
Building the Information Panel for the PictureExplorer
GUI

Learn how to construct a complex panel and add it to a JFrame, including event
registration using anonymous listener classes, BoxLayout, and resource loading via the
Class class.

Published: March 19, 2009
By Richard G. Baldwin

Java Programming Notes # 364

 Preface
o General
o What you have learned from earlier lessons
o What you will learn in this lesson
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
o A sample program
o Reducing the confusion

 Discussion and sample code
o The sample program named Java362a
o An overview of the GUI
o The PictureExplorer class

 The constructor
 The createWindow method

 The createInfoPanel method
 The createLocationPanel method
 The createColorInfoPanel method

 Run the program
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

mailto:Baldwin@DickBaldwin.com

Preface

General

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters into videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

What you have learned from earlier lessons

If you have studied the earlier lessons in this series, you have learned about turtles,
worlds, and pictures. You have learned that objects of the Picture class are useful for
much more than simply serving as living quarters for turtles. They are also useful for
manipulating images in interesting and complex ways.

The PictureExplorer class

In the previous lesson, you learned that an object of the
PictureExplorer class (see Figure 2) is a GUI that
allows you to determine the numeric color values for any
pixel in a picture by placing a cursor on the pixel.

The pixel position is controlled by clicking or dragging
the mouse within the picture, clicking buttons in the
upper panel, or typing coordinate values into text fields. You can zoom in and out to
view the pixels in more or less detail and you can see the actual color of the pixel
displayed in a small colored square.

You learned how the GUI is constructed from a big-picture viewpoint. The GUI window
is the visual manifestation of a JFrame object. You learned how the JFrame object is
configured, how the Zoom menu is constructed, and how an ActionListener object is
registered on the items in that menu.

What you will learn in this lesson

In this lesson, you will learn how to construct the infoPanel in the NORTH location of
the GUI in Figure 2. You will also learn how to register event listener objects on the
components in that panel making use of objects of anonymous classes.

Pixel Editor Program

See the lesson titled A Pixel
Editor Program in
Java: Multimedia
Programming with Java in
Resources for a non-trivial
application of a
PictureExplorer object.

Along the way, you will learn about some other interesting topics including:

 The use of BoxLayout
 The class file naming scheme.
 The use of getResources to get the URL of a file
 The use of a class loader to load a resource file

Source code listings

A complete listing of Ericson's PictureExplorer class is provided in Listing 31 near the
end of the lesson. A complete listing of a very simple program named Java362a that I
will use to illustrate the behavior of the PictureExplorer class is provided in Listing 32.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Screen output produced by the show method.
 Figure 2. Screen output produced by the explore method.
 Figure 3. Illustration of the effect of a BoxLayout manager.
 Figure 4. Class files produced by compiling the PictureExplorer class.
 Figure 5. Image files in Ericson's class library.
 Figure 6. Another view of the GUI.

Listings

 Listing 1. Background color for first-level code.
 Listing 2. Background color for second-level code.
 Listing 3. Background color for third and lower-level code.
 Listing 4. Private instance variables of the PictureExplorer class.
 Listing 5. The constructor for the PictureExplorer class.
 Listing 6. The createWindow method.
 Listing 7. Beginning of the createInfoPanel method.
 Listing 8. Call the createLocationPanel method.
 Listing 9. Beginning of the createLocationPanel method.
 Listing 10. Create two JLabel objects and one JTextField object.
 Listing 11. An object of an anonymous class.
 Listing 12. The displayPixelInformation method
 Listing 13. Beginning of another overloaded version of the

displayPixelInformation method
 Listing 14. Set the coordinate values in the text fields.
 Listing 15. Use the color information from the Pixel object.

 Listing 16. Code executed when coordinates are not in the picture.
 Listing 17. Notify the image display of the current x and y coordinate values.
 Listing 18. Register an anonymous ActionListener on the other text field.
 Listing 19. Call the setUpNextAndPreviousButtons method.
 Listing 20. Beginning of the setUpNextAndPreviousButtons method.
 Listing 21. Create the arrow buttons with tooltips.
 Listing 22. Match the button size to the icon size.
 Listing 23. Register ActionListener objects on all four buttons.
 Listing 24. Set the font for the labels on the locationPanel.
 Listing 25. Create the physical layout of the locationPanel.
 Listing 26. Create the colorInfoPanel.
 Listing 27. Beginning of the createColorInfoPanel method.
 Listing 28. Construct the color display panel and its label.
 Listing 29. Set fonts, add components to colorInfoPanel, and return.
 Listing 30. Complete the createInfoPanel method.
 Listing 31. Source code for Ericson's PictureExplorer class.
 Listing 32. Source code for program named Java362a.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

A sample program

I will use a very simple program to illustrate the creation of an object of the
PictureExplorer class.

http://www.dickbaldwin.com/toc.htm

The sample program (named Java362a) begins by creating a new Picture object with
known dimensions using input from an image file in the current directory. Then it calls
the show method on the object to produce the screen output shown in Figure 1.

Figure 1. Screen output produced by the show method.

Call the explore method

After that, the program calls the explore method on the Picture object to produce the
screen output shown in Figure 2.

Figure 2. Screen output produced by the explore method.

(Note that in the screen shot in Figure 2, the GUI has been manually resized to make it
smaller and the Zoom menu has been opened.)

You learned all about the show method of the SimplePicture class in earlier
lessons. You began learning about the explore method and the PictureExplorer class
in the previous lesson (see Resources).

The explore method

The explore method of the SimplePicture class contains a single statement, which
instantiates an object of the PictureExplorer class. As soon as that object is
instantiated, the GUI shown in Figure 2 appears on the screen and it remains on the
screen until the program is terminated or the user clicks the X-button in the upper-right
corner of the GUI.

Reducing the confusion

Methods in the PictureExplorer class often call other methods that belong to the
class. Those methods, in turn, often call other methods. Because I will be switching
back and forth among code fragments extracted from different methods, things can get
confusing. I will use color in an attempt to reduce the confusion. That is, when one
method calls another and I need to put the explanation of the first method on hold while
I explain the code in the second method, I will change the background color against
which the code fragments are displayed.

Background color for first-level classes, methods and/or constructors

For example, I will present code fragments extracted from Ericson's PictureExplorer
class against the background color shown in Listing 1.

Listing 1. Background color for first-level code.

Color = #FFFFBB

Background color for second-level methods

Similarly, I will present code fragments extracted from second-level methods against the
background color shown in Listing 2.

Listing 2. Background color for second-level code.

Color = #FFEEFF

Background color for third and lower-level methods

Finally, I will present code fragments extracted from third-level and lower-level code (if
any) against the background colors, going from left to right, in Listing 3.

Listing 3. Background color for third and lower-level code.

3-

#DDFFFF

4-

#C1C100

5-

#FFCC66

6-

#B1C2BD

7-

#EEEEEE

In the event that I need to distinguish among more than seven levels at the same time, I
will come up with another color and explain its use at the time.

Discussion and sample code

The sample program named Java362a

The purpose of this program is to support an explanation of the PictureExplorer class.

Normally, I break programs down and explain them in fragments. However, this
program is short and simple and I explained it in detail in the previous lesson (see
Resources). You can view a complete listing of the program in Listing 32 near the end
of the lesson.

Create a Picture object and display it with the explore method

A Picture object having dimensions of 450x345 pixels is created by reading an image
file from the current directory. The explore method is called on the Picture object
producing the screen output GUI shown in Figure 2.

As you learned in the previous lesson, the explore method simply creates a new object
of the PictureExplorer class. The GUI shown in Figure 2 appears on the screen as
soon as that object is created. (Again, note that the GUI in Figure 2 has been manually
resized to make it smaller and the Zoom menu has been opened.)

An overview of the GUI

You also learned in the previous lesson that the onscreen GUI window that you see in
Figure 2 is the visual manifestation of a JFrame object. Basically, a JFrame object
consists of the following parts:

 A banner at the top containing some built-in control components (three buttons
on the right and a menu on the left) and optionally a String title.

 A rectangular area under the banner that can contain a menu. This area is
collapsed if you elect not to provide one or more menus.

 A content area underneath the menu area.
 A border around the outer edges.

The content area

I explained the menu area in some depth in the previous lesson. We will be primarily
concerned with the content area in this lesson.

The content area (immediately below the menu area) has a default BorderLayout
object as the layout manager. This layout manager makes it possible to place one
component in the CENTER and four additional components in the NORTH, SOUTH,
EAST, and WEST locations.

In the GUI produced by the PictureExplorer class, there is one component in the
CENTER and one component in the NORTH location. There are no components in the
EAST, SOUTH, and WEST locations. (Keep in mind that each of the five allowable
components can themselves contain other components.)

A JScrollPane object in the CENTER location

As I explained in the previous lesson, the component in the CENTER is an object of the
JScrollPane class. I will have a great deal more to say about this in the next lesson.

A JPanel object in the NORTH location

The component in the NORTH location of the JFrame object's content area is a JPanel
object with the layout manager on the panel also set to BorderLayout. This JPanel
object is referred to by a local variable named infoPanel.

The infoPanel contains two smaller JPanel objects, one in its NORTH location and one
in its SOUTH location. There are no components in the CENTER, EAST, or WEST
locations of this JPanel object.

A JPanel object is also a container that can contain other components. However, there
is no "content pane" associated with a JPanel object. Other components are added
directly to the JPanel object.

The locationPanel and the colorInfoPanel

The JPanel object in the NORTH location of the infoPanel is referred to in this class as
the locationPanel. The construction of the locationPanel is very complex with various
registered listener objects, instantiated from anonymous classes.

The JPanel object in the SOUTH location of the infoPanel is referred to as the
colorInfoPanel. The construction of the colorInfoPanel is less complex than the
construction of the locationPanel. Among other things, this panel is completely
passive with no registered listener objects. Its sole purpose is to display pixel-color
information.

The layout manager for the locationPanel

The layout manager for the locationPanel is an object of the FlowLayout class. With
this layout manager, you can add any number of components to the JPanel object and
they will position themselves in horizontal rows. If there are too many components to fit
on one row, some will spill over to the next row. You can cause the components on the
rows to be aligned to the left, the right, or the center.

The population of the locationPanel

The locationPanel is populated with the following components:

 A Box object (I will explain this later.)
 Some JLabel objects.
 Some JTextField objects.
 Some ImageIcon objects used to put the triangle images on the next and

previous buttons on the left and right of the text fields.
 Some JButton objects that constitute the next and previous buttons.

