalPolicy newPolicy

=

 new

PictureExplorerFocusTraversalPolicy();

pictureFrame.setFocusTraversalPolicy(newPolicy);

 }//end createAndInitPictureFrame method

Swing components...

If you are familiar with the use of Swing components such as JFrame objects, you
probably won't find anything in Listing 9 that you don't understand (with the possible
exception of the focus traversal material).

Why setResizable?

Having created the JFrame object, Listing 9 calls the setResizable method on the
object to make it possible for the user to resize the GUI by dragging the edges.

I'm not sure why Ericson included this statement, since a JFrame object is resizable by
default. (Perhaps she just wanted to make the code more self-documenting.)

It is beneficial for the GUI to be resizable. If you zoom up to show the pixels in more
detail, the overall size of the image increases. You can then manually resize the GUI to
make it possible to view the entire larger image without the use of scroll bars (assuming
that your screen is large enough to accommodate the larger image.).

Resized PictureExplorer GUI with Zoom menu exposed

Figure 3 shows the result of resizing the GUI to make it smaller and pulling down the
Zoom menu to expose the seven zoom options.

Figure 3. Resized PictureExplorer GUI with Zoom menu exposed.

Set the layout manager

Then Listing 9 sets the layout manager on the
ContentPane to BorderLayout. Again, I'm not sure
why because BorderLayout is the default for the
ContentPane. In any event, BorderLayout works
nicely because the image can be displayed in the

The getContentPane method
If you are unfamiliar with the

content pane concept, see my

earlier lesson titled Swing
from A to Z, Some Simple
Components in Resources.

http://java.sun.com/docs/books/tutorial/uiswing/layout/using.html

CENTER position and a panel containing the text fields, navigation buttons, etc., can be
placed in the NORTH position as shown in Figure 3.

Set the default close operation

In case you are not familiar with this procedure, see the lesson titled Swing from A to Z:
Analyzing Swing Components, Part 3, Construction in Resources.

Calling the setDefaultCloseOperation method and passing an acceptable numeric
constant as a parameter specifies the required behavior when the user clicks the X-
button in the upper-right corner of Figure 2.

According to the Sun documentation, the behavior specified by the constant named
DISPOSE_ON_CLOSE is as follows:

"Releases all of the native screen resources used by this Window, its
subcomponents, and all of its owned children. That is, the resources for
these Components will be destroyed, any memory they consume will be
returned to the OS, and they will be marked as undisplayable."

In short, this causes the GUI to go away, releasing all supporting resources in the
process. (This is not the default close operation, which is to simply hide the JFrame.)

Set the title

After setting the close operation, Listing 9 gets the String title belonging to the picture
that was received as a parameter and sets that as the title for the JFrame.

Set the focus traversal policy

To make a long and complicated story short, instantiating a new object of the
PictureExplorerFocusTraversalPolicy (which is a private inner class of the
PictureExplorer class) and passing its reference to the setFocusTraversalPolicy
method specifies how the focus moves from one component to the next when the user
presses the tab key.

This is a fairly complex topic, and I am going to defer an explanation until later when I
explain the private inner class named PictureExplorerFocusTraversalPolicy.

When the setFocusTraversalPolicy method returns, the createAndInitPictureFrame
method shown in Listing 9 will terminate, returning control to the createWindow method
shown in Listing 8.

Setting up the menu bar

The next method call in Listing 8 is a call to the setUpMenuBar method. As you might
conclude from the name, this method sets up the Zoom menu shown in Figure 3.

Creating menus on a Java GUI isn't conceptually difficult, but it can require a great deal
of tedious work.

Let's start by taking another look at the instance variables shown in Listing 6. Near the
middle of that listing, you will find nine instance variables under a comment that reads
menu components.

The last seven of those nine instance variables with names like twentyFive and
fiveHundred are all of type JMenuItem. They will be used to represent the seven
menu items shown in the Zoom menu in the upper-left corner of Figure 3. Later on, an
action listener will be registered on each menu item to provide the required behavior
when the user selects a menu item.

The two instance variables in Listing 6 named zoomMenu and menuBar will be used to
construct the menu and attach it to the JFrame object as shown in Figure 3.

The setUpMenuBar method

The setUpMenuBar method, which is called by the createWindow method in Listing 8,
begins in Listing 10.

Listing 10. Beginning of the setUpMenuBar method.

 /**

 * Method to create the menu bar, menus, and

menu items

 */

 private void setUpMenuBar(){

 //create menu

 menuBar = new JMenuBar();

 zoomMenu = new JMenu("Zoom");

 twentyFive = new JMenuItem("25%");

 fifty = new JMenuItem("50%");

 seventyFive = new JMenuItem("75%");

 hundred = new JMenuItem("100%");

 hundred.setEnabled(false);

 hundredFifty = new JMenuItem("150%");

 twoHundred = new JMenuItem("200%");

 fiveHundred = new JMenuItem("500%");

A disabled menu item

Take another look at Figure 3 and you will see that the menu item labeled 100% is
disabled. This is because that is the default zoom factor at startup and I didn't select
any other zoom factor from the menu before capturing the screen shot shown in Figure
3. The menu item is disabled because it is already in effect.

