
Displaying an Image in a PictureExplorer Object

Learn the final details of what you will need to incorporate objects of the PictureExplorer
class into applications of your own design.

Published: March 19, 2009
By Richard G. Baldwin

Java Programming Notes # 366

 Preface
o General
o What you have learned from earlier lessons
o What you will learn in this lesson
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
o A sample program
o Reducing the confusion

 Discussion and sample code
o The sample program named Java362a
o An overview of the GUI
o The PictureExplorer class

 The constructor
 The createWindow method

 The createAndInitScrollingImage method
 The ImageDisplay class

 Additional methods of the PictureExplorer class
 The actionPerformed method

 Run the program
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

Preface

mailto:Baldwin@DickBaldwin.com

General

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, sharpening, and other filtering operations on images.
 Insert animated cartoon characters into videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

What you have learned from earlier lessons

If you have studied the earlier lessons in this series, you have learned about turtles,
worlds, and pictures. You have learned that objects of the Picture class are useful for
much more than simply serving as living quarters for turtles. They are also useful for
manipulating images in interesting and complex ways.

A PictureExplorer object

You learned that an object of the PictureExplorer class
(see Figure 1) is a GUI that allows you to determine the
numeric color values for any pixel in a picture by placing
a cursor on the pixel.

Figure 1. Reduced screen output produced by the
explore method.

Pixel Editor Program

See the lesson titled A Pixel
Editor Program in
Java: Multimedia
Programming with Java in
Resources for a non-trivial
application of a
PictureExplorer object.

(Note that in the screen shot in Figure 1, the GUI was manually resized to make it
smaller and the Zoom menu was opened to display its contents.)

A PictureExplorer object has a cursor

The position of the cursor is controlled by clicking or dragging the mouse within the
picture, clicking buttons in the upper panel, or typing coordinate values into text fields in
the upper panel.

Zoom

You can zoom in and out to view the pixels in more or less detail and you can see the
actual color of the pixel displayed in a small colored square.

A JFrame with a menu

You have learned how the GUI is constructed from a big-picture viewpoint. You learned
that the GUI window is the visual manifestation of a JFrame object. You learned how
the JFrame object is configured, how the Zoom menu is constructed, and how an
ActionListener object is registered on each item in that menu.

A panel with user controls

In the previous lesson, you learned how to construct the panel containing the user
controls (the infoPanel) in the upper portion of the GUI as shown in Figure 1. You also
learned how to register event listener objects on the components in that panel making
use of anonymous objects of anonymous classes.

Other interesting topics

Along the way, you learned about some other interesting topics including:

 The use of BoxLayout.
 The class file naming scheme.
 The use of getResources to get the URL of a file.
 The use of a class loader to load a resource file.

What you will learn in this lesson

So far, everything that you have learned is peripheral to the display of the picture itself
in a scrollable window. Displaying the picture in a scrollable window is the main topic of
this lesson.

Source code listings

A complete listing of Ericson's PictureExplorer class is provided in Listing 23 near the
end of the lesson. A complete listing of a very simple program named Java362a that I
will use to illustrate the behavior of the PictureExplorer class is provided in Listing
24. Finally, a complete listing of an associated class named ImageDisplay is provided
in Listing 25.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Reduced screen output produced by the explore method.
 Figure 2. Screen output produced by the show method.
 Figure 3. Partial description of the getScaledInstance method.

Listings

 Listing 1. Background color for first-level code.
 Listing 2. Background color for second-level code.
 Listing 3. Background color for third and lower-level code.
 Listing 4. Private instance variables of the PictureExplorer class.
 Listing 5. The constructor for the PictureExplorer class.
 Listing 6. The createWindow method.
 Listing 7. Beginning of the createAndInitScrollingImage method.
 Listing 8. Beginning of the ImageDisplay class.
 Listing 9. The first overloaded constructor.
 Listing 10. The second overloaded constructor.
 Listing 11. Register PictureExplorer object as a listener object.
 Listing 12. The mouseClicked and mousePressed event handlers.
 Listing 13. The mouseDragged event handler.
 Listing 14. The displayPixelInformation method.
 Listing 15. Remainder of the createAndInitScrollingImage method.
 Listing 16. The actionPerformed method.
 Listing 17. Register the PictureExplorer object as an ActionListener on each

menu item.
 Listing 18. The enableZoomItems method.
 Listing 19. The beginning of the zoom method.
 Listing 20. Replace the current image with a scaled image.
 Listing 21. The remainder of the zoom method.
 Listing 22. Partial listing of the checkScroll method.
 Listing 23. Source code for Ericson's PictureExplorer class.
 Listing 24. Source code for the program named Java362a.
 Listing 25. Source code for the ImageDisplay class.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

A sample program

I will use a very simple program to illustrate the creation of an object of the
PictureExplorer class.

The sample program (named Java362a) begins by creating a new Picture object using
input from an image file in the current directory. Then it calls the show method on the
object to produce the screen output shown in Figure 2.

Figure 2. Screen output produced by the show method.

http://www.dickbaldwin.com/toc.htm

Call the explore method

After that, the program calls the explore method on the Picture object to produce the
screen output shown earlier in Figure 1.

You learned all about the show method of the SimplePicture class in earlier
lessons. You began learning about the explore method and the PictureExplorer class
in the earlier lesson titled Getting Started with the PictureExplorer Class: Multimedia
Programming with Java (see Resources).

The explore method

The explore method of the SimplePicture class contains a single statement, which
instantiates an object of the PictureExplorer class. As soon as that object is
instantiated, the GUI shown in Figure 1 appears on the screen and it remains on the
screen until the program is terminated or the user clicks the X-button in the upper-right
corner of the GUI.

Reducing the confusion

Methods in the PictureExplorer class often call other methods that belong to the
class. Those methods, in turn, often call other methods. Because I will be switching
back and forth among code fragments extracted from different methods, things can get
confusing. I will use color in an attempt to reduce the confusion. That is, when one
method calls another and I need to put the explanation of the first method on hold while
I explain the code in the second method, I will change the background color against
which the code fragments are displayed.

Background color for first-level classes, methods and/or constructors

For example, I will present code fragments extracted from Ericson's PictureExplorer
class against the background color shown in Listing 1.

Listing 1. Background color for first-level code.

Color = #FFFFBB

Background color for second-level methods

Similarly, I will present code fragments extracted from second-level methods against the
background color shown in Listing 2.

Listing 2. Background color for second-level code.

Color = #FFEEFF

Background color for third and lower-level methods

Finally, I will present code fragments extracted from third-level and lower-level code (if
any) against the background colors, going from left to right, in Listing 3.

Listing 3. Background color for third and lower-level code.

3-

#DDFFFF

4-

#C1C100

5-

#FFCC66

6-

#B1C2BD

7-

#EEEEEE

In the unlikely event that I need to distinguish among more than seven levels at the
same time, I will come up with another color and explain its use at the time.

Discussion and sample code

The sample program named Java362a

The purpose of this program is to support an explanation of the PictureExplorer class.

Normally, I break programs down and explain them in fragments. However, this
program is short and simple and I explained it in detail in previous lessons (see
Resources). You can view a complete listing of the program in Listing 24 near the end
of the lesson.

Create a Picture object and display it with the explore method

A Picture object having dimensions of 450x345 pixels is created by reading an image
file from the current directory. The show method is called on the Picture object

producing the screen output shown in Figure 2. Then the explore method is called on
the Picture object producing the screen output GUI shown in Figure 1.

Displays a copy of the original Picture object

As you learned in the earlier lessons, the explore method creates a copy of the original
Picture object and passes its reference to the constructor for a new object of the
PictureExplorer class. The new PictureExplorer object displays the copy of the
original picture in the format shown in Figure 1. (Once again, note that the GUI in
Figure 1 was manually resized to make it smaller and the Zoom menu was opened to
display its contents.)

An overview of the GUI

You also learned in the previous lessons that the onscreen GUI window that you see in
Figure 1 is the visual manifestation of a JFrame object. Basically, a JFrame object
consists of the following parts:

 A banner at the top containing some built-in control components (three buttons
on the right and a menu on the left) and optionally a String title.

 A rectangular area under the banner that can contain a menu. This area is
collapsed if you elect not to provide one or more menus.

 A content area underneath the menu area.
 A border around the outer edges.

The content area

I explained the menu area in some depth in an earlier lesson. We will be primarily
concerned with the content area in this lesson.

The content area (immediately below the menu area) has a default BorderLayout
object as the layout manager. This layout manager makes it possible to place one
component in the CENTER and four additional components in the NORTH, SOUTH,
EAST, and WEST locations.

In the GUI produced by the PictureExplorer class, there is one component in the
CENTER and one component in the NORTH location. There are no components in the
EAST, SOUTH, and WEST locations. (Keep in mind that each of the five allowable
components can themselves contain other components.)