There are numerous event handlers registered on various components in the
locationPanel.

You will learn how all of the components are put together, how the event handlers are
defined, and how they behave later in this lesson.

The colorInfoPanel

The colorInfoPanel is also a JPanel object, and the layout manager for the
colorInfoPanel is also an object of the FlowLayout class.

As I mentioned earlier, the colorInfoPanel is much simpler than the locationPanel and
is primarily populated with the following components:

 Some JLabel objects.
 Another JPanel object (the small almost-black square in Figure 2).

There are no listener objects registered on components on the colorInfoPanel.

You will also learn how these components are put together later in this lesson.

The PictureExplorer class

A complete listing of the PictureExplorer class is provided in Listing 31 near the end of
the lesson. I will break the class down and explain it in fragments. I explained part of
the PictureExplorer class in the previous lesson. In this lesson, I will begin with a code
fragment containing the declaration of instance variables, which is shown in Listing 4.

Private instance variables of the PictureExplorer class

The PictureExplorer class declares a large number of private instance variables and
initializes some of them. They are shown in Listing 4 for easy reference.

Listing 4. Private instance variables of the PictureExplorer class.

 // current x and y index

 private int xIndex = 0;

 private int yIndex = 0;

 //Main gui variables

 private JFrame pictureFrame;

 private JScrollPane scrollPane;

 //information bar variables

 private JLabel xLabel;

 private JButton xPrevButton;

 private JButton yPrevButton;

 private JButton xNextButton;

 private JButton yNextButton;

 private JLabel yLabel;

 private JTextField xValue;

 private JTextField yValue;

 private JLabel rValue;

 private JLabel gValue;

 private JLabel bValue;

 private JLabel colorLabel;

 private JPanel colorPanel;

 // menu components

 private JMenuBar menuBar;

 private JMenu zoomMenu;

 private JMenuItem twentyFive;

 private JMenuItem fifty;

 private JMenuItem seventyFive;

 private JMenuItem hundred;

 private JMenuItem hundredFifty;

 private JMenuItem twoHundred;

 private JMenuItem fiveHundred;

 /** The picture being explored */

 private DigitalPicture picture;

 /** The image icon used to display the

picture */

 private ImageIcon scrollImageIcon;

 /** The image display */

 private ImageDisplay imageDisplay;

 /** the zoom factor (amount to zoom) */

 private double zoomFactor;

 /** the number system to use, 0 means

starting at 0,

 * 1 means starting at 1 */

 private int numberBase=0;

There's not much to be said about the instance variables at this point. We will be
referring back to them as the explanation of the PictureExplorer class progresses.

The constructor

I explained the constructor for the PictureExplorer class in the previous lesson, but I
have shown it again in Listing 5 for easy reference.

Listing 5. The constructor for the PictureExplorer class.

 /**

 * Public constructor

 * @param picture the picture to explore

 */

 public PictureExplorer(DigitalPicture

picture){

 // set the fields

 this.picture = picture;

 zoomFactor = 1;

 // create the window and set things up

 createWindow();

 }//end constructor

Call the createWindow method

The constructor saves the incoming parameter, (which refers to the picture to be
displayed in the content area of the GUI) and sets a value of 1 into the instance variable
named zoomFactor. Then it calls the createWindow method where the completion of
construction is accomplished.

When the createWindow method returns, the constructor returns the new
PictureExplorer object's reference to the explore method of the SimplePicture class
(or perhaps from a method in a class of your own design) from which the constructor
was called. However, the explore method doesn't save the reference in a named
reference variable. Therefore, the PictureExplorer object is an anonymous object that
remains on the screen until the user clicks the X-button in the upper-right corner of
Figure 2.

The createWindow method

The createWindow method of the PictureExplorer class is shown in its entirety in
Listing 6.

Listing 6. The createWindow method.

 /**

 * Creates the JFrame and sets everything up

 */

 private void createWindow(){

 // create the picture frame and initialize

it

 createAndInitPictureFrame();

 // set up the menu bar

 setUpMenuBar();

 //create the information panel

 createInfoPanel();

 //creates the scrollpane for the picture

 createAndInitScrollingImage();

 // show the picture in the frame at the

size it needs

 // to be

 pictureFrame.pack();

 pictureFrame.setVisible(true);

 }//end createWindow method

A sequence of method calls

As you learned in the previous lesson, the createWindow method consists of:

 A sequence of four calls to other methods to construct various parts of the
PictureExplorer object.

 A call to the pack method to set the JFrame to the correct size.
 A call to the setVisible method to cause the JFrame object to become visible on

the screen.

I explained the following two methods in the previous lesson:

 createAndInitPictureFrame
 setUpMenuBar

I will explain the createInfoPanel method in this lesson and will explain the
createAndInitScrollingImage method in the next lesson.

The createInfoPanel method

The beginning of the createInfoPanel method is shown in the code fragment in Listing
7. (Note the change in background color, indicating that the discussion has moved
down one level in the method call stack.)

Listing 7. Beginning of the createInfoPanel method.

 /**

 * Creates the North JPanel with all the

pixel location

 * and color information

 */

 private void createInfoPanel(){

 // create the info panel and set the layout

 JPanel infoPanel = new JPanel();

 infoPanel.setLayout(new BorderLayout());

 // create the font

 Font largerFont =

 new

Font(infoPanel.getFont().getName(),

infoPanel.getFont().getStyle(),14);

A new JPanel object

Listing 7 begins by instantiating a new JPanel object, saving its reference in infoPanel,
and setting the layout manager to BorderLayout. This is all very straightforward code
for those who are familiar with Swing GUI programming.

A new Font object

Then Listing 7 instantiates a new Font object and saves its reference in
largerFont. This is a little more complicated. This overloaded version of the Font
constructor requires the following parameters:

 String nameOfTheFont
 int styleOfTheFont
 int sizeOfTheFont in points

Rather than coming up with a specific font name and a specific font style, Ericson
simply used a series of method calls to get the name and the style of the default
font. Then she specified that the font size should be 14 points, and passed these
values to the constructor for the new Font object. That way, she was assured that the
specified name and style would be compatible with the current operating environment.

Call the createLocationPanel method

Then the createInfoPanel method calls the createLocationPanel method and saves
the returned value in the variable named locationPanel.

Listing 8. Call the createLocationPanel method.

 JPanel locationPanel =

createLocationPanel(largerFont);

This is one of those occasions where we need to put the explanation of the current
method on hold and explain another method. As mentioned earlier, I will also change
the background color against which the code fragments are displayed to indicate that
the discussion is moving one step further down the method call stack.

The createLocationPanel method

The createLocationPanel method, which is a long and complex method, begins in
Listing 9.

Listing 9. Beginning of the createLocationPanel method.

 /**

 * Create the pixel location panel

 * @param labelFont the font for the labels

 * @return the location panel

 */

 public JPanel createLocationPanel(Font

labelFont){

 // create a location panel

 JPanel locationPanel = new JPanel();

 locationPanel.setLayout(new FlowLayout());

 Box hBox = Box.createHorizontalBox();

The method starts out easy enough by instantiating a new JPanel object, saving its
reference in the variable named locationPanel, and setting the layout manager to
FlowLayout.

The FlowLayout manager

Briefly, FlowLayout arranges components in a row. When there isn't enough room for
all the components on the current row, the components on the right wrap (much like text
in a word processor) and move down to the next row.

By default, this layout manager has a centered alignment causing the components on
each row to be centered in the row. (Other alignments such as right and left alignment
are available.)

BoxLayout
For more information on

BoxLayout, see Swing from A
to Z: Alignment Properties

BoxLayout

Then the code in Listing 9 becomes somewhat more
complicated when a new object of the Box class is instantiated and its reference is
stored in hBox. Sun describes the Box class as "A lightweight container that uses a
BoxLayout object as its layout manager."

Sun partially describes BoxLayout as "A layout manager that allows multiple
components to be laid out either vertically or horizontally. The components will not wrap
so, for example, a vertical arrangement of components will stay vertically arranged
when the frame is resized."

Rather than trying to explain all of this, I will simply refer you to the sidebar. I will also
provide a screen shot that shows the effect of using BoxLayout.

The effect of BoxLayout

Compare the screen shot of the GUI in Figure 3 with the screen shot in Figure 2. In
Figure 3, the GUI has been resized to make it narrower than in Figure 2.

Pay particular attention to the positions of the components in the locationPanel and the
colorInfoPanel below the menu area. (The locationPanel is the one that shows the
text fields. It is above the colorInfoPanel that shows the RGB color values.)

Figure 3. Illustration of the effect of a BoxLayout manager.

and BoxLayout, Part 1 and
Part 2 in Resources.

The colorInfoPanel has wrapped

In Figure 2, the black square is at the right end of the text in the
colorInfoPanel. However, in Figure 3, after I resized the GUI and there was no longer
room for the black square on the same row with the RGB text, the black square
wrapped and moved down to the center of the next row. This is a characteristic of the
FlowLayout manager.

No wrapping for the locationPanel

However, when there was no longer room for the JButton on the right side of the
rightmost text field in the locationPanel, it simply allowed itself to be clipped by the right
edge of the GUI. It refused to wrap and drop down to the next row. This is one of the
characteristics of the BoxLayout manager. (Note that when the code in Listing 9
finishes executing, the Box object has been instantiated but it still hasn't been put to
work.)

Create two JLabel objects and one JTextField object

Although it doesn't show in either Figure 2 or Figure 3 (for different reasons), there is an
upper-case "X:" at the left end of the left text field in the locationPanel. (It is the
counterpart to the upper-case Y that you see in Figure 2 and Figure 3 and it is visible in
Figure 6.)

Listing 10 begins by constructing two JLabel objects containing the text strings "X:" and
"Y:". They will be positioned to the left of the two JButton objects (with triangular
arrows that point to the left) later. Each label serves as the label for the two buttons and
the text field to its right.

Listing 10. Create two JLabel objects and one JTextField object.

 // create the labels

 xLabel = new JLabel("X:");

 yLabel = new JLabel("Y:");

 // create the text fields

 xValue = new JTextField(

 Integer.toString(xIndex +

numberBase),6);

A single JTextField object

Then Listing 10 instantiates a single JTextField object and saves its reference in the
variable named xValue.

A JTextField object only knows how to deal with String data. It doesn't know how to
deal with any of the numeric types. Therefore, if you are going to use a JTextField
object to display or receive numeric data, you must convert between String and
numeric data on the way in or on the way out.