We will see later that when we select other zoom factors from the menu, the selected
zoom factor will become disabled as soon as it takes effect.

Instantiate a new JMenuItem object for 100%

There is a statement near the middle of the code in Listing 10 that instantiates a new
JMenuItem object with a label of 100% and assigns that object's reference to the
instance variable named hundred. (I colored that statement and the one following in
red in Listing 10 to make it easy for you to find. Of course there is no color associated
with Java source code.)

Immediately below the assignment of the object's reference to the instance variable
named hundred, there is a call to the setEnabled method on that reference, passing
false as a parameter. This is one way that menu items (and some other GUI
components as well) are enabled and disabled in Java. (For another approach, see the
lesson titled Understanding Action Objects in Java in Resources.)

The remaining eight statements in Listing 10 simply instantiate new objects (of the
correct type with the correct labels) and assign the object's references to the
corresponding instance variables. (Note that a JMenuBar object doesn't have a label.)

Register an action listener on the menu items

Remember that I told you earlier that the structure of this program is such that the object
of the PictureExplorer class serves as a listener object on certain components that
belong to the object.

Listing 11 calls the addActionListener method seven times in succession to register
the PictureExplorer object as an action listener on each of the menu items. (If you are
unfamiliar with the registration of listener objects on event sources, see the lesson titled
Event Handling in JDK 1.1, A First Look, Delegation Event Model in Resources.)

Listing 11. Register an action listener on the menu items.

 // add the action listeners

 twentyFive.addActionListener(this);

 fifty.addActionListener(this);

 seventyFive.addActionListener(this);

 hundred.addActionListener(this);

 hundredFifty.addActionListener(this);

 twoHundred.addActionListener(this);

 fiveHundred.addActionListener(this);

Only one of many ways

There are many ways to structure code for an event-driven GUI in Java, each of which
has advantages and disadvantages depending on the application. The fact that the

same listener object (this object) is being registered on all of the menu items means that
the actionPerformed method of the PictureExplorer class, (which will be defined
later), must identify which menu item was selected by the user and then take the
required action for that particular menu item.

Complete the construction of the menu

The required code for completing the construction of the menu and attaching it to the
JFrame object is shown in Listing 12.

Listing 12. Complete the construction of the menu.

 // add the menu items to the menus

 zoomMenu.add(twentyFive);

 zoomMenu.add(fifty);

 zoomMenu.add(seventyFive);

 zoomMenu.add(hundred);

 zoomMenu.add(hundredFifty);

 zoomMenu.add(twoHundred);

 zoomMenu.add(fiveHundred);

 menuBar.add(zoomMenu);

 // set the menu bar to this menu

 pictureFrame.setJMenuBar(menuBar);

 }// end setUpMenuBar method

What is a JMenu object?

The instance variable named zoomMenu contains a reference to an object of the
JMenu class (see Listing 10). Briefly, Sun describes such an object as:

"An implementation of a menu -- a popup window containing JMenuItems
that is displayed when the user selects an item on the JMenuBar. In
addition to JMenuItems, a JMenu can also contain JSeparators.

In essence, a menu is a button with an associated JPopupMenu. When
the "button" is pressed, the JPopupMenu appears. If the "button" is on the
JMenuBar, the menu is a top-level window. If the "button" is another menu
item, then the JPopupMenu is a "pull-right" menu."

Stated differently, a JMenu object is a container that can contain multiple JMenuItem
and JSeparator objects as shown in Figure 3. (There are no JSeparator objects in
Figure 3.)

JMenuItem objects fire action events

JSeparator objects are mainly used for cosmetic purposes to separate the menu items
into groups and they do not fire events. However, the JMenuItem objects are active
sources of action events. When the user selects a JMenuItem object, it will fire an
action event.

If an action listener has been registered...

If an action listener object has been registered on the menu item (as in Listing 11), the
firing of the action event will cause the method named actionPerformed belonging to
the listener object to be called. The behavior of the actionPerformed method will be
the response to the event.

If a tree falls in the woods and there is no one to hear it...

The event is fired when the user selects the menu item regardless of whether or not
there are any registered listeners. If there are no registered listeners, there simply is no
programmatic response to the event.

Construct the menu

The first seven statements in Listing 12 add the JMenuItem objects to the JMenu
object, producing the menu that you see in Figure 3.