A JPanel object in the NORTH location

The component in the NORTH location of the JFrame object's content area is a JPanel
object. This JPanel object, which contains all of the buttons and text fields shown in
Figure 1, was the primary focus of the previous lesson.

A JScrollPane object in the CENTER location

The component in the CENTER is an object of the JScrollPane class. This component
will be the main focus of this lesson.

The PictureExplorer class

A complete listing of the PictureExplorer class is provided in Listing 23 near the end of
the lesson. I will break the class down and explain it in fragments. (I explained part of
the PictureExplorer class in the previous two lessons.)

Private instance variables of the PictureExplorer class

The PictureExplorer class declares a large number of private instance variables and
initializes some of them. They are shown in Listing 4 for easy reference.

Listing 4. Private instance variables of the PictureExplorer class.

 // current x and y index

 private int xIndex = 0;

 private int yIndex = 0;

 //Main gui variables

 private JFrame pictureFrame;

 private JScrollPane scrollPane;

 //information bar variables

 private JLabel xLabel;

 private JButton xPrevButton;

 private JButton yPrevButton;

 private JButton xNextButton;

 private JButton yNextButton;

 private JLabel yLabel;

 private JTextField xValue;

 private JTextField yValue;

 private JLabel rValue;

 private JLabel gValue;

 private JLabel bValue;

 private JLabel colorLabel;

 private JPanel colorPanel;

 // menu components

 private JMenuBar menuBar;

 private JMenu zoomMenu;

 private JMenuItem twentyFive;

 private JMenuItem fifty;

 private JMenuItem seventyFive;

 private JMenuItem hundred;

 private JMenuItem hundredFifty;

 private JMenuItem twoHundred;

 private JMenuItem fiveHundred;

 /** The picture being explored */

 private DigitalPicture picture;

 /** The image icon used to display the

picture */

 private ImageIcon scrollImageIcon;

 /** The image display */

 private ImageDisplay imageDisplay;

 /** the zoom factor (amount to zoom) */

 private double zoomFactor;

 /** the number system to use, 0 means

starting at 0,

 * 1 means starting at 1 */

 private int numberBase=0;

There's not much to be said about the instance variables at this point. We will be
referring back to them as the explanation of the PictureExplorer class progresses.

The constructor

I explained the constructor in the previous two lessons. However, I have shown it again
in Listing 5 for easy reference.

Listing 5. The constructor for the PictureExplorer class.

 /**

 * Public constructor

 * @param picture the picture to explore

 */

 public PictureExplorer(DigitalPicture

picture){

 // set the fields

 this.picture = picture;

 zoomFactor = 1;

 // create the window and set things up

 createWindow();

 }//end constructor

Call the createWindow method

The constructor saves the incoming parameter, (which refers to the picture to be
displayed in the content area of the GUI) and sets a value of 1 into the instance variable
named zoomFactor. Then it calls the createWindow method where the completion of
construction is accomplished.

When the createWindow method returns, the constructor returns the new
PictureExplorer object's reference to the explore method of the SimplePicture class

(or perhaps to a method in a class of your own design) from which the constructor was
called.

An anonymous object

The explore method doesn't save the PictureExplorer object's reference in a named
reference variable. Therefore, the PictureExplorer object is an anonymous object that
remains on the screen until the user clicks the X-button in the upper-right corner of
Figure 1 or the program terminates.

The createWindow method

The createWindow method of the PictureExplorer class is shown in its entirety in
Listing 6.

Listing 6. The createWindow method.

 /**

 * Creates the JFrame and sets everything up

 */

 private void createWindow(){

 // create the picture frame and initialize

it

 createAndInitPictureFrame();

 // set up the menu bar

 setUpMenuBar();

 //create the information panel

 createInfoPanel();

 //creates the scrollpane for the picture

 createAndInitScrollingImage();

 // show the picture in the frame at the

size it needs

 // to be

 pictureFrame.pack();

 pictureFrame.setVisible(true);

 }//end createWindow method

A sequence of method calls

As you learned in the earlier lessons, the createWindow method consists of:

 A sequence of four calls to other methods to construct various parts of the
PictureExplorer object.

 A call to the pack method to set the JFrame to the correct size.
 A call to the setVisible method to cause the JFrame object to become visible on

the screen.

I explained the following three methods in the earlier lessons:

 createAndInitPictureFrame
 setUpMenuBar
 createInfoPanel

I will explain the createAndInitScrollingImage method in this lesson.

The createAndInitScrollingImage method

The beginning of the createAndInitScrollingImage method is shown in the code
fragment in Listing 7. (Note the change in background color, indicating that the
discussion has moved down by one level in the method call stack.)

Listing 7. Beginning of the createAndInitScrollingImage method.

 /**

 * Create and initialize the scrolling image

 */

 private void createAndInitScrollingImage(){

 scrollPane = new JScrollPane();

 BufferedImage bimg =

picture.getBufferedImage();

 imageDisplay = new ImageDisplay(bimg);

A new JScrollPane object

Listing 7 begins by instantiating a new object of the JScrollPane class, which will be
added to the GUI later as the top-level container for the image. I will have more to say
about this later.

Get a reference to the BufferedImage object

Then Listing 7 calls the getBufferedImage method on the Picture object to get a
reference to the BufferedImage object that belongs to the picture. (This is the Picture
object that was received as a parameter when the PictureExplorer object was
instantiated.)

To make a long story short, the BufferedImage object encapsulates the actual image
that we see when we look at a display of a Picture object.

Instantiate an ImageDisplay object

Then things get really interesting. Listing 7 passes the BufferedImage object's
reference to the constructor for a class that we haven't touched on yet: the
ImageDisplay class.

The ImageDisplay class

A complete listing of the source code for the ImageDisplay class is shown in Listing 25.

The beginning of the ImageDisplay class is shown in the code fragment in Listing
8. (Note the change of background color as we put the createAndInitScrollingImage
method of the PictureExplorer class on the back burner while we discuss the
ImageDisplay class.)

Listing 8. Beginning of the ImageDisplay class.

import javax.swing.*;

import java.awt.*;

import java.awt.image.*;

/**

 * Class to display an image and the current

location with

 * a + sign

 *

 * Copyright Georgia Institute of Technology

2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class ImageDisplay extends JPanel

 implements

Scrollable{

 //////////// fields (attributes

////////////////////////

 private Image image; //the image to

draw

 private Dimension prefSize;//preferred size

of display

 private int currentX = 0; //the current x

index

 private int currentY = 0; //the current y

index

Listing 8 simply declares four instance variables and initializes some of them. That's not
too exciting, so we won't dwell on that.

Extends JPanel and implements Scrollable

It is important to note that an object of the ImageDisplay class extends the JPanel
class and implements the Scrollable interface.

Implementation of the Scrollable interface makes the object suitable for being
displayed in a JScrollPane window later.

The fact that the ImageDisplay class extends JPanel makes an object of the class a
container into which other components can be placed.

Can fire mouse events and display tool tips

Perhaps more important, as a subclass of JPanel, the ImageDisplay object has the
ability to fire mouse events and can register MouseListener and
MouseMotionListener objects to handle those events.

Finally, being a subclass of JPanel gives the object to ability to display tool tip text when
the mouse pointer lingers over the object.

The first overloaded constructor

Listing 9 shows the first of two overloaded constructors for the ImageDisplay
class. This is the constructor that was called by the last statement in Listing 7.

Listing 9. The first overloaded constructor.

 /**

 * Constructor that takes the image to

display

 * @param theImage the image to display

 */

 public ImageDisplay(Image theImage){

 image = theImage;

 prefSize = new Dimension(

image.getWidth(this),image.getHeight(this));

 setPreferredSize(prefSize);

 revalidate();

 }

Except for the last statement, the code in Listing 9 is
straightforward. That code saves a reference to the
incoming BufferedImage object as the superclass
Image type and sets the preferred size of the new object
to the width and the height of the image.

The call to the revalidate method

The typical explanation for a need to call the revalidate
method is that the call causes the layout manager to re-
layout the component and all of its children. However, since this component doesn't yet
contain any children, I can't explain why the author chose to call revalidate at this
point. I will leave this as an exercise for the student to ponder.

The second overloaded constructor

An ImageObserver
A reference to this object is

passed to the getWidth and

getHeight methods as an

ImageObserver. If you know

what this means, good. If not,

don't worry about it. It's

probably not important in this

context.

The second of two overloaded constructors is shown in Listing 10.

Listing 10. The second overloaded constructor.

 /**

 * Constructor that takes the image and

current x and y

 * @param theImage the image to display

 * @param x the current x value to use

 * @param y the current y value to use

 */

 public ImageDisplay(Image theImage, int x,

int y)

 {

 this(theImage);

 currentX = x;

 currentY = y;

 }

This constructor begins by using the this keyword to call the constructor shown in
Listing 9. When that constructor returns, this constructor saves two coordinate values
received as incoming parameters in two of the instance variables shown in Listing 8. By
default, these two variables have a value of zero, and the constructor shown in Listing 9
doesn't change those values.