The JTextField constructor that is called in Listing 10 requires a String and an integer
as incoming parameters. The String specifies the initial text that will be displayed in the
text field. The integer (6 in this case) specifies the width of the text field in characters.

Converting an int value to a String value

The static toString method of the Integer class shown in Listing 10 converts an int
value into a String value. The variable xIndex contains the current x-coordinate of the
cursor (initially 0).

The variable numberBase contains either a 0 or a 1 (initially 0). The JTextField object
that is instantiated in Listing 10 is initialized to show the text character "0".

Compiled class file names

Sometimes when analyzing a Java program it is useful to examine the names of the
class files produced when the program is compiled. Figure 4 shows the class files
produced by compiling the PictureExplorer class.

Figure 4. Class files produced by compiling the PictureExplorer class.

PictureExplorer.class

PictureExplorer$PictureExplorerFocusTraversalPolicy.class

PictureExplorer$1.class

PictureExplorer$2.class

PictureExplorer$3.class

PictureExplorer$4.class

PictureExplorer$5.class

PictureExplorer$6.class

Top-level and inner classes

If you know the class file naming scheme, you can often tell a lot about how a program
is organized by examining the names of the class files. For example, every class
definition produces an output file with an extension of .class when the program is
compiled. This not only includes top-level classes, it also includes inner classes as well.

Top-level class file names

For example, we know that the Java compiler does not insert dollar sign ($) characters
into class file names for top-level classes. There is only one file name in Figure 4 that
doesn't include a $. Therefore, that class (PictureExplorer) must be a top-level
class. (We know that it is because that is the name of the top-level class that we are
analyzing: PictureExplorer.)

Inner class file names

We also know that the compiler does insert $ characters into the class file names for all
inner classes.

There are several kinds of inner classes:

Top-level and inner classes
For more information on top-

level and inner classes, see

lessons 1636 through 1642 in

Resources

 Member classes
 Local classes
 Anonymous classes

Member classes

A member class is a class that is defined inside a class but not inside a method of the
class. Every member class must have a name, and the name is reflected in the class
file name following the $ character.

There is only one such class file in Figure 4 and the name following the $ is
PictureExplorerFocusTraversalPolicy. Therefore, this must be a member class, and
we know that it is from a discussion in the previous lesson. It is a private member class,
which is the only way that a class definition can be declared private.

Class file names for local classes and anonymous classes

The water gets a little murkier when we talk about the class file names for local classes
and anonymous classes. We know that the file names will always contain a $ followed
by a number for both local classes and anonymous classes. However, for local classes,
the class file name will also contain another $ followed by a class name.

There are no file names in Figure 4 meeting that description, so the remaining six class
files in Figure 4 must have been created by the compilation of six different anonymous
classes.

An object of an anonymous class

This is where things get really interesting. The source code for one of the anonymous
classes identified in Figure 4 is shown in Listing 11. (Recall that we are still discussing
the method named CreateLocationPanel.)

Listing 11. An object of an anonymous class.

 xValue.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent

e) {

 displayPixelInformation(

xValue.getText(),yValue.getText());

 }

 });

The syntax for instantiating objects of anonymous classes is extremely ugly but I will try
to explain the meaning of the code in Listing 11.

Register an ActionListener object

To begin with, Listing 11 calls the addActionListener method on a reference to the
JTextField object that was instantiated in Listing 10. The purpose of this method call is
to register an ActionListener object on the text field to respond to action events fired by
the text field. (For example, a JTextField object will fire an action event when the user
presses the Enter key while the text field has the focus.)

A valid ActionListener object must be an object instantiated from a class that
implements the ActionListener interface.

Listing 11 defines an anonymous class and instantiates an object of that class in the
parameter list of the addActionListener method.

How to interpret this code - an unnamed class

You can interpret the code in Listing 11 in the following way. A new object is
instantiated from an unnamed class that implements the ActionListener
interface. That object's reference is passed as a parameter to the addActionListener
method.

Must define the actionPerformed method

Because the unnamed class implements the
ActionListener interface, it must provide a concrete
definition of the action Performed method, which it
does.

The definition of the actionPerformed method is
embedded in the middle of the code in Listing 11. The
body of the method consists of a single statement,
which is a call to another method named displayPixelInformation.

An overloaded displayPixelInformation method

It's time to change background colors again so that I can put the createLocationPanel
method on hold while I explain the call to the displayPixelInformation method.

The PictureExplorer class defines three overloaded versions of methods named
displayPixelInformation. The basic purpose of all three methods is to get and display
red, green, and blue color data in the colorInfoPanel shown below the two text fields in
Figure 2.

The version of the displayPixelInformation method that is called in Listing 11 is shown
in its entirety in Listing 12.

The actionPerformed

method
The only method declared in

the ActionListener interface is

the method named

actionPerformed. Any class

that implements a method must

define all of the methods

declared in the interface.

Listing 12. The displayPixelInformation method

 /**

 * Method to display the pixel information

from the

 * passed x and y but also converts x and y

from strings

 * @param xString the x value as a string

from the user

 * @param yString the y value as a string

from the user

 */

 public void displayPixelInformation(

 String xString,

String yString){

 int x = -1;

 int y = -1;

 try {

 x = Integer.parseInt(xString);

 x = x - numberBase;

 y = Integer.parseInt(yString);

 y = y - numberBase;

 } catch (Exception ex) {

 }

 if (x >= 0 && y >= 0) {

 displayPixelInformation(x,y);

 }

 }//end displayPixelInformation method

Called when the text field fires an action event

The actionPerformed method in Listing 11 is called when the user presses the Enter
key while the left text field in Figure 2 has the focus.

The displayPixelInformation method in Listing 12 is called by the actionPerformed
method.

This version of the method requires two String references as incoming
parameters. The actionPerformed method passes the text contents of both text fields
when this method is called.

This makes it possible for the user to type a coordinate value into the text field, press
the Enter key, and cause the displayPixelInformation method to be called to act on
that data.

Convert the two strings to numeric coordinates

The purpose of the code in Listing 12 is to:

 Convert the two String parameter values into integer x and y coordinate values.

 Pass the two coordinate values to another overloaded version of the
displayPixelInformation method near the end of Listing 12.

Complicated by numberBase considerations

The code in Listing 12 is complicated by the fact that the class is written to support the
use of coordinate values that begin with 0, or coordinate values that begin with
1. (However, the numberBase variable, which distinguishes between the two
alternatives, is set to 0 when an object of the PictureExplorer class is instantiated.)

Other than the complication attributable to the number base, you should have no
difficulty understanding the code in Listing 12 that converts the String values in the two
text fields into coordinate values of type int and passes those coordinate values in a call
to another overloaded version of the displayPixelInformation method.

Another overloaded displayPixelInformation method

Once again, it's time to change colors as I put the displayPixelInformation method in
Listing 12 on hold while I explain the call to another overloaded version of the
displayPixelInformation method.

This version begins in Listing 13. This version is considerably more complex than the
one in Listing 12, so I will break it down and explain it in fragments.

Listing 13. Beginning of another overloaded version of the
displayPixelInformation method

 /**

 * Method to display pixel information for

the passed x

 * and y

 * @param pictureX the x value in the picture

 * @param pictureY the y value in the picture

 */

 private void displayPixelInformation(

 int pictureX,

int pictureY){

 // check that this x and y is in range

 if (isLocationInPicture(pictureX,

pictureY)){

 // save the current x and y index

 xIndex = pictureX;

 yIndex = pictureY;

 // get the pixel at the x and y

 Pixel pixel = new

Pixel(picture,xIndex,yIndex);

Confirm that the coordinates are in the picture

The method begins by calling a method named isLocationInPicture to confirm that the
incoming coordinate values are actually within the height and width of the picture. The
code in this method is so simple that I'm not going to show it here. You can view the
method in Listing 31 near the end of the lesson. If the coordinate values are in the
picture, the method returns true, and returns false otherwise.

When the coordinates are in the picture...

When the method returns true, the remaining code in Listing 13 is executed.

Listing 13 saves the coordinate values in a pair of instance variables named xIndex and
yIndex. (If they are not in the picture, they are not saved.)

Get and save a reference to a Pixel object

Then Listing 13 calls the getPixel method to get and save a reference to a Pixel object
that contains the red, green, and blue color values in the pixel at that location in the
picture. The values will be used later, (but not in the next code fragment).

Set the coordinate values in the text fields

This overloaded version of the displayPixelInformation method is not only called when
the user presses the Enter key while the text field has the focus, it is also called when
the user moves the cursor within the picture using some other method, such as clicking
the picture with the mouse, for example.

The text fields serve a dual purpose

In all cases, the text fields are updated to display the new coordinate values. Hence
they serve a dual purpose:

 They make it possible to manually enter coordinate values by typing.
 They provide a display of coordinate values when those values are changed in

some other manner.

Update the contents of the text fields

The contents of the text fields are updated by the code in Listing 14, which converts the
current coordinate values to String objects and uses those objects to set the text in the
text fields.

Listing 14. Set the coordinate values in the text fields.

 // set the values based on the pixel

 xValue.setText(Integer.toString(

 xIndex +

numberBase));

 yValue.setText(Integer.toString(

 yIndex +

numberBase));

Use the color information from the Pixel object

The code in Listing saved a reference to a Pixel object containing color information for
the pixel at the location of the current coordinate values. Listing 15 uses that
information for two different purposes.

Listing 15. Use the color information from the Pixel object.

 rValue.setText("R: " + pixel.getRed());

 gValue.setText("G: " + pixel.getGreen());

 bValue.setText("B: " + pixel.getBlue());

 colorPanel.setBackground(new

Color(pixel.getRed(),

pixel.getGreen(),

pixel.getBlue()));

 }//end if

Construct the String color values

The first purpose is to:

 Extract the numeric values for the red, green, and blue color components.
 Use that information to construct three String objects.
 Store the String object's references in the instance variables named rValue,

gValue, and bValue.

These three strings will be used to display the red, green, and blue color values later
when the colorInfoPanel, shown below the text fields in Figure 2, is updated.

Color the small square

The second purpose is to set the background color for the small colored square, shown
beneath the right-most text field in Figure 2. The color of the square is set to match the
color of the pixel at the current coordinates.

The end of the if statement

Listing 15 signals the end of the if statement that began in Listing 13. All of the code in
the if clause is executed if the current coordinates are within the bounds of the picture.

Code executed when coordinates are not in the picture

Listing 16 shows the else clause that is executed when the current coordinates are not
within the bounds of the picture.