An object of the JMenuBar class

The instance variable named menuBar contains a reference to an object of the
JMenuBar class. Briefly, Sun has this to say about an object of the JMenuBar class:

"An implementation of a menu bar. You add JMenu objects to the menu
bar to construct a menu. When the user selects a JMenu object, its
associated JPopupMenu is displayed, allowing the user to select one of
the JMenuItem objects on it."

Stated differently, a JMenuBar object is a container, which can contain multiple JMenu
objects. However, in this class, we are placing only one JMenu object (labeled Zoom)
in the container. We accomplish that by calling the add method on the JMenuBar
object and passing the JMenu object's reference as a parameter to the add method
(see Listing 12).

The behavior of the JMenu object

In Figure 3, the component with the label Zoom is the JMenu object and it has been
added to a horizontal JMenuBar object at this point. (JMenuBar objects don't have
labels, but the one in Figure 3 can be seen if you look closely enough.)

When the user selects one of the JMenu objects (in this case, there is only one), the
menu opens to expose the JMenuItem objects without any help from the programmer.

Attach the JMenuBar object to the JFrame object

Finally, the code in Listing 12 attaches the JMenuBar object to the JFrame object by
calling the setJMenuBar method on the reference to the JFrame object and passing
the JMenuBar object's reference as a parameter.

Significantly different from adding components

Note that this is significantly different from adding GUI components to a JFrame
object. When you add GUI components to a JFrame object, you must add them to the
JFrame object's content pane, (which is a topic that is far too complex to explain in this
lesson). You cannot add components directly to the JFrame object.

However, when you call the setJMenuBar method to attach the menu bar to the
JFrame, you call the method directly on the reference to the JFrame object and the
content pane is not involved.

When the setJMenuBar method returns...

When the call to the setJMenuBar method returns in Listing 12, the setUpMenuBar
method, (which began in Listing 10), terminates and returns control to the
createWindow method in Listing 8.

At this point, the menu is ready for use with one major exception. The required
behavior associated with the selection of each menu item hasn't been established yet.

The required behavior for each menu item will be established later through the definition
of the actionPerformed method of the PictureExplorer class.

Run the program

It's time to take a break

We have a long way to go before we can fully understand the PictureExplorer
class. However, you have been working hard if you have made it to this point. It's time
to take a break, drink some coffee, eat a doughnut (or maybe some tofu if you prefer
that) and let what you have learned so far sink in.

Experiment

Although the sample program doesn't amount to much, I encourage you to copy the
code from Listing 14, compile the code, and execute it using an image file of your

choice. Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

Also experiment with the GUI that is produced when the program calls the explore
method on your Picture object.

Summary

The purpose of an object of the PictureExplorer class is to allow you to determine the
numeric color values for any pixel in a picture by placing a cursor on the pixel. The pixel
position is controlled by clicking or dragging the mouse within the picture, clicking
buttons, or typing coordinate values. You can also zoom in and out to view the pixel in
more or less detail and you can see the actual color of the pixel in a large square.

So far, we have been concentrating on the construction of the graphical user interface
that appears when you call the explore method on a Picture object.

You have learned how the GUI is constructed from a big-picture viewpoint.

You have learned that the GUI window is the visual manifestation of a JFrame object,
and you have learned how the JFrame object is configured.

You have learned how the Zoom menu is constructed and how an action listener object
is registered on the items in that menu.

We have yet to get into the behavior that is programmed into the various event handlers
that are registered on components in the GUI. We will get to that later.

What's next?

The next lesson will begin with an explanation of the method named createInfoPanel,
which is called by the createWindow method in Listing 8 during the construction of the
GUI.

The createInfoPanel method is probably the most challenging part of the entire
PictureExplorer class (with the possible exception of the focus-traversal material).

After that, we will continue with the sequence of methods that are called in the method
named createWindow, which is at the core of constructing the GUI.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980

 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA
 Vector Cad-Cam XI Lathe Tutorial
 Classification of 3D to 2D projections
 Color model from Wikipedia
 Light and color: an introduction by Norman Koren
 Color Principles - Hue, Saturation, and Value
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight
404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
408 Processing Image Pixels, Performing Convolution on Images
410 Processing Image Pixels, Understanding Image Convolution in Java
412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
416 Processing Image Pixels, An Improved Image-Processing Framework in
Java
418 Processing Image Pixels, Creating Visible Watermarks in Java
450 A Framework for Experimenting with Java 2D Image-Processing Filters
452 Using the Java 2D LookupOp Filter Class to Process Images
454 Using the Java 2D AffineTransformOp Filter Class to Process Images
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble
Images
458 Using the Java 2D BandCombineOp Filter Class to Process Images

http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://en.wikipedia.org/wiki/Color_model
../Light%20and%20color:%20%20an%20introduction
http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#(HSV)
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856

460 Using the Java 2D ConvolveOp Filter Class to Process Images
462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to
Process Images

 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java
 350 3D Displays, Color Distance, and Edge Detection
 351 A Slider-Controlled Softening Program for Digital Photos
 352 Adding Animated Movement to Your Java Application
 353 A Slider-Controlled Sharpening Program for Digital Photos
 354 The DigitalPicture Interface
 355 The HSB Color Model
 356 The show Method and the PictureFrame Class
 357 An HSB Color-Editing Program for Digital Photos
 358 Applying Affine Transforms to Picture Objects
 359 Creating a lasso for editing digital photos in Java
 360 Wrapping Up the SimplePicture Class
 361 A Temperature and Tint Editing Program for Digital Photos

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 13 and
Listing 14 below.