Methods of the ImageDisplay class

There are several methods defined in the ImageDisplay class, which I will subdivide
into three categories:

 Accessor methods
 Scrollable methods
 The paintComponent method

Accessor methods

The code in the accessor methods is very straightforward. The accessor methods
provide access for getting or setting the values in three of the instance variables shown
in Listing 8. The name of each method indicates its purpose.

The accessor methods are:

 getImage
 getCurrentX
 getCurrentY
 setCurrentX
 setCurrentY
 setImage

Scrollable methods

The scrollable methods consist of five methods that are declared in the Scrollable
interface and provide for communication between the ImageDisplay object and its
container, which is an object of the JScrollPane class.

These methods are also accessor methods of the get variety, and the code in the
methods is not complex. Two of the methods return an int value having to do with the
scroll-bar movement increments.

Two other methods return a boolean value having to do with how the size of the object
is to be taken into account when the ImageDisplay object is displayed in the
JScrollPane object.

One method returns a reference to an object of the class Dimension, which is the
preferred display size of the ImageDisplay object.

The paintComponent method

The paintComponent method is called when it is time to actually render the image
encapsulated in the ImageDisplay object on the screen. This is a fairly long and fairly
complex method.

I'm not going to try to explain this method in this document. It is full of computations
based on locations, measurements, and dimensions. It is almost necessary to sit down
with the code, a pencil, and a sheet of graph paper to make sense out of the code.

Once again, I will leave it as an exercise for the student to analyze and understand this
method.

Back to the createAndInitScrollingImage method

That brings us back to the createAndInitScrollingImage method where we left off in
Listing 7.

The code in Listing 11 causes the PictureExplorer object to be registered as a listener
object for mouse events fired by the ImageDisplay object. In other words, whenever
the user clicks or drags the mouse in the image, code belonging to the PictureExplorer
object will be executed to handle events fired by the ImageDisplay object.

Listing 11. Register PictureExplorer object as a listener object.

imageDisplay.addMouseMotionListener(this);

imageDisplay.addMouseListener(this);

To understand what is going on here, we need to examine several methods that are
defined in the PictureExplorer class, so I will once again change background colors for
the code fragments.

PictureExplorer class implements listener interfaces

If you examine Listing 23, you will see that the PictureExplorer class implements the
following listener interfaces:

 ActionListener
 MouseListener
 MouseMotionListener

At this point in the lesson, we are interested only in the last two items in the above
list. (We will get to the ActionListener interface later in this lesson.)

Must define concrete event-handler methods

Because the class implements the MouseListener interface, it must provide concrete
definitions for the following event-handler methods. (Recall that concrete method
definitions may be empty methods.)

 mouseClicked
 mouseEntered
 mouseExited
 mousePressed
 mouseReleased

Also, because the class implements the MouseMotionListener interface, it must
provide concrete definitions for the following event-handler methods:

 mouseDragged
 mouseMoved

The mouseClicked and mousePressed event handlers

I will begin with the methods of the MouseListener interface. Of the five methods
declared in that interface, only the two shown in Listing 12 contain any code. The
bodies of the other three are completely empty, meaning that when a matching event is
fired and the method is called, control returns silently to the calling method with no
action being taken.

Listing 12. The mouseClicked and mousePressed event handlers.

 /**

 * Method called when the mouse is clicked

 * @param e the mouse event

 */

 public void mouseClicked(MouseEvent e){

 displayPixelInformation(e);

 }//end mouseClicked method

 /**

 * Method called when the mouse button is

pushed down

 * @param e the mouse event

 */

 public void mousePressed(MouseEvent e){

 displayPixelInformation(e);

 }//end mousePressed method

Common behavior

The behavior of both event-handler methods in Listing 12 is the same. In both cases,
the displayPixelInformation method is called, passing a reference to the MouseEvent
object received as a parameter by the event handler to the method.

Before getting into the code in the displayPixelInformation method, however, let's take
a look at the event handlers for the MouseMotionListener interface.

The mouseDragged event handler

One of the two methods declared in the MouseMotionListener interface
(mouseMoved) has an empty body. The other method, which is not empty, is shown in
Listing 13.

Listing 13. The mouseDragged event handler.

 /**

 * Called when the mouse is dragged (button

held down and

 * moved)

 * @param e the mouse event

 */

 public void mouseDragged(MouseEvent e){

 displayPixelInformation(e);

 }//end mouseDragged method

More common behavior

As you can see, the behavior of the event handler in Listing 13 is identical to the
behavior of the two event handlers in Listing 12. Therefore, it is time for us to take a
look at the method named displayPixelInformation.

The displayPixelInformation method

There are three overloaded versions of methods named displayPixelInformation
defined in the PictureExplorer class. The version of the displayPixelInformation
method that is called by the three event handlers discussed above is shown in Listing
14.

Listing 14. The displayPixelInformation method.

 /**

 * Method to display pixel information based

on a mouse

 * event

 * @param e a mouse event

 */

 private void

displayPixelInformation(MouseEvent e)

 {

 // get the cursor x and y

 int cursorX = e.getX();

 int cursorY = e.getY();

 // get the x and y in the original (not

scaled image)

 int pictureX = (int)(cursorX/zoomFactor +

numberBase);

 int pictureY = (int)(cursorY/zoomFactor +

numberBase);

 // display the information for this x and y

 displayPixelInformation(pictureX,pictureY);

 }

Three overloaded displayPixelInformation methods

As mentioned above, there are three overloaded methods named
displayPixelInformation defined in the PictureExplorer class. Two of the methods
receive coordinate information as incoming parameters.

Of these two, one receives the coordinate information as type int while the other
receives the coordinate information as type String.

Purpose of the overloaded displayPixelInformation methods

The purpose of these methods is to display the coordinate and color information in the
top panel in Figure 1 whenever that information changes.

I explained two overloaded versions of the method in the earlier lesson titled Building
the Information Panel for the PictureExplorer GUI: Multimedia Programming with Java,
(See Resources.)

An incoming parameter of type MouseEvent

The version of the method that is called in Listing 12 and Listing 13 doesn't receive
coordinate information directly as incoming parameters. Instead, this version of the
method receives a reference to a MouseEvent object and must extract the coordinate
information from that object.

Get the coordinate values for the mouse pointer

Listing 14 begins by calling the getX and getY methods on the incoming MouseEvent
object to get the coordinate values of the mouse pointer when the event was
fired. (Note that these two methods return the coordinates of the mouse pointer relative
to the upper-left corner of the component (JPanel) that fired the event even when that
corner of the component is outside the visible limits of
the JScrollPane.)

Compensate for the zoomFactor

If the zoomFactor has previously been used to zoom in
or out on the image, the effective size of the JPanel has
been increased or decreased accordingly.

Listing 14 divides the coordinate values returned by the getX and getY methods by the
zoomFactor to remove the effects of zooming and convert the coordinates back to the
actual coordinates of the pixel at the location of the mouse pointer when the event was
fired.

Call another overloaded displayPixelInformation method

Then Listing 14 passes the coordinate values in a call to one of the other overloaded
versions of the displayPixelInformation method to cause the coordinate and color
information to be displayed as shown in the upper portion of Figure 1.

Remainder of the createAndInitScrollingImage method

Returning once more to where we left off in the createAndInitScrollingImage method
in Listing 11, the remaining code in the method is shown in Listing 15.

Listing 15. Remainder of the createAndInitScrollingImage method.

 imageDisplay.setToolTipText("Click a mouse

button on "

 + "a pixel to see the pixel

information");

 scrollPane.setViewportView(imageDisplay);

 pictureFrame.getContentPane().add(

The numberBase
I discussed the use of the

variable named numberBase,

for which the value can be

only 0 or 1, in an earlier

lesson.

 scrollPane,

BorderLayout.CENTER);

 }

Set text for a toolTip

Listing 15 begins by calling the setToolTipText method on the ImageDisplay object to
establish the text that is displayed when "the mouse pointer lingers over the image" in
Figure 1.

Put the ImageDisplay object in the scroll pane

Following this, Listing 15 calls the setViewportView method on the JScrollPane object,
passing a reference to the ImageDisplay as a parameter. Then Listing 15 adds the
JScrollPane object to the center of the content pane on the JFrame object.

The combination of these two method calls causes the ImageDisplay object to be
displayed in the CENTER location (with or without scroll bars) in the JFrame object as
shown in Figure 1.

Manually resizing the JFrame object

The JFrame object can be manually resized. The scroll bars appear only when the size
of the image is greater than the current size of the viewable area of the JFrame.

The end of the createAndInitScrollingImage method

That signals the end of the createAndInitScrollingImage method. Hopefully you
understand by how just how the image is displayed in a scrollable window in a
PictureExplorer object.