Listing 16. Code executed when coordinates are not in the picture.

 else{

 clearInformation();

 }//end else

Listing 16 calls a method named clearInformation. This is another method that is too
simple to warrant showing here. Once again, you can view the code for the
clearInformation method in Listing 31 near the end of the lesson.

The clearInformation method sets the string "N/A" into both text fields and causes that
same string to be set in all three color values the next time the colorInfoPanel is
updated.

It sets the color of the colored square in Figure 2 to black and resets the current
coordinate values to 0,0.

Notify the image display of the current coordinates

Finally, Listing 17 calls two set methods on the image display in the CENTER of the
JFrame, passing the product of the current coordinate values and the
zoomFactor. You will see how that information is used in a future lesson when we
examine the ImageDisplay class.

Listing 17. Notify the image display of the current x and y coordinate values.

 imageDisplay.setCurrentX((int) (xIndex *

zoomFactor));

 imageDisplay.setCurrentY((int) (yIndex *

zoomFactor));

 }//end displayPixelInformation method

The end of the displayPixelInformation method

Listing 17 also signals the end of this version of the displayPixelInformation
method. This causes control to return to the other version of the
displayPixelInformation method shown in Listing 12 from which this method is called.

Terminate immediately

The displayPixelInformation method shown in Listing 12 has nothing more to do, so it
terminates immediately returning control to the actionPerformed method in the
anonymous ActionEvent handler in Listing 11.

The action event handler has completed its task

The actionPerformed method also has nothing more to do, so it also terminates
immediately.

Wait for the next event

When the actionPerformed method has been called and then terminates, the GUI
essentially goes into a quiescent state, waiting for the next event to be fired by some
component and handled by some event handler that is registered on that component.

Register an anonymous ActionListener on the other text field

That brings us back to the createLocationPanel method, (see Listing 11) which
continues in Listing 18.

Listing 18. Register an anonymous ActionListener on the other text field.

 yValue = new JTextField(

 Integer.toString(yIndex +

numberBase),6);

 yValue.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent

e) {

 displayPixelInformation(

xValue.getText(),yValue.getText());

 }

 });

Listing 18 instantiates and registers an anonymous ActionListener object on the right-
most JTextField object shown in Figure 2.

Behavior almost same as before

The behavior of this listener object is essentially the same as the behavior of the listener
object registered on the leftmost JTextField object, except that in this case, we are
talking about entering a y coordinate value into the text field instead of an x coordinate
value.

Note that the single statement in the actionPerformed method in Listing 18 is identical
to the corresponding statement in the actionPerformed method in Listing
11. Therefore, it doesn't matter which JTextField object fires an action event, the

behavior is the same from the point where the displayPixelInformation method is
called.

The setUpNextAndPreviousButtons method

Recall that we are still discussing the createLocationPanel method. Listing 19 makes
a call to a method named setUpNextAndPreviousButtons to prepare the four buttons
located on either side of the two text fields in Figure 2 for use.

Listing 19. Call the setUpNextAndPreviousButtons method.

 setUpNextAndPreviousButtons();

The setUpNextAndPreviousButtons method is a huge and complex method, so it's
time to change colors again, put the createLocationPanel method back on hold, and
begin explaining the method named setUpNextAndPreviousButtons.

Beginning of the setUpNextAndPreviousButtons method

The setUpNextAndPreviousButtons method begins in Listing 20.

Listing 20. Beginning of the setUpNextAndPreviousButtons method.

 /**

 * Method to set up the next and previous buttons

for the

 * pixel location information

 */

 private void setUpNextAndPreviousButtons()

 {

 // create the image icons for the buttons

 Icon prevIcon = new ImageIcon(

SoundExplorer.class.getResource("leftArrow.gif"),

 "previous

index");

 Icon nextIcon = new ImageIcon(

SoundExplorer.class.getResource("rightArrow.gif"),

 "next

index");

The class named Class

See the lesson titled The
Essence of OOP using
Java: Static Members in
Resources for more
information on the class

The class named Class

There is a class named Class, which provides methods for doing a number of
interesting things.

The code in Listing 20 gets complicated very quickly with the call to the getResources
method of the class named Class.

We need two ImageIcon objects

All four of the buttons in the locationPanel in Figure 2
have triangular images on them that serve as
arrows. To cause an image to be displayed on a
JButton object, you need for the image to be
encapsulated in an object of a class that implements the Icon interface. One such class
is the ImageIcon class.

What we are going to do here is to get references to two ImageIcon objects to place on
the JButton objects that you see on either side of the JTextField objects in Figure
2. The ImageIcon objects should encapsulate images of arrows that point to the left
and to the right.

Image files containing the required images

A pair of image files named leftArrow.gif and rightArrow.gif, containing the required
images, are included in Ericson's multimedia class library. Screen shots of the two
images are shown in Figure 5.

Figure 5. Image files in Ericson's class library.

Our challenge is to find a (hopefully) reliable way to instantiate ImageIcon objects
containing those two images.

The ImageIcon class

The ImageIcon class contains nine overloaded constructors as of Java version 1.6.

One of those constructors requires the name of an image file as a parameter. It
extracts the image from the file and encapsulates it in the ImageIcon object. At first
blush, this seems like a reasonable approach. However, the problem with this approach
for the current objective is that the program must know the location of the image file on
the disk.

The image files may be anywhere

named Class.

Viewer Warning
The next several paragraphs

will discuss and attempt to

explain some complex

technical issues.

In our case, the two image files are located in Ericson's class library and the location of
the class library on any particular computer is not known at the time the program is
being written. All the programmer knows is that the class library must be somewhere on
the classpath in order for other things to work properly.

Solution: to find image files on the classpath

What we need then, is a programming solution that can find the two image files on the
classpath and then use them to create the required ImageIcon objects. The code in
Listing 20 provides such a solution.

A different ImageIcon constructor

The ImageIcon constructor that is called twice in Listing 20 requires two incoming
parameters:

 URL location - the location of an image file (in the form of a reference to an
object of type URL) that specifies the location of the image file that will be used
to instantiate the ImageIcon object.

 String description - a brief textual description of the image.

Our objective is clear

Our objective is to specify the locations (in the form of references to URL objects) for
each of the two files listed above and to pass the two URL references to the constructor
for the ImageIcon class, once for each ImageIcon object being constructed.

The class named Class to the rescue

Fortunately, the class named Class provides a static method named getResources
that we can use for that purpose. The getResources method will search for a resource
file with a specified name and return the location of that file as type URL.

The search procedure

Exactly how the getResources method goes about conducting the search is a complex
issue. For the purposes of this lesson, suffice it to say that by default, directories on the
classpath are included in the search and they are searched in the order that they
appear in the classpath.

Forcing a failure
The classpath on my computer

causes the current directory to

be searched first. Therefore, I

can force a failure by placing a

dummy file named

A word of caution

The URL for the first file that is found with the matching
name will be returned by the getResources method,
even if it is not the correct file. Therefore, you must be
careful not to have two or more resource files with the same name on the classpath, or
at least the order of directories in the classpath must be such that the correct resource
file will be found first.

For whatever its worth - the URL toString method output

In case you are interested, the overridden toString method of the URL class returns the
following string when I use the getResources method to get the URL of the file named
leftArrow.gif.

file:/M:/Ericson/bookClasses/leftArrow.gif

However, I have always thought of the URL as looking more like the following:

file:///M:/Ericson/bookClasses/leftArrow.gif

Why reference the SoundExplorer.class

Although I have explained the general concepts behind the code in Listing 20, I still
haven't explained the strange syntax used in the code in Listing 20. An interesting
question is, "Why did Ericson make a reference to the class named SoundExplorer in
the PictureExplorer class, which has nothing to do with sound?"

A speculative answer

My guess is that the SoundExplorer class was probably developed first and
the PictureExplorer class was developed using the source code from the
SoundExplorer class as a starting point. The reference to the SoundExplorer class
may simply have been left over in that process.

Any Class object will do the job

The code works equally well if the reference to the SoundExplorer class in Listing 20 is
replaced by a reference to the PictureExplorer class. It also works if the reference is
replaced by a reference to the Picture class, and there are many other possibilities as
well.

leftArrow.gif in the current

directory for the program that

calls the explore method of the

Picture class.

Get a reference to a Class

object
To learn more about this topic,

see the lesson titled The

The reality is that the getResources method can be
called on a reference to any object of the Class
class. There are several approaches to creating such a
reference, and each approach works best in some
particular circumstance.

Append .class to the end of a file name

One way to create such a reference is to call out the name of an accessible class and
append ".class" onto the end of the name. This is the approach used in Listing 20,
which references SoundExplorer.class.

This approach requires that the name of the accessible class is known when the
program is written.

Use the getClass method

Another approach is to call the getClass method on any existing object. For example, a
reference to this.getClass() could be used in Listing 20 in place of the reference to the
SoundExplorer class.

This approach requires that the name of the reference to an existing object be known
when the program is written.

Use the forName method

A third approach is to use a static method of the Class class named forName. I will
leave it as an exercise for the student to follow up on this approach. However, I will
mention that this approach uses the name of a class specified as type String. This
makes it possible to identify the target class at runtime using input data of type String.

Advantages of the overall approach

This overall approach, which is based on calling the getResources method of the
Class class, is very useful for cases where a specific resource, (such as a specific
image file) or a resource within a specific group of resources (such as a group of sound
files) will always be required by the class.

Using this approach, the resource file or files can be packaged along with the compiled
class file and will always be available to the program, unless, of course, duplicate file
names on the classpath cause the problems described earlier.

Use long, complex, and hopefully unique resource file names

The problems that result from having duplicate file names on the classpath might cause
the programmer to consider using long, complex, and (hopefully) unique file names for

Essence of OOP using
Java, Array Objects, Part 3
in Resources.

the required resource files that are packaged with the class files. (The filename
"leftArrow.gif" is not a long, complex, and unique file name.)

Summary of the code in listing 20

In summary, each of the statements in Listing 20:

 Creates a reference to an object of type Class.
 Calls the getResource method on the Class object's reference to get a

reference to a URL object that specifies the location of the specified file in
Ericson's class library.

 Passes the URL object's reference, along with a String description, to the
constructor for the ImageIcon class in order to instantiate an ImageIcon object
that encapsulates the image extracted from the specified image file.

And that is probably more than you ever wanted to know about instantiating ImageIcon
objects and the Class class.

Create the arrow buttons with tooltips

Listing 21 instantiates four new JButton objects, passing the reference to the
appropriate ImageIcon object to the constructor in each case. This creates the four
buttons with the arrows that appear on both sides of each of the text fields in Figure 2.