Listing 13. Source code for Ericson's PictureExplorer class.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.awt.image.*;

import javax.swing.border.*;

/**

 * Displays a picture and lets you explore the

picture by

 * displaying the x, y, red, green, and blue values

of the

 * pixel at the cursor when you click a mouse

button or

 * press and hold a mouse button while moving the

cursor.

 * It also lets you zoom in or out. You can also

type in

http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm
http://www.dickbaldwin.com/java/Java354.htm
http://www.dickbaldwin.com/java/Java355.htm
http://www.dickbaldwin.com/java/Java356.htm
http://www.dickbaldwin.com/java/Java357.htm
http://www.dickbaldwin.com/java/Java358.htm
http://www.dickbaldwin.com/java/Java359.htm
http://www.dickbaldwin.com/java/Java360.htm
http://www.dickbaldwin.com/java/Java361.htm

 * a x and y value to see the color at that

location.

 *

 * Originally created for the Jython Environment

for

 * Students (JES).

 * Modified to work with DrJava by Barbara Ericson

 *

 * Copyright Georgia Institute of Technology 2004

 * @author Keith McDermottt, gte047w@cc.gatech.edu

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class PictureExplorer implements

 MouseMotionListener, ActionListener,

MouseListener{

 // current x and y index

 private int xIndex = 0;

 private int yIndex = 0;

 //Main gui variables

 private JFrame pictureFrame;

 private JScrollPane scrollPane;

 //information bar variables

 private JLabel xLabel;

 private JButton xPrevButton;

 private JButton yPrevButton;

 private JButton xNextButton;

 private JButton yNextButton;

 private JLabel yLabel;

 private JTextField xValue;

 private JTextField yValue;

 private JLabel rValue;

 private JLabel gValue;

 private JLabel bValue;

 private JLabel colorLabel;

 private JPanel colorPanel;

 // menu components

 private JMenuBar menuBar;

 private JMenu zoomMenu;

 private JMenuItem twentyFive;

 private JMenuItem fifty;

 private JMenuItem seventyFive;

 private JMenuItem hundred;

 private JMenuItem hundredFifty;

 private JMenuItem twoHundred;

 private JMenuItem fiveHundred;

 /** The picture being explored */

 private DigitalPicture picture;

 /** The image icon used to display the picture */

 private ImageIcon scrollImageIcon;

 /** The image display */

 private ImageDisplay imageDisplay;

 /** the zoom factor (amount to zoom) */

 private double zoomFactor;

 /** the number system to use, 0 means starting at

0,

 * 1 means starting at 1 */

 private int numberBase=0;

 /**

 * Public constructor

 * @param picture the picture to explore

 */

 public PictureExplorer(DigitalPicture picture)

 {

 // set the fields

 this.picture=picture;

 zoomFactor=1;

 // create the window and set things up

 createWindow();

 }

 /**

 * Changes the number system to start at one

 */

 public void changeToBaseOne()

 {

 numberBase=1;

 }

 /**

 * Set the title of the frame

 *@param title the title to use in the JFrame

 */

 public void setTitle(String title)

 {

 pictureFrame.setTitle(title);

 }

 /**

 * Method to create and initialize the picture

frame

 */

 private void createAndInitPictureFrame()

 {

 pictureFrame = new JFrame(); // create the

JFrame

 //allow the user to resize it

 pictureFrame.setResizable(true);

 // use border layout

 pictureFrame.getContentPane().setLayout(

 new

BorderLayout());

 // when close stop

 pictureFrame.setDefaultCloseOperation(

JFrame.DISPOSE_ON_CLOSE);

 pictureFrame.setTitle(picture.getTitle());

 PictureExplorerFocusTraversalPolicy newPolicy =

 new

PictureExplorerFocusTraversalPolicy();

 pictureFrame.setFocusTraversalPolicy(newPolicy);

 }

 /**

 * Method to create the menu bar, menus, and menu

items

 */

 private void setUpMenuBar()