Additional methods of the PictureExplorer class

It may seem to you that we have been working on the PictureExplorer class for a long
time. Believe it or not, however, we aren't finished with the PictureExplorer class
yet. There are several more methods that I need to explain.

The actionPerformed method

In the earlier lesson titled Getting Started with the PictureExplorer Class: Multimedia
Programming with Java (see Resources), I explained that the PictureExplorer class
implements the ActionListener interface and registers and object of itself as an action
listener on every item in the Zoom menu shown in Figure 1.

I also explained that this means that whenever an item on the Zoom menu is selected,
the actionPerformed method defined in the PictureExplorer class is called. However,
I didn't explain the behavior of the actionPerformed method.

That time to explain the actionPerformed has come. The method is shown in its
entirety in Listing 16.

Listing 16. The actionPerformed method.

 /**

 * Controls the zoom menu bar

 *

 * @param a the ActionEvent

 */

 public void actionPerformed(ActionEvent a){

 if(a.getActionCommand().equals("Update")){

 this.repaint();

 }

 if(a.getActionCommand().equals("25%")){

 this.zoom(.25);

 enableZoomItems();

 twentyFive.setEnabled(false);

 }

 if(a.getActionCommand().equals("50%")){

 this.zoom(.50);

 enableZoomItems();

 fifty.setEnabled(false);

 }

 if(a.getActionCommand().equals("75%")){

 this.zoom(.75);

 enableZoomItems();

 seventyFive.setEnabled(false);

 }

 if(a.getActionCommand().equals("100%")){

 this.zoom(1.0);

 enableZoomItems();

 hundred.setEnabled(false);

 }

 if(a.getActionCommand().equals("150%")){

 this.zoom(1.5);

 enableZoomItems();

 hundredFifty.setEnabled(false);

 }

 if(a.getActionCommand().equals("200%")){

 this.zoom(2.0);

 enableZoomItems();

 twoHundred.setEnabled(false);

 }

 if(a.getActionCommand().equals("500%")){

 this.zoom(5.0);

 enableZoomItems();

 fiveHundred.setEnabled(false);

 }

 }

The actionPerformed method is long, but it isn't complicated.

An ActionEvent object

Whenever a component fires an action event, it instantiates a new object of the
ActionEvent class and passes that object's reference in a call to the actionPerformed
methods of every ActionListener object that has been registered to be notified of the
event.

The action command string

Among other things, the ActionEvent object encapsulates a reference to a String
object that can be retrieved by calling the getActionCommand method on the
reference to the ActionEvent object.

Eight if statements

The code in the actionPerformed method (see Listing 16) consists of eight if
statements. Code in the body of each if statement extracts the string from the incoming
ActionEvent object. The value of the string is tested against eight different literal string
values to determine what action, if any, to take.

Seven of the eight if statements test for string values that identify one of the seven
items on the Zoom menu shown in Figure 1.

The other if statement tests for the string value "Update". When it is determined that
the ActionEvent object encapsulates this string value, the repaint method is called,
causing the entire PictureExplorer object to be repainted on the computer screen. I
will dispose of that case first.

A string value of "update"

There isn't any code in the PictureExplorer class that instantiates an ActionEvent
object and encapsulates the string "Update" in the object. That means that this
capability is provided for the benefit of other programs that may use of an object of the
PictureExplorer class and may have a need to cause the object to repaint itself on the
screen.

The cases of the seven Zoom menu items

You saw the code fragment shown in Listing 17 in the earlier lesson titled Getting
Started with the PictureExplorer Class: Multimedia Programming with Java (see
Resources).

Listing 17. Register the PictureExplorer object as an ActionListener on each
menu item.

 // add the action listeners

 twentyFive.addActionListener(this);

 fifty.addActionListener(this);

 seventyFive.addActionListener(this);

 hundred.addActionListener(this);

 hundredFifty.addActionListener(this);

 twoHundred.addActionListener(this);

 fiveHundred.addActionListener(this);

The purpose of this code was to register the PictureExplorer object as an
ActionListener on each of the seven menu items shown in the Zoom menu in Figure 1.

The default string values

By default, when a menu item fires an ActionEvent, the string that describes the menu
item is encapsulated in the ActionEvent object that is passed to the actionPerformed
method of each registered action listener.

Therefore, when the menu items shown in Figure 1 fire action events, the strings "25%",
"50%", "75%", etc., are encapsulated in the ActionEvent objects. This is exactly what
seven of the eight if statements in Listing 16 are testing for.

The code for a true condition

If any one of those seven if statements in Listing 16 returns true, very similar code is
executed. That code:

 Calls the zoom method passing a numeric value as a parameter.
 Calls the enableZoomItems method.
 Calls the setEnabled method on a reference to the menu item that fired the

event, passing false as a parameter.

I will explain these three actions in reverse order, which is generally the order of
increasing complexity.

Calling the setEnabled method

The last of the three actions is to call the setEnabled method on the item that fired the
event, passing false as a parameter.

This disables that particular menu item, making it incapable of being selected again until
it has been enabled. For example, the menu item labeled "100%" has been disabled in
Figure 1, because that is the current zoom level. (There is no point in being able to
select a Zoom menu item that matches the current zoom level.)

The enableZoomItems method

Immediately prior to making the call to the setEnabled method, the code in Listing 16
calls the enableZoomItems method. This method is shown in Listing 18.

Listing 18. The enableZoomItems method.

 /**

 * Method to enable all menu commands

 */

 private void enableZoomItems(){

 twentyFive.setEnabled(true);

 fifty.setEnabled(true);

 seventyFive.setEnabled(true);

 hundred.setEnabled(true);

 hundredFifty.setEnabled(true);

 twoHundred.setEnabled(true);

 fiveHundred.setEnabled(true);

 }

The code in Listing 18 enables all seven menu items. The effect of the last two
statements inside the body of each of the last seven if statements in Listing 16 is to
enable all seven menu items, and then disable the one that fired the event.

That is the easy part. The more complex part of handling the action event is the call to
the zoom method as the first statement in the body of each of the last seven if
statements in Listing 16.

The beginning of the zoom method

The zoom method begins in Listing 19.

Note first that each call to the zoom method in Listing 16 passes the zoom factor
(ranging from 0.25 to 5.0) as a parameter to the zoom method. As you will see, this
factor is used to scale the size of the displayed image in the PictureExplorer object.

Listing 19. The beginning of the zoom method.

 /**

 * Zooms in the on picture by scaling the

image.

 * It is extremely memory intensive.

 * @param factor the amount to zoom by

 */

 public void zoom(double factor)

 {

 // save the current zoom factor

 zoomFactor = factor;

 // calculate the new width and height and

get an image

 // that size

 int width = (int)

(picture.getWidth()*zoomFactor);

 int height = (int)

(picture.getHeight()*zoomFactor);

 BufferedImage bimg =

picture.getBufferedImage();

Save the new zoom state

Listing 19 begins by saving the incoming parameter in the instance variable named
zoomFactor. From that point forward, the contents of that variable can be queried by
other methods that need to know the current zoom state.

Calculate the zoomed size

Then Listing 19 calculates the required width and height of the displayed image by
multiplying the raw dimensions of the picture by the zoomFactor.

Get a reference to the buffered image

Finally Listing 19 gets a reference to the BufferedImage object that actually contains
the image in the Picture object.

Replace the current image with a scaled image

Listing 20 calls the setImage method on the ImageDisplay object to cause the image
being displayed to be replaced with a new scaled image.

Listing 20. Replace the current image with a scaled image.

 // set the scroll image icon to the new image

imageDisplay.setImage(bimg.getScaledInstance(width,

 height,

Image.SCALE_DEFAULT));

The interesting code is in the parameter list

The interesting code in Listing 20 is the code in the parameter list when the setImage
method is called. This code calls the getScaledInstance method on the
BufferedImage object, passing the width, height, and a constant named
SCALE_DEFAULT as parameters.

What does Sun have to say about this?

Figure 3 contains some of what Sun has to say about the getScaledInstance method.

Figure 3. Partial description of the getScaledInstance method.

Creates a scaled version of this image.

A new Image object is returned which will render the

image at the specified width and height by default.

In other words, a new scaled Image object is created and passed to the setImage
method of the ImageDisplay object to be displayed in place of the image currently
being displayed.

What about the constant named SCALE_DEFAULT

The constant named SCALE_DEFAULT that is passed to the getScaledInstance
method tells the method to use a default algorithm to scale the image. Several other
optional constants are available that generally trade off speed against the smoothness
of the scaled image.

The remainder of the zoom method

The first three statements in Listing 21 take care of some housekeeping chores insofar
as the ImageDisplay object is concerned.

Listing 21. The remainder of the zoom method.

 imageDisplay.setCurrentX((int) (xIndex *

zoomFactor));

 imageDisplay.setCurrentY((int) (yIndex *

zoomFactor));

 imageDisplay.revalidate();

 checkScroll(); // check if need to

reposition scroll

 }

Not a housekeeping matter

The last statement in Listing 21 is another matter. This statement calls the checkScroll
method for the purpose of checking to determine if the current position is in the viewing
area and if not, to scroll to center the current position if possible.