Listing 21. Create the arrow buttons with tooltips.

 // create the arrow buttons

 xPrevButton = new JButton(prevIcon);

 xNextButton = new JButton(nextIcon);

 yPrevButton = new JButton(prevIcon);

 yNextButton = new JButton(nextIcon);

 // set the tool tip text

 xNextButton.setToolTipText(

 "Click to go to the

next x value");

 xPrevButton.setToolTipText(

 "Click to go to the

previous x value");

 yNextButton.setToolTipText(

 "Click to go to the

next y value");

 yPrevButton.setToolTipText(

 "Click to go to the

previous y value");

Then Listing 21 calls the setToolTipText four times in succession to set tool tips on
each of the buttons. If you run the program and allow the mouse pointer to hover over
the buttons, the text shown in Listing 21 will be displayed in the tool tip format.

Match the button size to the icon size

Listing 22 gets the width and height of the images in the ImageIcon objects (see Figure
5) and uses that information to set the preferred size of each of the buttons to the size
of the icons.

Listing 22. Match the button size to the icon size.

 // set the sizes of the buttons

 int prevWidth = prevIcon.getIconWidth() +

2;

 int nextWidth = nextIcon.getIconWidth() +

2;

 int prevHeight = prevIcon.getIconHeight() +

2;

 int nextHeight = nextIcon.getIconHeight() +

2;

 Dimension prevDimension =

 new

Dimension(prevWidth,prevHeight);

 Dimension nextDimension =

 new Dimension(nextWidth,

nextHeight);

xPrevButton.setPreferredSize(prevDimension);

yPrevButton.setPreferredSize(prevDimension);

xNextButton.setPreferredSize(nextDimension);

yNextButton.setPreferredSize(nextDimension);

When the pack method is called at the end of Listing 6, an attempt will be made to
accommodate the preferred size of each button when computing the required size for
the JFrame object to contain all of its components.

Register ActionListener objects on all four buttons

Listing 23 instantiates four ActionListener objects from anonymous classes and
registers them on the four buttons.

Listing 23. Register ActionListener objects on all four buttons.

 // handle previous x button press

 xPrevButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent

evt) {

 xIndex--;

 if (xIndex < 0)

 xIndex = 0;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle previous y button press

 yPrevButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent

evt) {

 yIndex--;

 if (yIndex < 0)

 yIndex = 0;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle next x button press

 xNextButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent

evt) {

 xIndex++;

 if (xIndex >= picture.getWidth())

 xIndex = picture.getWidth() - 1;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle next y button press

 yNextButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent

evt) {

 yIndex++;

 if (yIndex >= picture.getHeight())

 yIndex = picture.getHeight() - 1;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 }//end setUpNextAndPreviousButtons method

You should have no difficulty with Listing 23

Given what you have learned about the instantiation of ActionListener objects from
anonymous classes and the registration of the action listeners on the text fields earlier
in this lesson, you should have no difficulty with the code in Listing 23.

The overall structure is the same in this case and the last. Of course, the behavior of
the actionPerformed event handler methods that get called when the buttons fire
action events is different from the behavior of the same methods when the text fields fire
action events.

Behavior of the actionPerformed methods

The purpose of each of the buttons in Figure 2 is to either increment or decrement the x
or the y coordinate value each time the button fires an action event.

Each of the actionPerformed methods in Listing 23 increments or decrements a
coordinate value, being careful to make certain that the modified coordinate value
that results is still within the bounds of the image.

Then the actionPerformed method calls the same method named
displayPixelInformation that I explained in conjunction with Listing 13.

Firing an action event

A JButton object will fire an action event:

 When it is clicked by the mouse.
 When the user presses the Enter key while the button has the focus.

As you will learn in a future lesson, however, the focus traversal policy that is defined for
the PictureExplorer class doesn't allow the buttons to gain the focus when the user
presses the tab key. Repeated pressing of the tab key simply causes the focus to ping-
pong back and forth between the two text fields. Therefore, in this program, the buttons
are allowed to fire action events only when they are clicked by the mouse.

End of the setUpNextAndPreviousButtons method

Listing 23 also signals the end of the method named setUpNextAndPreviousButtons.

When all of the code in Listing 23 has been executed, the buttons are set up and ready
for action. Note, however, that they still haven't been placed in their container.

When the method terminates, control returns to the statement immediately following the
statement in Listing 19, which is contained in the method named
createLocationPanel. Therefore, it is time to change background colors again and
resume the explanation of that method.

Set the font for the labels on locationPanel

The code in Listing 7 instantiates a new Font object having the default name, the
default style, and a size of 14 points. The reference to that Font object is saved in an
instance variable named largerFont.

The code in Listing 8 calls the createLocationPanel method to create the location
panel as an object of type JPanel. The call passes largerFont as a parameter. Listing

9 shows that the createLocationPanel method refers locally to the Font object as
labelFont.

Listing 24 uses that reference to call the setFont method on both JLabel objects and
both JTextField objects. This sets the font property for all four objects to the 14-point
font created in Listing 7.

Listing 24. Set the font for the labels on the locationPanel.

 // set up the font for the labels

 xLabel.setFont(labelFont);

 yLabel.setFont(labelFont);

 xValue.setFont(labelFont);

 yValue.setFont(labelFont);

Create the physical layout of the locationPanel

At this point, all of the components required for the locationPanel have been
constructed and conditioned to do their jobs. However, they are still floating around in
cyberspace and haven't been placed in the panel. The code in Listing 25 places each
of the components in the locationPanel and arranges their physical layout at the same
time.

Listing 25. Create the physical layout of the locationPanel.

 //Prepare the box

 hBox.add(Box.createHorizontalGlue());

 //Add the components to the box

 hBox.add(xLabel);// X:

 hBox.add(xPrevButton);// a button with left

arrow

 hBox.add(xValue);// leftmost text field

 hBox.add(xNextButton);// a button with

right arrow

 hBox.add(Box.createHorizontalStrut(10));//

a spacer

 hBox.add(yLabel);// Y:

 hBox.add(yPrevButton);// a button with left

arrow

 hBox.add(yValue);// rightmost text field

 hBox.add(yNextButton);// button with right

arrow

 //Add the box to the panel

 locationPanel.add(hBox);

 hBox.add(Box.createHorizontalGlue());

 return locationPanel;

 }//end createLocationPanel method

Rather than explaining each statement in Listing 25, I am going to provide a verbal
description of what Listing 25 accomplishes. (At this point, I recommend that you take a
look at what I have previously written about the use of BoxLayout.)

Visual aids needed

In order to provide this explanation, I will need some visual aids.

Figure 6 provides another view of the GUI at the normal size of the picture and without
the Zoom menu having been opened.

Figure 6. Another view of the GUI.

Eight components on the locationPanel

Going from left to right, you should be able to identify the following eight components in
the locationPanel near the top of Figure 6.

1. JLabel: "X:"
2. JButton with arrow pointing left
3. JTextField
4. JButton with arrow pointing right
5. JLabel: "Y:"
6. JButton with arrow pointing left

7. JTextField
8. JButton with arrow pointing right

A JPanel object with center-aligned FlowLayout

The locationPanel is actually a JPanel object with a FlowLayout manager, center
aligned. Instead of placing the components directly in the JPanel, (which would have
some serious drawbacks), Listing 25 places all eight components in a horizontal Box
object with a very careful arrangement and then places the box in the JPanel object

In addition to the eight components, Listing 25 also places two blobs of glue in the box
along with one strut.

The box is centered in the panel

The box is centered in the JPanel, and can be though of as taking up all of the available
horizontal space. In some cases, as in Figure 3, the box is too wide to fit in the
available space.

What is the purpose of the strut?

Think of the strut as an invisible, incompressible, non-stretchable horizontal rod ten
pixels in length. It is placed in the center of the box with four of the eight components
on its left side and the other four on its right side. The JLabel on the right end of the
strut and the JButton on the left end of the strut are effectively attached to the two ends
of the strut.

No matter how hard the user may try, (by resizing the JFrame), she cannot cause the
JLabel on the right end of the strut and the JButton on the left end of the strut to move
any closer together than ten pixels.

Similarly, she cannot cause those two components to move any further apart than the
length of the strut (ten pixels).

If you examine Figure 2, Figure 3, and Figure 6, you will see that the space between the
two components at the ends of the strut are always separated by the same distance
regardless of the size of the JFrame.

What about the glue?

I like to think of the glue as being more like a coil spring, or a piece of elastic than a blob
of sticky stuff. Think of the left end of such a piece of elastic being attached to the right
side of the rightmost JButton object and think of the other end of that piece of elastic
being attached to the rightmost end of the box.

Now think of the left end of another piece of elastic as being attached to the leftmost
end of the box, and think of the other end of the elastic being attached to the leftmost
side of the leftmost JLabel object.

The order of display

Listing 25 adds the eight components to the box in the order listed earlier. They are
subsequently displayed from left to right in the order that they are added.

Objects touch one another unless...

When objects are added to a horizontal box, they will touch one another unless they are
separated by a strut. Furthermore, their relative positions are fixed unless some glue is
added in between the components.

Where is the glue?

In this case, no glue was added in between the components but the ten-pixel strut was
added between the four components on the left and the four components on the
right. Because of the strut, the two groups may not move closer together than ten pixels
and may not move further apart than ten pixels. Due to the lack of glue between the
components, the four components on the left must remain touching and the four
components on the right must also remain touching.

However, glue was added before the components were added and again after the
components were added. Therefore a blob of glue (a piece of elastic material) exists
between the rightmost and leftmost components and the corresponding end of the box.

And the bottom line is...

If the width of the box is increased, the group of eight components will remain centered
as shown in Figure 2 and Figure 6.

On the other hand, glue does nothing to prevent components from moving closer
together or from moving closer to the ends of the box. Therefore, as the box is made
narrower, the space between the ends of the box and the components on the ends of
each group eventually goes to zero. Any further narrowing of the GUI will simply cause
the components on the left and right ends of the groups to disappear from view. This is
demonstrated in Figure 3 where the rightmost button has disappeared and the leftmost
label and part of the leftmost button has disappeared.

Also, as mentioned earlier, the use of the BoxLayout doesn't allow the components to
wrap down to the next line as is the case with simple FlowLayout.

The end of the createLocationPanel method

Listing 25 signals the end of the createLocationPanel method. When this method
terminates, control is returned to the statement immediately following the statement in
Listing 8, which is contained in the method named createInfoPanel.