 {

 //create menu

 menuBar = new JMenuBar();

 zoomMenu = new JMenu("Zoom");

 twentyFive = new JMenuItem("25%");

 fifty = new JMenuItem("50%");

 seventyFive = new JMenuItem("75%");

 hundred = new JMenuItem("100%");

 hundred.setEnabled(false);

 hundredFifty = new JMenuItem("150%");

 twoHundred = new JMenuItem("200%");

 fiveHundred = new JMenuItem("500%");

 // add the action listeners

 twentyFive.addActionListener(this);

 fifty.addActionListener(this);

 seventyFive.addActionListener(this);

 hundred.addActionListener(this);

 hundredFifty.addActionListener(this);

 twoHundred.addActionListener(this);

 fiveHundred.addActionListener(this);

 // add the menu items to the menus

 zoomMenu.add(twentyFive);

 zoomMenu.add(fifty);

 zoomMenu.add(seventyFive);

 zoomMenu.add(hundred);

 zoomMenu.add(hundredFifty);

 zoomMenu.add(twoHundred);

 zoomMenu.add(fiveHundred);

 menuBar.add(zoomMenu);

 // set the menu bar to this menu

 pictureFrame.setJMenuBar(menuBar);

 }

 /**

 * Create and initialize the scrolling image

 */

 private void createAndInitScrollingImage()

 {

 scrollPane = new JScrollPane();

 BufferedImage bimg = picture.getBufferedImage();

 imageDisplay = new ImageDisplay(bimg);

 imageDisplay.addMouseMotionListener(this);

 imageDisplay.addMouseListener(this);

 imageDisplay.setToolTipText("Click a mouse

button on "

 + "a pixel to see the pixel

information");

 scrollPane.setViewportView(imageDisplay);

 pictureFrame.getContentPane().add(

 scrollPane,

BorderLayout.CENTER);

 }

 /**

 * Creates the JFrame and sets everything up

 */

 private void createWindow()

 {

 // create the picture frame and initialize it

 createAndInitPictureFrame();

 // set up the menu bar

 setUpMenuBar();

 //create the information panel

 createInfoPanel();

 //creates the scrollpane for the picture

 createAndInitScrollingImage();

 // show the picture in the frame at the size it

needs

 // to be

 pictureFrame.pack();

 pictureFrame.setVisible(true);

 }

 /**

 * Method to set up the next and previous buttons

for the

 * pixel location information

 */

 private void setUpNextAndPreviousButtons()

 {

 // create the image icons for the buttons

 Icon prevIcon = new ImageIcon(

SoundExplorer.class.getResource("leftArrow.gif"),

 "previous

index");

 Icon nextIcon = new ImageIcon(

SoundExplorer.class.getResource("rightArrow.gif"),

 "next

index");

 // create the arrow buttons

 xPrevButton = new JButton(prevIcon);

 xNextButton = new JButton(nextIcon);

 yPrevButton = new JButton(prevIcon);

 yNextButton = new JButton(nextIcon);

 // set the tool tip text

 xNextButton.setToolTipText(

 "Click to go to the next x

value");

 xPrevButton.setToolTipText(

 "Click to go to the previous x

value");

 yNextButton.setToolTipText(

 "Click to go to the next y

value");

 yPrevButton.setToolTipText(

 "Click to go to the previous y

value");

 // set the sizes of the buttons

 int prevWidth = prevIcon.getIconWidth() + 2;

 int nextWidth = nextIcon.getIconWidth() + 2;

 int prevHeight = prevIcon.getIconHeight() + 2;

 int nextHeight = nextIcon.getIconHeight() + 2;

 Dimension prevDimension =

 new

Dimension(prevWidth,prevHeight);

 Dimension nextDimension =

 new Dimension(nextWidth,

nextHeight);

 xPrevButton.setPreferredSize(prevDimension);

 yPrevButton.setPreferredSize(prevDimension);

 xNextButton.setPreferredSize(nextDimension);

 yNextButton.setPreferredSize(nextDimension);

 // handle previous x button press

 xPrevButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 xIndex--;

 if (xIndex < 0)

 xIndex = 0;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle previous y button press

 yPrevButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 yIndex--;

 if (yIndex < 0)

 yIndex = 0;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle next x button press

 xNextButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 xIndex++;

 if (xIndex >= picture.getWidth())

 xIndex = picture.getWidth() - 1;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle next y button press

 yNextButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 yIndex++;

 if (yIndex >= picture.getHeight())

 yIndex = picture.getHeight() - 1;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 }

 /**

 * Create the pixel location panel

 * @param labelFont the font for the labels

 * @return the location panel

 */

 public JPanel createLocationPanel(Font labelFont)

{

 // create a location panel

 JPanel locationPanel = new JPanel();

 locationPanel.setLayout(new FlowLayout());

 Box hBox = Box.createHorizontalBox();

 // create the labels

 xLabel = new JLabel("X:");

 yLabel = new JLabel("Y:");