Partial listing of the checkScroll method

A partial listing of the checkScroll method is shown in Listing 22. (You can view the
method in its entirety in Listing 23 near the end of the lesson.)

Listing 22. Partial listing of the checkScroll method.

 /**

 * Method to check that the current position

is in the

 * viewing area and if not scroll to center

the current

 * position if possible

 */

 public void checkScroll()

 {

 // get the x and y position in pixels

 int xPos = (int) (xIndex * zoomFactor);

 int yPos = (int) (yIndex * zoomFactor);

 // only do this if the image is larger than

normal

 if (zoomFactor > 1) {

 // get the rectangle that defines the

current view

 JViewport viewport =

scrollPane.getViewport();

 Rectangle rect = viewport.getViewRect();

//code deleted for brevity

 // move the viewport upper left point

 viewport.scrollRectToVisible(

 new

Rectangle(viewX,viewY,rectWidth,rectHeight));

 }

 }

Wanted: source code, pencil, and graph paper

This is another one of those cases where you almost need to sit down with the source
code, a pencil, and a sheet of graph paper to sketch and figure out what is going on. I
decided to leave that as an exercise for the student and deleted the tedious parts of the
code in Listing 22, keeping the code that wraps around that tedious code.

Scrolling the image programatically

The main thing that I wanted to show you is that it is possible to:

 Get a reference to an object of type JViewport that defines the current view of a
JScrollPane object

 Call the scrollRectToVisible method on that object to programatically scroll the
view so that the Rectangle object passed as a parameter to the method
becomes visible.

In other words, you can write code that will emulate a user manually scrolling the view
by using the scrollbars shown in Figure 1.

The end of the zoom method

As shown in Listing 21, the call to the checkScroll method signals the end of the zoom
method, which began in Listing 19.

Remaining methods of the PictureExplorer class

That leaves the following methods of the PictureExplorer class that I haven't explained
yet.

 changeToBaseOne()
 setTitle(String title)
 repaint()
 isLocationInPicture(int x, int y)
 clearInformation()
 main(String args[])

Generally speaking, the names of the methods in the above list indicate their
purpose. (The main method is provided so that the class can be tested as a stand-
alone application.)

The code in each of these methods is straightforward. Therefore, I won't bore you with
an explanation. You can view the code for all of the methods in Listing 23.

A FocusTraversalPolicy Class

In addition, the PictureExplorer class defines a private member class named
PictureExplorerFocusTraversalPolicy, which extends the class named
FocusTraversalPolicy.

You learned in the earlier lesson titled Getting Started with the PictureExplorer
Class: Multimedia Programming with Java (see Resources) that an object of the
PictureExplorerFocusTraversalPolicy class is used to set the focus traversal policy of
the PictureExplorer object.

There is nothing trivial about the code in the definition of this member class. However,
focus traversal policy is a major topic and one which probably deserves one or two
lessons in its own right. Therefore, I will simply have to leave the explanation of this
class for a future lesson.

That concludes the explanation of the PictureExplorer class.

Run the program

I encourage you to make a copy of the source code for the PictureExplorer class. Put
it in your current directory along with your program files and then open the file in your
IDE. (Make certain that the current directory appears in the classpath to the left of
Ericson's media library.)

Experiment with the PictureExplorer code, making changes, and observing the results
of your changes. Make certain that you can explain why your changes behave as they
do.

Also experiment with the PictureExplorer onscreen GUI. Try some different image
files and see if the color values reported by the GUI make sense to you.

Summary

In the previous two lessons, you learned about the overall construction of the
PictureExplorer GUI shown in Figure 1. You also learned how to construct the Zoom
menu and how to register event listener objects on the items in the menu.

You learned how to construct the infoPanel in the NORTH location of the GUI in Figure
1. You also learned how to register event listener objects on the components in that
panel making use of objects of anonymous classes.

Along the way, you also learned about some other interesting topics including:

 The use of BoxLayout
 The class file naming scheme.
 The use of getResources to get the URL of a file
 The use of a class loader to load a resource file

In this lesson, you learned:

 How the image is displayed (with scrolling) in the lower portion of Figure 1.
 How mouse events are used to set and move the cursor in the image
 How mouse events cause color and location information to be displayed in the

upper portion of Figure 1.

You also learned about a class named ImageDisplay, which you may find useful in
programs of your own design.

By now you should have a pretty good handle on the PictureExplorer class and should
be able to incorporate it into programs of your own.

What's next?

Future lesssons will explain a variety of topics including:

 Alpha Transparency and the Picture class
 A Comparison of the HSB and RGB Color Models
 Statistical Processing of Digital Photographs
 Adding 3D Contour Mapping to Ericson's Multimedia Library

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA
 Vector Cad-Cam XI Lathe Tutorial
 Classification of 3D to 2D projections
 Color model from Wikipedia
 Light and color: an introduction by Norman Koren
 Color Principles - Hue, Saturation, and Value
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://en.wikipedia.org/wiki/Color_model
../Light%20and%20color:%20%20an%20introduction
http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#(HSV)
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm

 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight
404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
408 Processing Image Pixels, Performing Convolution on Images
410 Processing Image Pixels, Understanding Image Convolution in Java
412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
416 Processing Image Pixels, An Improved Image-Processing Framework in
Java
418 Processing Image Pixels, Creating Visible Watermarks in Java
450 A Framework for Experimenting with Java 2D Image-Processing Filters
452 Using the Java 2D LookupOp Filter Class to Process Images
454 Using the Java 2D AffineTransformOp Filter Class to Process Images
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble
Images
458 Using the Java 2D BandCombineOp Filter Class to Process Images
460 Using the Java 2D ConvolveOp Filter Class to Process Images
462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to
Process Images

 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java
 350 3D Displays, Color Distance, and Edge Detection
 351 A Slider-Controlled Softening Program for Digital Photos
 352 Adding Animated Movement to Your Java Application
 353 A Slider-Controlled Sharpening Program for Digital Photos
 354 The DigitalPicture Interface
 355 The HSB Color Model
 356 The show Method and the PictureFrame Class
 357 An HSB Color-Editing Program for Digital Photos
 358 Applying Affine Transforms to Picture Objects
 359 Creating a lasso for editing digital photos in Java
 360 Wrapping Up the SimplePicture Class
 361 A Temperature and Tint Editing Program for Digital Photos
 362 Getting Started with the PictureExplorer Class

http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm
http://www.dickbaldwin.com/java/Java354.htm
http://www.dickbaldwin.com/java/Java355.htm
http://www.dickbaldwin.com/java/Java356.htm
http://www.dickbaldwin.com/java/Java357.htm
http://www.dickbaldwin.com/java/Java358.htm
http://www.dickbaldwin.com/java/Java359.htm
http://www.dickbaldwin.com/java/Java360.htm
http://www.dickbaldwin.com/java/Java361.htm
http://www.dickbaldwin.com/java/Java362.htm

 363 Redeye Correction in Digital Photographs
 364 Building the Information Panel for the PictureExplorer GUI
 365 Using Flood-Fill in Java Programs

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 23
through Listing 25 below.

Listing 23. Source code for Ericson's PictureExplorer class.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.awt.image.*;

import javax.swing.border.*;

/**

 * Displays a picture and lets you explore the

picture by

 * displaying the x, y, red, green, and blue values

of the

 * pixel at the cursor when you click a mouse

button or

 * press and hold a mouse button while moving the

cursor.

 * It also lets you zoom in or out. You can also

type in

 * a x and y value to see the color at that

location.

 *

 * Originally created for the Jython Environment

for

 * Students (JES).