Create the colorInfoPanel

The next statement in the createInfoPanel method is a call to the
createColorInfoPanel method for the purpose of creating the colorInfoPanel. This
statement is shown in Listing 26.

Listing 26. Create the colorInfoPanel.

 // create the color information panel

 JPanel colorInfoPanel =

createColorInfoPanel(largerFont);

Recall that the colorInfoPanel appears below the text fields in Figure 6 and displays
the color values for red, green, and blue along with the actual color in a square JPanel
object.

The createColorInfoPanel method

The createColorInfoPanel method begins in Listing 27.

Listing 27. Beginning of the createColorInfoPanel method.

 /**

 * Create the color information panel

 * @param labelFont the font to use for

labels

 * @return the color information panel

 */

 private JPanel createColorInfoPanel(Font

labelFont){

 // create a color info panel

 JPanel colorInfoPanel = new JPanel();

 colorInfoPanel.setLayout(new FlowLayout());

 // get the pixel at the x and y

 Pixel pixel = new

Pixel(picture,xIndex,yIndex);

 // create the labels

 rValue = new JLabel("R: " +

pixel.getRed());

 gValue = new JLabel("G: " +

pixel.getGreen());

 bValue = new JLabel("B: " +

pixel.getBlue());

A walk in the park

Compared to what you have just been through with the locationPanel, understanding
the code in the createColorInfoPanell method will be like a "walk in the park." For
example, all of the components in the panel are passive in the sense that they don't fire
any events.

There is no BoxLayout. The layout manager is FlowLayout with default center
alignment.

A new JPanel object

Listing 27 begins by instantiating a new JPanel object and setting its layout manager to
FlowLayout.

Then Listing 27 gets a reference to a new Pixel object at the location specified by the
current x and y coordinate values.

The red, green, and blue values are extracted from the Pixel object and used to
construct three String objects that are displayed (later) immediately below the leftmost
text field in Figure 6.

Construct the color display panel and its label

The code in Listing 28 constructs the small square JPanel object that appears below
the rightmost text field in Figure 6 along with the label immediately to the left of the
colored square.

Listing 28. Construct the color display panel and its label.

 // create the sample color panel and label

 colorLabel = new JLabel("Color at location:

");

 colorPanel = new JPanel();

 colorPanel.setBorder(new

LineBorder(Color.black,1));

 // set the color sample to the pixel color

 colorPanel.setBackground(pixel.getColor());

If you have done any Swing programming at all, you shouldn't have any problem with
the code in Listing 28. Note that at this point, the dimensions of the small square panel
have not yet been established. The dimensions will be established near the middle of
Listing 29.

Set fonts

Listing 29 uses a reference to a Font object that was received as an incoming
parameter to set the font for all of the text that is displayed on the colorInfoPanel.

Listing 29. Set fonts, add components to colorInfoPanel, and return.

 // set the font

 rValue.setFont(labelFont);

 gValue.setFont(labelFont);

 bValue.setFont(labelFont);

 colorLabel.setFont(labelFont);

 colorPanel.setPreferredSize(new

Dimension(25,25));

 // add items to the color information panel

 colorInfoPanel.add(rValue);

 colorInfoPanel.add(gValue);

 colorInfoPanel.add(bValue);

 colorInfoPanel.add(colorLabel);

 colorInfoPanel.add(colorPanel);

 return colorInfoPanel;

 }//end createColorInfoPanel method

Set the preferred size

Then Listing 29 sets the preferred size for the small colored square shown in Figure 6 to
be 25 pixels on each side.

Add the components to the colorInfoPanel and return it

Finally, Listing 29 adds the five components to the JPanel object. Because the layout
manager is FlowLayout with center alignment, the components appear centered in the
panel from left to right in the order that they are added to the panel.

Although it is possible to insert a gap of a specified width between the components, that
wasn't done in this class. JLabel objects will, by default insert a reasonable amount of
space on each end of the label to serve as margins. An extra space character was
inserted in the JLabel object in Listing 28 to separate the label from the colored square
immediately to its right.

The end of the createColorInfoPanel method

Listing 28 signals the end of the createColorInfoPanel method. When the object's
reference is returned and the method terminates, control is returned to the next
statement in the createInfoPanel method immediately following the statement shown in
Listing 26. That next statement is the first statement in Listing 30.

Complete the createInfoPanel method

The code in Listing 30 completes the method named createInfoPanel. (Recall that this
is the method that creates and populates the JPanel object shown in the NORTH
position in Figure 6.)

Listing 30. Complete the createInfoPanel method.

 // add the panels to the info panel

infoPanel.add(BorderLayout.NORTH,locationPanel);

infoPanel.add(BorderLayout.SOUTH,colorInfoPanel);

 // add the info panel

 pictureFrame.getContentPane().add(

BorderLayout.NORTH,infoPanel);

 }//end createInfoPanel method

Listing 30 begins by adding the two sub-panels (locationPanel and colorInfoPanel) to
the JPanel object (infoPanel).

Then Listing 30 adds the infoPanel to the NORTH position of the JFrame object's
content pane. This causes the infoPanel to be visible in the frame when the JFrame
object is visible on the screen.

The end of the lesson

When the createInfoPanel method terminates, control is returned to the createWindow
method shown in Listing 6. This causes the method named
createAndInitScrollingImage to be called in order to continue the construction of the
GUI shown in Figure 6. The createAndInitScrollingImage method is the topic for the
next lesson.

Run the program

You still have a long way to go before you can fully understand the PictureExplorer
class. Once again, however, you have been working hard if you have made it to this
point. It's time for you to take a break and mull over what you have learned in this
lesson and maybe do some experimenting as well.

I encourage you to make a copy of the source code file for the PictureExplorer
class. Put it in your current directory along with your program files and then open the
file in your IDE. (Make certain that the current directory appears in the classpath to the
left of Ericson's media library.)

Experiment with the PictureExplorer code, making changes, and observing the results
of your changes. Make certain that you can explain why your changes behave as they
do.

Also experiment with the picture explorer onscreen GUI. Try some different image files
and see if the color values reported by the GUI make sense to you.

Summary

In the previous lesson, you learned about the overall construction of the
PictureExplorer GUI shown in Figure 2. You also learned how to construct the Zoom
menu and how to register event listener objects on the items in the menu.

In this lesson, you learned how to construct the infoPanel in the NORTH location of the
GUI in Figure 2. You also learned how to register event listener objects on the
components in that panel making use of objects of anonymous classes.

Along the way, you also learned about some other interesting topics including:

 The use of BoxLayout
 The class file naming scheme.
 The use of getResources to get the URL of a file
 The use of a class loader to load a resource file

What's next?

The next lesson will show you how to do flood fill using Java.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA
 Vector Cad-Cam XI Lathe Tutorial
 Classification of 3D to 2D projections
 Color model from Wikipedia
 Light and color: an introduction by Norman Koren

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://en.wikipedia.org/wiki/Color_model
../Light%20and%20color:%20%20an%20introduction

 Color Principles - Hue, Saturation, and Value
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight
404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
408 Processing Image Pixels, Performing Convolution on Images
410 Processing Image Pixels, Understanding Image Convolution in Java
412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
416 Processing Image Pixels, An Improved Image-Processing Framework in
Java
418 Processing Image Pixels, Creating Visible Watermarks in Java
450 A Framework for Experimenting with Java 2D Image-Processing Filters
452 Using the Java 2D LookupOp Filter Class to Process Images
454 Using the Java 2D AffineTransformOp Filter Class to Process Images
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble
Images
458 Using the Java 2D BandCombineOp Filter Class to Process Images
460 Using the Java 2D ConvolveOp Filter Class to Process Images
462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to
Process Images

 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java

http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#(HSV)
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761

 350 3D Displays, Color Distance, and Edge Detection
 351 A Slider-Controlled Softening Program for Digital Photos
 352 Adding Animated Movement to Your Java Application
 353 A Slider-Controlled Sharpening Program for Digital Photos
 354 The DigitalPicture Interface
 355 The HSB Color Model
 356 The show Method and the PictureFrame Class
 357 An HSB Color-Editing Program for Digital Photos
 358 Applying Affine Transforms to Picture Objects
 359 Creating a lasso for editing digital photos in Java
 360 Wrapping Up the SimplePicture Class
 361 A Temperature and Tint Editing Program for Digital Photos
 362 Getting Started with the PictureExplorer Class
 363 Redeye Correction in Digital Photographs

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 31 and
Listing 32 below.

Listing 31. Source code for Ericson's PictureExplorer class.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.awt.image.*;

import javax.swing.border.*;

/**

 * Displays a picture and lets you explore the

picture by

 * displaying the x, y, red, green, and blue values

of the

 * pixel at the cursor when you click a mouse

button or

 * press and hold a mouse button while moving the

cursor.

 * It also lets you zoom in or out. You can also

type in

 * a x and y value to see the color at that

location.

 *

 * Originally created for the Jython Environment

for

 * Students (JES).

 * Modified to work with DrJava by Barbara Ericson

 *

 * Copyright Georgia Institute of Technology 2004

 * @author Keith McDermottt, gte047w@cc.gatech.edu

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class PictureExplorer implements

http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm
http://www.dickbaldwin.com/java/Java354.htm
http://www.dickbaldwin.com/java/Java355.htm
http://www.dickbaldwin.com/java/Java356.htm
http://www.dickbaldwin.com/java/Java357.htm
http://www.dickbaldwin.com/java/Java358.htm
http://www.dickbaldwin.com/java/Java359.htm
http://www.dickbaldwin.com/java/Java360.htm
http://www.dickbaldwin.com/java/Java361.htm
http://www.dickbaldwin.com/java/Java362.htm
http://www.dickbaldwin.com/java/Java363.htm

 MouseMotionListener, ActionListener,

MouseListener{

 // current x and y index

 private int xIndex = 0;

 private int yIndex = 0;

 //Main gui variables

 private JFrame pictureFrame;

 private JScrollPane scrollPane;

 //information bar variables

 private JLabel xLabel;

 private JButton xPrevButton;

 private JButton yPrevButton;

 private JButton xNextButton;

 private JButton yNextButton;

 private JLabel yLabel;

 private JTextField xValue;

 private JTextField yValue;

 private JLabel rValue;

 private JLabel gValue;

 private JLabel bValue;

 private JLabel colorLabel;

 private JPanel colorPanel;

 // menu components

 private JMenuBar menuBar;

 private JMenu zoomMenu;

 private JMenuItem twentyFive;

 private JMenuItem fifty;

 private JMenuItem seventyFive;

 private JMenuItem hundred;

 private JMenuItem hundredFifty;

 private JMenuItem twoHundred;

 private JMenuItem fiveHundred;