 // create the text fields

 xValue = new JTextField(

 Integer.toString(xIndex +

numberBase),6);

 xValue.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 displayPixelInformation(

xValue.getText(),yValue.getText());

 }

 });

 yValue = new JTextField(

 Integer.toString(yIndex +

numberBase),6);

 yValue.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 displayPixelInformation(

xValue.getText(),yValue.getText());

 }

 });

 // set up the next and previous buttons

 setUpNextAndPreviousButtons();

 // set up the font for the labels

 xLabel.setFont(labelFont);

 yLabel.setFont(labelFont);

 xValue.setFont(labelFont);

 yValue.setFont(labelFont);

 // add the items to the vertical box and the box

to

 // the panel

 hBox.add(Box.createHorizontalGlue());

 hBox.add(xLabel);

 hBox.add(xPrevButton);

 hBox.add(xValue);

 hBox.add(xNextButton);

 hBox.add(Box.createHorizontalStrut(10));

 hBox.add(yLabel);

 hBox.add(yPrevButton);

 hBox.add(yValue);

 hBox.add(yNextButton);

 locationPanel.add(hBox);

 hBox.add(Box.createHorizontalGlue());

 return locationPanel;

 }

 /**

 * Create the color information panel

 * @param labelFont the font to use for labels

 * @return the color information panel

 */

 private JPanel createColorInfoPanel(Font

labelFont)

 {

 // create a color info panel

 JPanel colorInfoPanel = new JPanel();

 colorInfoPanel.setLayout(new FlowLayout());

 // get the pixel at the x and y

 Pixel pixel = new Pixel(picture,xIndex,yIndex);

 // create the labels

 rValue = new JLabel("R: " + pixel.getRed());

 gValue = new JLabel("G: " + pixel.getGreen());

 bValue = new JLabel("B: " + pixel.getBlue());

 // create the sample color panel and label

 colorLabel = new JLabel("Color at location: ");

 colorPanel = new JPanel();

 colorPanel.setBorder(new

LineBorder(Color.black,1));

 // set the color sample to the pixel color

 colorPanel.setBackground(pixel.getColor());

 // set the font

 rValue.setFont(labelFont);

 gValue.setFont(labelFont);

 bValue.setFont(labelFont);

 colorLabel.setFont(labelFont);

 colorPanel.setPreferredSize(new

Dimension(25,25));

 // add items to the color information panel

 colorInfoPanel.add(rValue);

 colorInfoPanel.add(gValue);

 colorInfoPanel.add(bValue);

 colorInfoPanel.add(colorLabel);

 colorInfoPanel.add(colorPanel);

 return colorInfoPanel;

 }

 /**

 * Creates the North JPanel with all the pixel

location

 * and color information

 */

 private void createInfoPanel()

 {

 // create the info panel and set the layout

 JPanel infoPanel = new JPanel();

 infoPanel.setLayout(new BorderLayout());

 // create the font

 Font largerFont =

 new

Font(infoPanel.getFont().getName(),

infoPanel.getFont().getStyle(),14);

 // create the pixel location panel

 JPanel locationPanel =

createLocationPanel(largerFont);

 // create the color informaiton panel

 JPanel colorInfoPanel =

createColorInfoPanel(largerFont);

 // add the panels to the info panel

 infoPanel.add(BorderLayout.NORTH,locationPanel);

infoPanel.add(BorderLayout.SOUTH,colorInfoPanel);

 // add the info panel

 pictureFrame.getContentPane().add(

BorderLayout.NORTH,infoPanel);

 }

 /**

 * Method to check that the current position is in

the

 * viewing area and if not scroll to center the

current

 * position if possible

 */

 public void checkScroll()

 {

 // get the x and y position in pixels

 int xPos = (int) (xIndex * zoomFactor);

 int yPos = (int) (yIndex * zoomFactor);

 // only do this if the image is larger than

normal

 if (zoomFactor > 1) {

 // get the rectangle that defines the current

view

 JViewport viewport = scrollPane.getViewport();

 Rectangle rect = viewport.getViewRect();

 int rectMinX = (int) rect.getX();

 int rectWidth = (int) rect.getWidth();

 int rectMaxX = rectMinX + rectWidth - 1;

 int rectMinY = (int) rect.getY();

 int rectHeight = (int) rect.getHeight();

 int rectMaxY = rectMinY + rectHeight - 1;

 // get the maximum possible x and y index

 int maxIndexX =

(int)(picture.getWidth()*zoomFactor)

 - rectWidth - 1;

 int maxIndexY =

(int)(picture.getHeight()*zoomFactor)

 - rectHeight - 1;

 // calculate how to position the current

position in

 // the middle of the viewing area

 int viewX = xPos - (int) (rectWidth / 2);

 int viewY = yPos - (int) (rectHeight / 2);

 // reposition the viewX and viewY if outside

allowed

 // values

 if (viewX < 0)

 viewX = 0;

 else if (viewX > maxIndexX)

 viewX = maxIndexX;

 if (viewY < 0)

 viewY = 0;

 else if (viewY > maxIndexY)

 viewY = maxIndexY;

 // move the viewport upper left point

 viewport.scrollRectToVisible(

 new

Rectangle(viewX,viewY,rectWidth,rectHeight));

 }

 }

 /**

 * Zooms in the on picture by scaling the image.