 * Modified to work with DrJava by Barbara Ericson

 *

 * Copyright Georgia Institute of Technology 2004

 * @author Keith McDermottt, gte047w@cc.gatech.edu

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class PictureExplorer implements

 MouseMotionListener, ActionListener,

MouseListener{

 // current x and y index

 private int xIndex = 0;

 private int yIndex = 0;

 //Main gui variables

 private JFrame pictureFrame;

 private JScrollPane scrollPane;

 //information bar variables

 private JLabel xLabel;

http://www.dickbaldwin.com/java/Java363.htm
http://www.dickbaldwin.com/java/Java364.htm
http://www.dickbaldwin.com/java/Java365.htm

 private JButton xPrevButton;

 private JButton yPrevButton;

 private JButton xNextButton;

 private JButton yNextButton;

 private JLabel yLabel;

 private JTextField xValue;

 private JTextField yValue;

 private JLabel rValue;

 private JLabel gValue;

 private JLabel bValue;

 private JLabel colorLabel;

 private JPanel colorPanel;

 // menu components

 private JMenuBar menuBar;

 private JMenu zoomMenu;

 private JMenuItem twentyFive;

 private JMenuItem fifty;

 private JMenuItem seventyFive;

 private JMenuItem hundred;

 private JMenuItem hundredFifty;

 private JMenuItem twoHundred;

 private JMenuItem fiveHundred;

 /** The picture being explored */

 private DigitalPicture picture;

 /** The image icon used to display the picture */

 private ImageIcon scrollImageIcon;

 /** The image display */

 private ImageDisplay imageDisplay;

 /** the zoom factor (amount to zoom) */

 private double zoomFactor;

 /** the number system to use, 0 means starting at

0,

 * 1 means starting at 1 */

 private int numberBase=0;

 /**

 * Public constructor

 * @param picture the picture to explore

 */

 public PictureExplorer(DigitalPicture picture)

 {

 // set the fields

 this.picture=picture;

 zoomFactor=1;

 // create the window and set things up

 createWindow();

 }

 /**

 * Changes the number system to start at one

 */

 public void changeToBaseOne()

 {

 numberBase=1;

 }

 /**

 * Set the title of the frame

 *@param title the title to use in the JFrame

 */

 public void setTitle(String title)

 {

 pictureFrame.setTitle(title);

 }

 /**

 * Method to create and initialize the picture

frame

 */

 private void createAndInitPictureFrame()

 {

 pictureFrame = new JFrame(); // create the

JFrame

 //allow the user to resize it

 pictureFrame.setResizable(true);

 // use border layout

 pictureFrame.getContentPane().setLayout(

 new

BorderLayout());

 // when close stop

 pictureFrame.setDefaultCloseOperation(

JFrame.DISPOSE_ON_CLOSE);

 pictureFrame.setTitle(picture.getTitle());

 PictureExplorerFocusTraversalPolicy newPolicy =

 new

PictureExplorerFocusTraversalPolicy();

 pictureFrame.setFocusTraversalPolicy(newPolicy);

 }

 /**

 * Method to create the menu bar, menus, and menu

items

 */

 private void setUpMenuBar()

 {

 //create menu

 menuBar = new JMenuBar();

 zoomMenu = new JMenu("Zoom");

 twentyFive = new JMenuItem("25%");

 fifty = new JMenuItem("50%");

 seventyFive = new JMenuItem("75%");

 hundred = new JMenuItem("100%");

 hundred.setEnabled(false);

 hundredFifty = new JMenuItem("150%");

 twoHundred = new JMenuItem("200%");

 fiveHundred = new JMenuItem("500%");

 // add the action listeners

 twentyFive.addActionListener(this);

 fifty.addActionListener(this);

 seventyFive.addActionListener(this);

 hundred.addActionListener(this);

 hundredFifty.addActionListener(this);

 twoHundred.addActionListener(this);

 fiveHundred.addActionListener(this);

 // add the menu items to the menus

 zoomMenu.add(twentyFive);

 zoomMenu.add(fifty);

 zoomMenu.add(seventyFive);

 zoomMenu.add(hundred);

 zoomMenu.add(hundredFifty);

 zoomMenu.add(twoHundred);

 zoomMenu.add(fiveHundred);

 menuBar.add(zoomMenu);

 // set the menu bar to this menu

 pictureFrame.setJMenuBar(menuBar);

 }

 /**

 * Create and initialize the scrolling image

 */

 private void createAndInitScrollingImage()

 {

 scrollPane = new JScrollPane();

 BufferedImage bimg = picture.getBufferedImage();

 imageDisplay = new ImageDisplay(bimg);

 imageDisplay.addMouseMotionListener(this);

 imageDisplay.addMouseListener(this);

 imageDisplay.setToolTipText("Click a mouse

button on "

 + "a pixel to see the pixel

information");

 scrollPane.setViewportView(imageDisplay);

 pictureFrame.getContentPane().add(

 scrollPane,

BorderLayout.CENTER);

 }

 /**

 * Creates the JFrame and sets everything up

 */

 private void createWindow()

 {

 // create the picture frame and initialize it

 createAndInitPictureFrame();

 // set up the menu bar

 setUpMenuBar();

 //create the information panel

 createInfoPanel();

 //creates the scrollpane for the picture

 createAndInitScrollingImage();

 // show the picture in the frame at the size it

needs

 // to be

 pictureFrame.pack();

 pictureFrame.setVisible(true);

 }

 /**

 * Method to set up the next and previous buttons

for the

 * pixel location information

 */

 private void setUpNextAndPreviousButtons()

 {

 // create the image icons for the buttons

 Icon prevIcon = new ImageIcon(

SoundExplorer.class.getResource("leftArrow.gif"),

 "previous

index");

 Icon nextIcon = new ImageIcon(

SoundExplorer.class.getResource("rightArrow.gif"),

 "next

index");

 // create the arrow buttons

 xPrevButton = new JButton(prevIcon);

 xNextButton = new JButton(nextIcon);

 yPrevButton = new JButton(prevIcon);

 yNextButton = new JButton(nextIcon);

 // set the tool tip text

 xNextButton.setToolTipText(

 "Click to go to the next x

value");

 xPrevButton.setToolTipText(

 "Click to go to the previous x

value");

 yNextButton.setToolTipText(

 "Click to go to the next y

value");

 yPrevButton.setToolTipText(

 "Click to go to the previous y

value");

 // set the sizes of the buttons

 int prevWidth = prevIcon.getIconWidth() + 2;

 int nextWidth = nextIcon.getIconWidth() + 2;

 int prevHeight = prevIcon.getIconHeight() + 2;

 int nextHeight = nextIcon.getIconHeight() + 2;

 Dimension prevDimension =

 new

Dimension(prevWidth,prevHeight);

 Dimension nextDimension =

 new Dimension(nextWidth,

nextHeight);

 xPrevButton.setPreferredSize(prevDimension);

 yPrevButton.setPreferredSize(prevDimension);

 xNextButton.setPreferredSize(nextDimension);

 yNextButton.setPreferredSize(nextDimension);

 // handle previous x button press

 xPrevButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 xIndex--;

 if (xIndex < 0)

 xIndex = 0;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle previous y button press

 yPrevButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 yIndex--;

 if (yIndex < 0)

 yIndex = 0;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle next x button press

 xNextButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 xIndex++;

 if (xIndex >= picture.getWidth())

 xIndex = picture.getWidth() - 1;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle next y button press

 yNextButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 yIndex++;

 if (yIndex >= picture.getHeight())

 yIndex = picture.getHeight() - 1;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 }

 /**

 * Create the pixel location panel

 * @param labelFont the font for the labels

 * @return the location panel

 */

 public JPanel createLocationPanel(Font labelFont)

{

 // create a location panel

 JPanel locationPanel = new JPanel();

 locationPanel.setLayout(new FlowLayout());

 Box hBox = Box.createHorizontalBox();

 // create the labels

 xLabel = new JLabel("X:");

 yLabel = new JLabel("Y:");

 // create the text fields

 xValue = new JTextField(

 Integer.toString(xIndex +

numberBase),6);

 xValue.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 displayPixelInformation(

xValue.getText(),yValue.getText());

 }

 });

 yValue = new JTextField(

 Integer.toString(yIndex +

numberBase),6);

 yValue.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 displayPixelInformation(

xValue.getText(),yValue.getText());

 }

 });

 // set up the next and previous buttons

 setUpNextAndPreviousButtons();

 // set up the font for the labels

 xLabel.setFont(labelFont);

 yLabel.setFont(labelFont);

 xValue.setFont(labelFont);

 yValue.setFont(labelFont);

 // add the items to the vertical box and the box

to

 // the panel

 hBox.add(Box.createHorizontalGlue());

 hBox.add(xLabel);

 hBox.add(xPrevButton);

 hBox.add(xValue);

 hBox.add(xNextButton);

 hBox.add(Box.createHorizontalStrut(10));

 hBox.add(yLabel);

 hBox.add(yPrevButton);

 hBox.add(yValue);

 hBox.add(yNextButton);

 locationPanel.add(hBox);

 hBox.add(Box.createHorizontalGlue());

 return locationPanel;

 }

 /**

 * Create the color information panel

 * @param labelFont the font to use for labels

 * @return the color information panel

 */

 private JPanel createColorInfoPanel(Font

labelFont)

 {

 // create a color info panel

 JPanel colorInfoPanel = new JPanel();

 colorInfoPanel.setLayout(new FlowLayout());

 // get the pixel at the x and y

 Pixel pixel = new Pixel(picture,xIndex,yIndex);

 // create the labels

 rValue = new JLabel("R: " + pixel.getRed());

 gValue = new JLabel("G: " + pixel.getGreen());

 bValue = new JLabel("B: " + pixel.getBlue());

 // create the sample color panel and label

 colorLabel = new JLabel("Color at location: ");

 colorPanel = new JPanel();

 colorPanel.setBorder(new

LineBorder(Color.black,1));

 // set the color sample to the pixel color

 colorPanel.setBackground(pixel.getColor());