 /** The picture being explored */

 private DigitalPicture picture;

 /** The image icon used to display the picture */

 private ImageIcon scrollImageIcon;

 /** The image display */

 private ImageDisplay imageDisplay;

 /** the zoom factor (amount to zoom) */

 private double zoomFactor;

 /** the number system to use, 0 means starting at

0,

 * 1 means starting at 1 */

 private int numberBase=0;

 /**

 * Public constructor

 * @param picture the picture to explore

 */

 public PictureExplorer(DigitalPicture picture)

 {

 // set the fields

 this.picture=picture;

 zoomFactor=1;

 // create the window and set things up

 createWindow();

 }

 /**

 * Changes the number system to start at one

 */

 public void changeToBaseOne()

 {

 numberBase=1;

 }

 /**

 * Set the title of the frame

 *@param title the title to use in the JFrame

 */

 public void setTitle(String title)

 {

 pictureFrame.setTitle(title);

 }

 /**

 * Method to create and initialize the picture

frame

 */

 private void createAndInitPictureFrame()

 {

 pictureFrame = new JFrame(); // create the

JFrame

 //allow the user to resize it

 pictureFrame.setResizable(true);

 // use border layout

 pictureFrame.getContentPane().setLayout(

 new

BorderLayout());

 // when close stop

 pictureFrame.setDefaultCloseOperation(

JFrame.DISPOSE_ON_CLOSE);

 pictureFrame.setTitle(picture.getTitle());

 PictureExplorerFocusTraversalPolicy newPolicy =

 new

PictureExplorerFocusTraversalPolicy();

 pictureFrame.setFocusTraversalPolicy(newPolicy);

 }

 /**

 * Method to create the menu bar, menus, and menu

items

 */

 private void setUpMenuBar()

 {

 //create menu

 menuBar = new JMenuBar();

 zoomMenu = new JMenu("Zoom");

 twentyFive = new JMenuItem("25%");

 fifty = new JMenuItem("50%");

 seventyFive = new JMenuItem("75%");

 hundred = new JMenuItem("100%");

 hundred.setEnabled(false);

 hundredFifty = new JMenuItem("150%");

 twoHundred = new JMenuItem("200%");

 fiveHundred = new JMenuItem("500%");

 // add the action listeners

 twentyFive.addActionListener(this);

 fifty.addActionListener(this);

 seventyFive.addActionListener(this);

 hundred.addActionListener(this);

 hundredFifty.addActionListener(this);

 twoHundred.addActionListener(this);

 fiveHundred.addActionListener(this);

 // add the menu items to the menus

 zoomMenu.add(twentyFive);

 zoomMenu.add(fifty);

 zoomMenu.add(seventyFive);

 zoomMenu.add(hundred);

 zoomMenu.add(hundredFifty);

 zoomMenu.add(twoHundred);

 zoomMenu.add(fiveHundred);

 menuBar.add(zoomMenu);

 // set the menu bar to this menu

 pictureFrame.setJMenuBar(menuBar);

 }

 /**

 * Create and initialize the scrolling image

 */

 private void createAndInitScrollingImage()

 {

 scrollPane = new JScrollPane();

 BufferedImage bimg = picture.getBufferedImage();

 imageDisplay = new ImageDisplay(bimg);

 imageDisplay.addMouseMotionListener(this);

 imageDisplay.addMouseListener(this);

 imageDisplay.setToolTipText("Click a mouse

button on "

 + "a pixel to see the pixel

information");

 scrollPane.setViewportView(imageDisplay);

 pictureFrame.getContentPane().add(

 scrollPane,

BorderLayout.CENTER);

 }

 /**

 * Creates the JFrame and sets everything up

 */

 private void createWindow()

 {

 // create the picture frame and initialize it

 createAndInitPictureFrame();

 // set up the menu bar

 setUpMenuBar();

 //create the information panel

 createInfoPanel();

 //creates the scrollpane for the picture

 createAndInitScrollingImage();

 // show the picture in the frame at the size it

needs

 // to be

 pictureFrame.pack();

 pictureFrame.setVisible(true);

 }

 /**

 * Method to set up the next and previous buttons

for the

 * pixel location information

 */

 private void setUpNextAndPreviousButtons()

 {

 // create the image icons for the buttons

 Icon prevIcon = new ImageIcon(

SoundExplorer.class.getResource("leftArrow.gif"),

 "previous

index");

 Icon nextIcon = new ImageIcon(

SoundExplorer.class.getResource("rightArrow.gif"),

 "next

index");

 // create the arrow buttons

 xPrevButton = new JButton(prevIcon);

 xNextButton = new JButton(nextIcon);

 yPrevButton = new JButton(prevIcon);

 yNextButton = new JButton(nextIcon);

 // set the tool tip text

 xNextButton.setToolTipText(

 "Click to go to the next x

value");

 xPrevButton.setToolTipText(

 "Click to go to the previous x

value");

 yNextButton.setToolTipText(

 "Click to go to the next y

value");

 yPrevButton.setToolTipText(

 "Click to go to the previous y

value");

 // set the sizes of the buttons

 int prevWidth = prevIcon.getIconWidth() + 2;

 int nextWidth = nextIcon.getIconWidth() + 2;

 int prevHeight = prevIcon.getIconHeight() + 2;

 int nextHeight = nextIcon.getIconHeight() + 2;

 Dimension prevDimension =

 new

Dimension(prevWidth,prevHeight);

 Dimension nextDimension =

 new Dimension(nextWidth,

nextHeight);

 xPrevButton.setPreferredSize(prevDimension);

 yPrevButton.setPreferredSize(prevDimension);

 xNextButton.setPreferredSize(nextDimension);

 yNextButton.setPreferredSize(nextDimension);

 // handle previous x button press

 xPrevButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 xIndex--;

 if (xIndex < 0)

 xIndex = 0;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle previous y button press

 yPrevButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 yIndex--;

 if (yIndex < 0)

 yIndex = 0;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle next x button press

 xNextButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 xIndex++;

 if (xIndex >= picture.getWidth())

 xIndex = picture.getWidth() - 1;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 // handle next y button press

 yNextButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 yIndex++;

 if (yIndex >= picture.getHeight())

 yIndex = picture.getHeight() - 1;

 displayPixelInformation(xIndex,yIndex);

 }

 });

 }

 /**

 * Create the pixel location panel

 * @param labelFont the font for the labels

 * @return the location panel

 */

 public JPanel createLocationPanel(Font labelFont)

{

 // create a location panel

 JPanel locationPanel = new JPanel();

 locationPanel.setLayout(new FlowLayout());

 Box hBox = Box.createHorizontalBox();

 // create the labels

 xLabel = new JLabel("X:");

 yLabel = new JLabel("Y:");

 // create the text fields

 xValue = new JTextField(

 Integer.toString(xIndex +

numberBase),6);

 xValue.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 displayPixelInformation(

xValue.getText(),yValue.getText());

 }

 });

 yValue = new JTextField(

 Integer.toString(yIndex +

numberBase),6);

 yValue.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 displayPixelInformation(

xValue.getText(),yValue.getText());

 }

 });

 // set up the next and previous buttons

 setUpNextAndPreviousButtons();

 // set up the font for the labels

 xLabel.setFont(labelFont);

 yLabel.setFont(labelFont);

 xValue.setFont(labelFont);

 yValue.setFont(labelFont);

 // add the items to the vertical box and the box

to

 // the panel

 hBox.add(Box.createHorizontalGlue());

 hBox.add(xLabel);

 hBox.add(xPrevButton);

 hBox.add(xValue);

 hBox.add(xNextButton);

 hBox.add(Box.createHorizontalStrut(10));

 hBox.add(yLabel);

 hBox.add(yPrevButton);

 hBox.add(yValue);

 hBox.add(yNextButton);

 locationPanel.add(hBox);

 hBox.add(Box.createHorizontalGlue());

 return locationPanel;

 }

 /**

 * Create the color information panel

 * @param labelFont the font to use for labels

 * @return the color information panel

 */

 private JPanel createColorInfoPanel(Font

labelFont)

 {

 // create a color info panel

 JPanel colorInfoPanel = new JPanel();

 colorInfoPanel.setLayout(new FlowLayout());

 // get the pixel at the x and y

 Pixel pixel = new Pixel(picture,xIndex,yIndex);

 // create the labels

 rValue = new JLabel("R: " + pixel.getRed());

 gValue = new JLabel("G: " + pixel.getGreen());

 bValue = new JLabel("B: " + pixel.getBlue());

 // create the sample color panel and label

 colorLabel = new JLabel("Color at location: ");

 colorPanel = new JPanel();

 colorPanel.setBorder(new

LineBorder(Color.black,1));

 // set the color sample to the pixel color

 colorPanel.setBackground(pixel.getColor());

 // set the font

 rValue.setFont(labelFont);

 gValue.setFont(labelFont);

 bValue.setFont(labelFont);

 colorLabel.setFont(labelFont);

 colorPanel.setPreferredSize(new

Dimension(25,25));

 // add items to the color information panel

 colorInfoPanel.add(rValue);

 colorInfoPanel.add(gValue);

 colorInfoPanel.add(bValue);

 colorInfoPanel.add(colorLabel);

 colorInfoPanel.add(colorPanel);

 return colorInfoPanel;

 }

 /**

 * Creates the North JPanel with all the pixel

location

 * and color information

 */

 private void createInfoPanel()

 {

 // create the info panel and set the layout

 JPanel infoPanel = new JPanel();

 infoPanel.setLayout(new BorderLayout());

 // create the font

 Font largerFont =

 new

Font(infoPanel.getFont().getName(),

infoPanel.getFont().getStyle(),14);

 // create the pixel location panel

 JPanel locationPanel =

createLocationPanel(largerFont);

 // create the color informaiton panel

 JPanel colorInfoPanel =

createColorInfoPanel(largerFont);

 // add the panels to the info panel

 infoPanel.add(BorderLayout.NORTH,locationPanel);

infoPanel.add(BorderLayout.SOUTH,colorInfoPanel);

 // add the info panel

 pictureFrame.getContentPane().add(

BorderLayout.NORTH,infoPanel);

 }

 /**

 * Method to check that the current position is in

the

 * viewing area and if not scroll to center the

current

 * position if possible

 */

 public void checkScroll()

 {

 // get the x and y position in pixels

 int xPos = (int) (xIndex * zoomFactor);

 int yPos = (int) (yIndex * zoomFactor);

 // only do this if the image is larger than

normal

 if (zoomFactor > 1) {

 // get the rectangle that defines the current

view

 JViewport viewport = scrollPane.getViewport();

 Rectangle rect = viewport.getViewRect();

 int rectMinX = (int) rect.getX();

 int rectWidth = (int) rect.getWidth();

 int rectMaxX = rectMinX + rectWidth - 1;

 int rectMinY = (int) rect.getY();

 int rectHeight = (int) rect.getHeight();

 int rectMaxY = rectMinY + rectHeight - 1;

 // get the maximum possible x and y index

 int maxIndexX =

(int)(picture.getWidth()*zoomFactor)

 - rectWidth - 1;

 int maxIndexY =

(int)(picture.getHeight()*zoomFactor)

 - rectHeight - 1;

 // calculate how to position the current

position in

 // the middle of the viewing area

 int viewX = xPos - (int) (rectWidth / 2);

 int viewY = yPos - (int) (rectHeight / 2);

 // reposition the viewX and viewY if outside

allowed

 // values

 if (viewX < 0)

 viewX = 0;

 else if (viewX > maxIndexX)

 viewX = maxIndexX;

 if (viewY < 0)

 viewY = 0;

 else if (viewY > maxIndexY)

 viewY = maxIndexY;

 // move the viewport upper left point

 viewport.scrollRectToVisible(

 new

Rectangle(viewX,viewY,rectWidth,rectHeight));

 }

 }

 /**

 * Zooms in the on picture by scaling the image.