 * It is extremely memory intensive.

 * @param factor the amount to zoom by

 */

 public void zoom(double factor)

 {

 // save the current zoom factor

 zoomFactor = factor;

 // calculate the new width and height and get an

image

 // that size

 int width = (int)

(picture.getWidth()*zoomFactor);

 int height = (int)

(picture.getHeight()*zoomFactor);

 BufferedImage bimg = picture.getBufferedImage();

 // set the scroll image icon to the new image

imageDisplay.setImage(bimg.getScaledInstance(width,

 height,

Image.SCALE_DEFAULT));

 imageDisplay.setCurrentX((int) (xIndex *

zoomFactor));

 imageDisplay.setCurrentY((int) (yIndex *

zoomFactor));

 imageDisplay.revalidate();

 checkScroll(); // check if need to reposition

scroll

 }

 /**

 * Repaints the image on the scrollpane.

 */

 public void repaint()

 {

 pictureFrame.repaint();

 }

 //**//

 // Event Listeners //

 //**//

 /**

 * Called when the mouse is dragged (button held

down and

 * moved)

 * @param e the mouse event

 */

 public void mouseDragged(MouseEvent e)

 {

 displayPixelInformation(e);

 }

 /**

 * Method to check if the given x and y are in the

 * picture

 * @param x the horiztonal value

 * @param y the vertical value

 * @return true if the x and y are in the picture

and

 * false otherwise

 */

 private boolean isLocationInPicture(int x, int y)

 {

 boolean result = false; // the default is false

 if (x >= 0 && x < picture.getWidth() &&

 y >= 0 && y < picture.getHeight())

 result = true;

 return result;

 }

 /**

 * Method to display the pixel information from

the

 * passed x and y but also converts x and y from

strings

 * @param xString the x value as a string from the

user

 * @param yString the y value as a string from the

user

 */

 public void displayPixelInformation(

 String xString, String

yString)

 {

 int x = -1;

 int y = -1;

 try {

 x = Integer.parseInt(xString);

 x = x - numberBase;

 y = Integer.parseInt(yString);

 y = y - numberBase;

 } catch (Exception ex) {

 }

 if (x >= 0 && y >= 0) {

 displayPixelInformation(x,y);

 }

 }

 /**

 * Method to display pixel information for the

passed x

 * and y

 * @param pictureX the x value in the picture

 * @param pictureY the y value in the picture

 */

 private void displayPixelInformation(

 int pictureX, int

pictureY)

 {

 // check that this x and y is in range

 if (isLocationInPicture(pictureX, pictureY))

 {

 // save the current x and y index

 xIndex = pictureX;

 yIndex = pictureY;

 // get the pixel at the x and y

 Pixel pixel = new

Pixel(picture,xIndex,yIndex);

 // set the values based on the pixel

 xValue.setText(Integer.toString(

 xIndex +

numberBase));

 yValue.setText(Integer.toString(

 yIndex +

numberBase));

 rValue.setText("R: " + pixel.getRed());

 gValue.setText("G: " + pixel.getGreen());

 bValue.setText("B: " + pixel.getBlue());

 colorPanel.setBackground(new

Color(pixel.getRed(),

pixel.getGreen(),

pixel.getBlue()));

 }

 else

 {

 clearInformation();

 }

 // notify the image display of the current x and

y

 imageDisplay.setCurrentX((int) (xIndex *

zoomFactor));

 imageDisplay.setCurrentY((int) (yIndex *

zoomFactor));

 }

 /**

 * Method to display pixel information based on a

mouse

 * event

 * @param e a mouse event

 */

 private void displayPixelInformation(MouseEvent e)

 {

 // get the cursor x and y

 int cursorX = e.getX();

 int cursorY = e.getY();

 // get the x and y in the original (not scaled

image)

 int pictureX = (int)(cursorX/zoomFactor +

numberBase);

 int pictureY = (int)(cursorY/zoomFactor +

numberBase);

 // display the information for this x and y

 displayPixelInformation(pictureX,pictureY);

 }

 /**

 * Method to clear the labels and current color

and

 * reset the current index to -1

 */

 private void clearInformation()

 {

 xValue.setText("N/A");

 yValue.setText("N/A");

 rValue.setText("R: N/A");

 gValue.setText("G: N/A");

 bValue.setText("B: N/A");

 colorPanel.setBackground(Color.black);

 xIndex = -1;

 yIndex = -1;