 // set the font

 rValue.setFont(labelFont);

 gValue.setFont(labelFont);

 bValue.setFont(labelFont);

 colorLabel.setFont(labelFont);

 colorPanel.setPreferredSize(new

Dimension(25,25));

 // add items to the color information panel

 colorInfoPanel.add(rValue);

 colorInfoPanel.add(gValue);

 colorInfoPanel.add(bValue);

 colorInfoPanel.add(colorLabel);

 colorInfoPanel.add(colorPanel);

 return colorInfoPanel;

 }

 /**

 * Creates the North JPanel with all the pixel

location

 * and color information

 */

 private void createInfoPanel()

 {

 // create the info panel and set the layout

 JPanel infoPanel = new JPanel();

 infoPanel.setLayout(new BorderLayout());

 // create the font

 Font largerFont =

 new

Font(infoPanel.getFont().getName(),

infoPanel.getFont().getStyle(),14);

 // create the pixel location panel

 JPanel locationPanel =

createLocationPanel(largerFont);

 // create the color informaiton panel

 JPanel colorInfoPanel =

createColorInfoPanel(largerFont);

 // add the panels to the info panel

 infoPanel.add(BorderLayout.NORTH,locationPanel);

infoPanel.add(BorderLayout.SOUTH,colorInfoPanel);

 // add the info panel

 pictureFrame.getContentPane().add(

BorderLayout.NORTH,infoPanel);

 }

 /**

 * Method to check that the current position is in

the

 * viewing area and if not scroll to center the

current

 * position if possible

 */

 public void checkScroll()

 {

 // get the x and y position in pixels

 int xPos = (int) (xIndex * zoomFactor);

 int yPos = (int) (yIndex * zoomFactor);

 // only do this if the image is larger than

normal

 if (zoomFactor > 1) {

 // get the rectangle that defines the current

view

 JViewport viewport = scrollPane.getViewport();

 Rectangle rect = viewport.getViewRect();

 int rectMinX = (int) rect.getX();

 int rectWidth = (int) rect.getWidth();

 int rectMaxX = rectMinX + rectWidth - 1;

 int rectMinY = (int) rect.getY();

 int rectHeight = (int) rect.getHeight();

 int rectMaxY = rectMinY + rectHeight - 1;

 // get the maximum possible x and y index

 int maxIndexX =

(int)(picture.getWidth()*zoomFactor)

 - rectWidth - 1;

 int maxIndexY =

(int)(picture.getHeight()*zoomFactor)

 - rectHeight - 1;

 // calculate how to position the current

position in

 // the middle of the viewing area

 int viewX = xPos - (int) (rectWidth / 2);

 int viewY = yPos - (int) (rectHeight / 2);

 // reposition the viewX and viewY if outside

allowed

 // values

 if (viewX < 0)

 viewX = 0;

 else if (viewX > maxIndexX)

 viewX = maxIndexX;

 if (viewY < 0)

 viewY = 0;

 else if (viewY > maxIndexY)

 viewY = maxIndexY;

 // move the viewport upper left point

 viewport.scrollRectToVisible(

 new

Rectangle(viewX,viewY,rectWidth,rectHeight));

 }

 }

 /**

 * Zooms in the on picture by scaling the image.

 * It is extremely memory intensive.

 * @param factor the amount to zoom by

 */

 public void zoom(double factor)

 {

 // save the current zoom factor

 zoomFactor = factor;

 // calculate the new width and height and get an

image

 // that size

 int width = (int)

(picture.getWidth()*zoomFactor);

 int height = (int)

(picture.getHeight()*zoomFactor);

 BufferedImage bimg = picture.getBufferedImage();

 // set the scroll image icon to the new image

imageDisplay.setImage(bimg.getScaledInstance(width,

 height,

Image.SCALE_DEFAULT));

 imageDisplay.setCurrentX((int) (xIndex *

zoomFactor));

 imageDisplay.setCurrentY((int) (yIndex *

zoomFactor));

 imageDisplay.revalidate();

 checkScroll(); // check if need to reposition

scroll

 }

 /**

 * Repaints the image on the scrollpane.

 */

 public void repaint()

 {

 pictureFrame.repaint();

 }

 //**//

 // Event Listeners //

 //**//

 /**

 * Called when the mouse is dragged (button held

down and

 * moved)

 * @param e the mouse event

 */

 public void mouseDragged(MouseEvent e)

 {

 displayPixelInformation(e);

 }

 /**

 * Method to check if the given x and y are in the

 * picture

 * @param x the horiztonal value

 * @param y the vertical value

 * @return true if the x and y are in the picture

and

 * false otherwise

 */

 private boolean isLocationInPicture(int x, int y)

 {

 boolean result = false; // the default is false

 if (x >= 0 && x < picture.getWidth() &&

 y >= 0 && y < picture.getHeight())

 result = true;

 return result;

 }

 /**

 * Method to display the pixel information from

the

 * passed x and y but also converts x and y from

strings

 * @param xString the x value as a string from the

user

 * @param yString the y value as a string from the

user

 */

 public void displayPixelInformation(

 String xString, String

yString)

 {

 int x = -1;

 int y = -1;

 try {

 x = Integer.parseInt(xString);

 x = x - numberBase;

 y = Integer.parseInt(yString);

 y = y - numberBase;

 } catch (Exception ex) {

 }

 if (x >= 0 && y >= 0) {

 displayPixelInformation(x,y);

 }

 }

 /**

 * Method to display pixel information for the

passed x

 * and y

 * @param pictureX the x value in the picture

 * @param pictureY the y value in the picture

 */

 private void displayPixelInformation(

 int pictureX, int

pictureY)

 {

 // check that this x and y is in range

 if (isLocationInPicture(pictureX, pictureY))

 {

 // save the current x and y index

 xIndex = pictureX;

 yIndex = pictureY;

 // get the pixel at the x and y

 Pixel pixel = new

Pixel(picture,xIndex,yIndex);

 // set the values based on the pixel

 xValue.setText(Integer.toString(

 xIndex +

numberBase));

 yValue.setText(Integer.toString(

 yIndex +

numberBase));

 rValue.setText("R: " + pixel.getRed());

 gValue.setText("G: " + pixel.getGreen());

 bValue.setText("B: " + pixel.getBlue());

 colorPanel.setBackground(new

Color(pixel.getRed(),

pixel.getGreen(),

pixel.getBlue()));

 }

 else

 {

 clearInformation();

 }

 // notify the image display of the current x and

y

 imageDisplay.setCurrentX((int) (xIndex *

zoomFactor));

 imageDisplay.setCurrentY((int) (yIndex *

zoomFactor));

 }

 /**

 * Method to display pixel information based on a

mouse

 * event

 * @param e a mouse event

 */

 private void displayPixelInformation(MouseEvent e)

 {

 // get the cursor x and y

 int cursorX = e.getX();

 int cursorY = e.getY();

 // get the x and y in the original (not scaled

image)

 int pictureX = (int)(cursorX/zoomFactor +

numberBase);

 int pictureY = (int)(cursorY/zoomFactor +

numberBase);

 // display the information for this x and y

 displayPixelInformation(pictureX,pictureY);

 }

 /**

 * Method to clear the labels and current color

and

 * reset the current index to -1

 */

 private void clearInformation()

 {

 xValue.setText("N/A");

 yValue.setText("N/A");

 rValue.setText("R: N/A");

 gValue.setText("G: N/A");

 bValue.setText("B: N/A");

 colorPanel.setBackground(Color.black);

 xIndex = -1;

 yIndex = -1;

 }

 /**

 * Method called when the mouse is moved with no

buttons

 * down

 * @param e the mouse event

 */

 public void mouseMoved(MouseEvent e)

 {}

 /**

 * Method called when the mouse is clicked

 * @param e the mouse event

 */

 public void mouseClicked(MouseEvent e)

 {

 displayPixelInformation(e);

 }

 /**

 * Method called when the mouse button is pushed

down

 * @param e the mouse event

 */

 public void mousePressed(MouseEvent e)

 {

 displayPixelInformation(e);

 }

 /**

 * Method called when the mouse button is released

 * @param e the mouse event

 */

 public void mouseReleased(MouseEvent e)

 {

 }

 /**

 * Method called when the component is entered

(mouse

 * moves over it)

 * @param e the mouse event

 */

 public void mouseEntered(MouseEvent e)

 {

 }

 /**

 * Method called when the mouse moves over the

component

 * @param e the mouse event

 */

 public void mouseExited(MouseEvent e)

 {

 }

 /**

 * Method to enable all menu commands

 */

 private void enableZoomItems()

 {

 twentyFive.setEnabled(true);

 fifty.setEnabled(true);

 seventyFive.setEnabled(true);

 hundred.setEnabled(true);

 hundredFifty.setEnabled(true);

 twoHundred.setEnabled(true);

 fiveHundred.setEnabled(true);