 * It is extremely memory intensive.

 * @param factor the amount to zoom by

 */

 public void zoom(double factor)

 {

 // save the current zoom factor

 zoomFactor = factor;

 // calculate the new width and height and get an

image

 // that size

 int width = (int)

(picture.getWidth()*zoomFactor);

 int height = (int)

(picture.getHeight()*zoomFactor);

 BufferedImage bimg = picture.getBufferedImage();

 // set the scroll image icon to the new image

imageDisplay.setImage(bimg.getScaledInstance(width,

 height,

Image.SCALE_DEFAULT));

 imageDisplay.setCurrentX((int) (xIndex *

zoomFactor));

 imageDisplay.setCurrentY((int) (yIndex *

zoomFactor));

 imageDisplay.revalidate();

 checkScroll(); // check if need to reposition

scroll

 }

 /**

 * Repaints the image on the scrollpane.

 */

 public void repaint()

 {

 pictureFrame.repaint();

 }

 //**//

 // Event Listeners //

 //**//

 /**

 * Called when the mouse is dragged (button held

down and

 * moved)

 * @param e the mouse event

 */

 public void mouseDragged(MouseEvent e)

 {

 displayPixelInformation(e);

 }

 /**

 * Method to check if the given x and y are in the

 * picture

 * @param x the horiztonal value

 * @param y the vertical value

 * @return true if the x and y are in the picture

and

 * false otherwise

 */

 private boolean isLocationInPicture(int x, int y)

 {

 boolean result = false; // the default is false

 if (x >= 0 && x < picture.getWidth() &&

 y >= 0 && y < picture.getHeight())

 result = true;

 return result;

 }

 /**

 * Method to display the pixel information from

the

 * passed x and y but also converts x and y from

strings

 * @param xString the x value as a string from the

user

 * @param yString the y value as a string from the

user

 */

 public void displayPixelInformation(

 String xString, String

yString)

 {

 int x = -1;

 int y = -1;

 try {

 x = Integer.parseInt(xString);

 x = x - numberBase;

 y = Integer.parseInt(yString);

 y = y - numberBase;

 } catch (Exception ex) {

 }

 if (x >= 0 && y >= 0) {

 displayPixelInformation(x,y);

 }

 }

 /**

 * Method to display pixel information for the

passed x

 * and y

 * @param pictureX the x value in the picture

 * @param pictureY the y value in the picture

 */

 private void displayPixelInformation(

 int pictureX, int

pictureY)

 {

 // check that this x and y is in range

 if (isLocationInPicture(pictureX, pictureY))

 {

 // save the current x and y index

 xIndex = pictureX;

 yIndex = pictureY;

 // get the pixel at the x and y

 Pixel pixel = new

Pixel(picture,xIndex,yIndex);

 // set the values based on the pixel

 xValue.setText(Integer.toString(

 xIndex +

numberBase));

 yValue.setText(Integer.toString(

 yIndex +

numberBase));

 rValue.setText("R: " + pixel.getRed());

 gValue.setText("G: " + pixel.getGreen());

 bValue.setText("B: " + pixel.getBlue());

 colorPanel.setBackground(new

Color(pixel.getRed(),

pixel.getGreen(),

pixel.getBlue()));

 }

 else

 {

 clearInformation();

 }

 // notify the image display of the current x and

y

 imageDisplay.setCurrentX((int) (xIndex *

zoomFactor));

 imageDisplay.setCurrentY((int) (yIndex *

zoomFactor));

 }

 /**

 * Method to display pixel information based on a

mouse

 * event

 * @param e a mouse event

 */

 private void displayPixelInformation(MouseEvent e)

 {

 // get the cursor x and y

 int cursorX = e.getX();

 int cursorY = e.getY();

 // get the x and y in the original (not scaled

image)

 int pictureX = (int)(cursorX/zoomFactor +

numberBase);

 int pictureY = (int)(cursorY/zoomFactor +

numberBase);

 // display the information for this x and y

 displayPixelInformation(pictureX,pictureY);

 }

 /**

 * Method to clear the labels and current color

and

 * reset the current index to -1

 */

 private void clearInformation()

 {

 xValue.setText("N/A");

 yValue.setText("N/A");

 rValue.setText("R: N/A");

 gValue.setText("G: N/A");

 bValue.setText("B: N/A");

 colorPanel.setBackground(Color.black);

 xIndex = -1;

 yIndex = -1;

 }

 /**

 * Method called when the mouse is moved with no

buttons

 * down

 * @param e the mouse event

 */

 public void mouseMoved(MouseEvent e)

 {}

 /**

 * Method called when the mouse is clicked

 * @param e the mouse event

 */

 public void mouseClicked(MouseEvent e)

 {

 displayPixelInformation(e);

 }

 /**

 * Method called when the mouse button is pushed

down

 * @param e the mouse event

 */

 public void mousePressed(MouseEvent e)

 {

 displayPixelInformation(e);

 }

 /**

 * Method called when the mouse button is released

 * @param e the mouse event

 */

 public void mouseReleased(MouseEvent e)

 {

 }

 /**

 * Method called when the component is entered

(mouse

 * moves over it)

 * @param e the mouse event

 */

 public void mouseEntered(MouseEvent e)

 {

 }

 /**

 * Method called when the mouse moves over the

component

 * @param e the mouse event

 */

 public void mouseExited(MouseEvent e)

 {

 }

 /**

 * Method to enable all menu commands

 */

 private void enableZoomItems()

 {

 twentyFive.setEnabled(true);

 fifty.setEnabled(true);

 seventyFive.setEnabled(true);

 hundred.setEnabled(true);

 hundredFifty.setEnabled(true);

 twoHundred.setEnabled(true);

 fiveHundred.setEnabled(true);

 }

 /**

 * Controls the zoom menu bar

 *

 * @param a the ActionEvent

 */

 public void actionPerformed(ActionEvent a)

 {

 if(a.getActionCommand().equals("Update"))

 {

 this.repaint();

 }

 if(a.getActionCommand().equals("25%"))

 {

 this.zoom(.25);

 enableZoomItems();

 twentyFive.setEnabled(false);

 }

 if(a.getActionCommand().equals("50%"))

 {

 this.zoom(.50);

 enableZoomItems();

 fifty.setEnabled(false);

 }

 if(a.getActionCommand().equals("75%"))

 {

 this.zoom(.75);

 enableZoomItems();

 seventyFive.setEnabled(false);

 }

 if(a.getActionCommand().equals("100%"))

 {

 this.zoom(1.0);

 enableZoomItems();

 hundred.setEnabled(false);

 }

 if(a.getActionCommand().equals("150%"))

 {

 this.zoom(1.5);

 enableZoomItems();

 hundredFifty.setEnabled(false);

 }

 if(a.getActionCommand().equals("200%"))

 {

 this.zoom(2.0);

 enableZoomItems();

 twoHundred.setEnabled(false);

 }

 if(a.getActionCommand().equals("500%"))

 {

 this.zoom(5.0);

 enableZoomItems();

 fiveHundred.setEnabled(false);

 }

 }

 /**

 * Test Main. It will ask you to pick a file and

then

 * show it

 */

 public static void main(String args[])

 {

 Picture p = new

Picture(FileChooser.pickAFile());

 PictureExplorer test = new PictureExplorer(p);

 }

 /**

 * Class for establishing the focus for the

textfields

 */

 private class PictureExplorerFocusTraversalPolicy

 extends FocusTraversalPolicy {

 /**

 * Method to get the next component for

focus

 */

 public Component getComponentAfter(

 Container

focusCycleRoot,

 Component

aComponent) {

 if (aComponent.equals(xValue))

 return yValue;

 else

 return xValue;

 }

 /**

 * Method to get the previous component for

focus

 */

 public Component getComponentBefore(

 Container

focusCycleRoot,

 Component

aComponent) {

 if (aComponent.equals(xValue))

 return yValue;

 else

 return xValue;

 }

 public Component getDefaultComponent(

 Container

focusCycleRoot) {

 return xValue;

 }

 public Component getLastComponent(

 Container

focusCycleRoot) {

 return yValue;

 }

 public Component getFirstComponent(

 Container

focusCycleRoot) {

 return xValue;

 }

 }//end PictureExplorerFocusTraversalPolicy

inner class

}//end PictureExplorer class

Listing 32. Source code for program named Java362a.

/*Program Java362a

Copyright R.G.Baldwin 2009

The purpose of this program is to support an explanation

of the PictureExplorer class.

A Picture object having dimensions of 450x345 pixels is

created. The the show method and the explore method are

called on the object to produce two different screen

displays of the picture.

The explore method simply creates a new object of the

PictureExplorer class.

Tested using Windows Vista Premium Home edition and

Ericso's multimedia library.

***/

public class Main{

 public static void main(String[] args){

 //Construct a new 460x345 Picture object.

 Picture pix1 = new Picture("ScaledBeach460x345.jpg");

 pix1.show();//display the picture in the show format

 //Display the picture again in the explore format.

 pix1.explore();

 }//end main method

}//end class Main

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