 }

 /**

 * Method called when the mouse is moved with no

buttons

 * down

 * @param e the mouse event

 */

 public void mouseMoved(MouseEvent e)

 {}

 /**

 * Method called when the mouse is clicked

 * @param e the mouse event

 */

 public void mouseClicked(MouseEvent e)

 {

 displayPixelInformation(e);

 }

 /**

 * Method called when the mouse button is pushed

down

 * @param e the mouse event

 */

 public void mousePressed(MouseEvent e)

 {

 displayPixelInformation(e);

 }

 /**

 * Method called when the mouse button is released

 * @param e the mouse event

 */

 public void mouseReleased(MouseEvent e)

 {

 }

 /**

 * Method called when the component is entered

(mouse

 * moves over it)

 * @param e the mouse event

 */

 public void mouseEntered(MouseEvent e)

 {

 }

 /**

 * Method called when the mouse moves over the

component

 * @param e the mouse event

 */

 public void mouseExited(MouseEvent e)

 {

 }

 /**

 * Method to enable all menu commands

 */

 private void enableZoomItems()

 {

 twentyFive.setEnabled(true);

 fifty.setEnabled(true);

 seventyFive.setEnabled(true);

 hundred.setEnabled(true);

 hundredFifty.setEnabled(true);

 twoHundred.setEnabled(true);

 fiveHundred.setEnabled(true);

 }

 /**

 * Controls the zoom menu bar

 *

 * @param a the ActionEvent

 */

 public void actionPerformed(ActionEvent a)

 {

 if(a.getActionCommand().equals("Update"))

 {

 this.repaint();

 }

 if(a.getActionCommand().equals("25%"))

 {

 this.zoom(.25);

 enableZoomItems();

 twentyFive.setEnabled(false);

 }

 if(a.getActionCommand().equals("50%"))

 {

 this.zoom(.50);

 enableZoomItems();

 fifty.setEnabled(false);

 }

 if(a.getActionCommand().equals("75%"))

 {

 this.zoom(.75);

 enableZoomItems();

 seventyFive.setEnabled(false);

 }

 if(a.getActionCommand().equals("100%"))

 {

 this.zoom(1.0);

 enableZoomItems();

 hundred.setEnabled(false);

 }

 if(a.getActionCommand().equals("150%"))

 {

 this.zoom(1.5);

 enableZoomItems();

 hundredFifty.setEnabled(false);

 }

 if(a.getActionCommand().equals("200%"))

 {

 this.zoom(2.0);

 enableZoomItems();

 twoHundred.setEnabled(false);

 }

 if(a.getActionCommand().equals("500%"))

 {

 this.zoom(5.0);

 enableZoomItems();

 fiveHundred.setEnabled(false);

 }

 }

 /**

 * Test Main. It will ask you to pick a file and

then

 * show it

 */

 public static void main(String args[])

 {

 Picture p = new

Picture(FileChooser.pickAFile());

 PictureExplorer test = new PictureExplorer(p);

 }

 /**

 * Class for establishing the focus for the

textfields

 */

 private class PictureExplorerFocusTraversalPolicy

 extends FocusTraversalPolicy {

 /**

 * Method to get the next component for

focus

 */

 public Component getComponentAfter(

 Container

focusCycleRoot,

 Component

aComponent) {

 if (aComponent.equals(xValue))

 return yValue;

 else

 return xValue;

 }

 /**

 * Method to get the previous component for

focus

 */

 public Component getComponentBefore(

 Container

focusCycleRoot,

 Component

aComponent) {

 if (aComponent.equals(xValue))

 return yValue;

 else

 return xValue;

 }

 public Component getDefaultComponent(

 Container

focusCycleRoot) {

 return xValue;

 }

 public Component getLastComponent(

 Container

focusCycleRoot) {

 return yValue;

 }

 public Component getFirstComponent(

 Container

focusCycleRoot) {

 return xValue;

 }

 }//end PictureExplorerFocusTraversalPolicy

inner class

}//end PictureExplorer class

Listing 14. Source code for the program named Java362a.

/*Program Java362a

Copyright R.G.Baldwin 2009

The purpose of this program is to support an explanation

of the PictureExplorer class.

A Picture object having dimensions of 450x345 pixels is

created. The the show method and the explore method are

called on the object to produce two different screen

displays of the picture.

The explore method simply creates a new object of the

PictureExplorer class.

Tested using Windows Vista Premium Home edition and

Ericso's multimedia library.

***/

public class Main{

 public static void main(String[] args){

 //Construct a new 460x345 Picture object.

 Picture pix1 = new Picture("ScaledBeach460x345.jpg");

 pix1.show();//display the picture in the show format

 //Display the picture again in the explore format.

 pix1.explore();

 }//end main method

}//end class Main

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