 }

 /**

 * Controls the zoom menu bar

 *

 * @param a the ActionEvent

 */

 public void actionPerformed(ActionEvent a)

 {

 if(a.getActionCommand().equals("Update"))

 {

 this.repaint();

 }

 if(a.getActionCommand().equals("25%"))

 {

 this.zoom(.25);

 enableZoomItems();

 twentyFive.setEnabled(false);

 }

 if(a.getActionCommand().equals("50%"))

 {

 this.zoom(.50);

 enableZoomItems();

 fifty.setEnabled(false);

 }

 if(a.getActionCommand().equals("75%"))

 {

 this.zoom(.75);

 enableZoomItems();

 seventyFive.setEnabled(false);

 }

 if(a.getActionCommand().equals("100%"))

 {

 this.zoom(1.0);

 enableZoomItems();

 hundred.setEnabled(false);

 }

 if(a.getActionCommand().equals("150%"))

 {

 this.zoom(1.5);

 enableZoomItems();

 hundredFifty.setEnabled(false);

 }

 if(a.getActionCommand().equals("200%"))

 {

 this.zoom(2.0);

 enableZoomItems();

 twoHundred.setEnabled(false);

 }

 if(a.getActionCommand().equals("500%"))

 {

 this.zoom(5.0);

 enableZoomItems();

 fiveHundred.setEnabled(false);

 }

 }

 /**

 * Test Main. It will ask you to pick a file and

then

 * show it

 */

 public static void main(String args[])

 {

 Picture p = new

Picture(FileChooser.pickAFile());

 PictureExplorer test = new PictureExplorer(p);

 }

 /**

 * Class for establishing the focus for the

textfields

 */

 private class PictureExplorerFocusTraversalPolicy

 extends FocusTraversalPolicy {

 /**

 * Method to get the next component for

focus

 */

 public Component getComponentAfter(

 Container

focusCycleRoot,

 Component

aComponent) {

 if (aComponent.equals(xValue))

 return yValue;

 else

 return xValue;

 }

 /**

 * Method to get the previous component for

focus

 */

 public Component getComponentBefore(

 Container

focusCycleRoot,

 Component

aComponent) {

 if (aComponent.equals(xValue))

 return yValue;

 else

 return xValue;

 }

 public Component getDefaultComponent(

 Container

focusCycleRoot) {

 return xValue;

 }

 public Component getLastComponent(

 Container

focusCycleRoot) {

 return yValue;

 }

 public Component getFirstComponent(

 Container

focusCycleRoot) {

 return xValue;

 }

 }//end PictureExplorerFocusTraversalPolicy

inner class

}//end PictureExplorer class

Listing 24. Source code for the program named Java362a.

/*Program Java362a

Copyright R.G.Baldwin 2009

The purpose of this program is to support an explanation

of the PictureExplorer class.

A Picture object having dimensions of 450x345 pixels is

created. The the show method and the explore method are

called on the object to produce two different screen

displays of the picture.

The explore method simply creates a new object of the

PictureExplorer class.

Tested using Windows Vista Premium Home edition and

Ericso's multimedia library.

***/

public class Main{

 public static void main(String[] args){

 //Construct a new 460x345 Picture object.

 Picture pix1 = new Picture("ScaledBeach460x345.jpg");

 pix1.show();//display the picture in the show format

 //Display the picture again in the explore format.

 pix1.explore();

 }//end main method

}//end class Main

Listing 25. Source code for the ImageDisplay class.

import javax.swing.*;

import java.awt.*;

import java.awt.image.*;

/**

 * Class to display an image and the current

location with

 * a + sign

 *

 * Copyright Georgia Institute of Technology

2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class ImageDisplay extends JPanel

 implements

Scrollable{

 //////////// fields (attributes

////////////////////////

 private Image image; //the image to

draw

 private Dimension prefSize;//preferred size

of display

 private int currentX = 0; //the current x

index

 private int currentY = 0; //the current y

index

 //////////// constructors

//////////////////////////////

 /**

 * Constructor that takes the image to

display

 * @param theImage the image to display

 */

 public ImageDisplay(Image theImage){

 image = theImage;

 prefSize = new Dimension(

image.getWidth(this),image.getHeight(this));

 setPreferredSize(prefSize);

 revalidate();

 }

 /**

 * Constructor that takes the image and

current x and y

 * @param theImage the image to display

 * @param x the current x value to use

 * @param y the current y value to use

 */

 public ImageDisplay(Image theImage, int x,

int y)

 {

 this(theImage);

 currentX = x;

 currentY = y;

 }

 ///////////////// methods

//////////////////////////////

 /**

 * Method to get the image

 * @return the image

 */

 public Image getImage() { return image; }

 /**

 * Method to get the current x

 * @return the current x value

 */

 public int getCurrentX() { return currentX;

}

 /**

 * Method to get the current y

 * @return the current y value

 */

 public int getCurrentY() { return currentY;

}

 /**

 * Method to set the current x

 * @param x the x value to use

 */

 public void setCurrentX(int x)

 {

 currentX = x;

 repaint();

 }

 /**

 * Method to set the current y

 * @param y the y value to use

 */

 public void setCurrentY(int y)

 {

 currentY = y;

 repaint();

 }

 /**

 * Method to set the image

 * @param theImage the new image to use

 */

 public void setImage(Image theImage){

 image = theImage;

 setPreferredSize(new Dimension(

image.getWidth(this),image.getHeight(this)));

 repaint();

 }

 /**

 * Method to return the preferred size

 * @return the preferred size of this

component

 */

 public Dimension

getPreferredScrollableViewportSize()

 {

 return prefSize;

 }

 /**

 * Method to return the unit increment for

scrolling

 * @param visibleRect the visible rectangle

 * @param orientation vertical or horizontal

 * @param direction neg is up or left and

pos is right

 * or down

 * @return the unit increment for arrow

clicks

 */

 public int getScrollableUnitIncrement(

 Rectangle

visibleRect,

 int

orientation,

 int

direction)

 { return 1; }

 /**

 * Method to return the block increment for

scrolling

 * @param visibleRect the visible rectangle

 * @param orientation vertical or horizontal

 * @param direction neg is up or left and

pos is right

 * or down

 * @return the block increment for clicking

in scroll

 * area

 */

 public int getScrollableBlockIncrement(

 Rectangle

visibleRect,

 int

orientation,

 int

direction){

 return 10;

 }

 /**

 * Method to check if the viewport width is

the source

 * width

 * @return true if viewport and source have

same width

 */

 public boolean

getScrollableTracksViewportWidth()

 { return false; }

 /**

 * Method to check if the viewport height is

the source

 * height

 * @return true if viewport and soure have

same height

 */

 public boolean

getScrollableTracksViewportHeight()

 { return false; }

 /**

 * Method to handle displaying this object

 * @param g the graphics object for drawing

with

 */

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g);

 int num = 3;

 int xStart = currentX - num;

 int xEnd = currentX + num;

 int yStart = currentY - num;

 int yEnd = currentY + num;

 int width = image.getWidth(this);

 int maxX = width - 1;

 int height = image.getHeight(this);

 int maxY = height - 1;

 // draw the image

 g.drawImage(image,0,0,this);

 // check if the current index is in the

image

 if (currentX >= 0 && currentX < width &&

 currentY >= 0 && currentY < height)

 {

 // check that the start and end values

are visible

 if (xStart < 0)

 xStart = 0;

 if (xEnd > maxX)

 xEnd = maxX;

 if (yStart < 0)

 yStart = 0;

 if (yEnd > maxY)

 yEnd = maxY;

 // draw a small cross at the current x

and y in

 // yellow

 g.setColor(Color.yellow);

g.drawLine(xStart,currentY,xEnd,currentY);

g.drawLine(currentX,yStart,currentX,yEnd);

 g.setColor(Color.black);

 // outline the cross in black so that it

shows up

 // better

 int leftX = currentX - 1;

 int rightX = currentX + 1;

 int upY = currentY - 1;

 int downY = currentY + 1;

 if (xStart <= leftX && upY >= 0)

 g.drawLine(xStart,upY,leftX,upY);

 if (yStart <= upY && leftX >= 0)

 g.drawLine(leftX,yStart,leftX,upY);

 if (yStart <= upY && rightX <= maxX)

 g.drawLine(rightX,yStart,rightX,upY);

 if (upY >= 0 && rightX <= xEnd)

 g.drawLine(rightX,upY,xEnd,upY);

 if (downY < height && rightX <= xEnd)

 g.drawLine(rightX,downY,xEnd,downY);

 if (downY <= yEnd && rightX < width)

 g.drawLine(rightX,downY,rightX,yEnd);

 if (xStart <= leftX && downY < height)

 g.drawLine(xStart,downY,leftX,downY);

 if (leftX >= 0 && downY <= yEnd)

 g.drawLine(leftX,downY,leftX,yEnd);

 }

 }

}

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:baldwin@dickbaldwin.com

