
Wrapping Up the SimplePicture Class

Learn how to cause two or more pictures to have the same width or the same height
and otherwise maintain their individual aspect ratios, how to create composite pictures
containing side-by-side images, how to draw text on a picture, and how to apply the
same operation to every pixel in a Picture object.

Published: March 19, 2009
By Richard G. Baldwin

Java Programming Notes # 360

 Preface
o General
o What you have learned from earlier lessons
o What you will learn in this lesson
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
 Discussion and sample code

o The sample program named Java360a
 The loadPictureAndShowIt method
 The getPictureWithWidth method
 The drawString method
 The addMessage method
 The getPictureWithHeight method
 The translatePicture method
 The copyPicture method
 The getPixels method

 Run the program
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

Preface

mailto:Baldwin@DickBaldwin.com

General

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters into videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

What you have learned from earlier lessons

If you have studied the earlier lessons in this series, you have learned about Turtle
objects and their ability to move around in a world or a picture and to draw lines as they
are moving. You have learned all about the World class and are in the process of
learning about the SimplePicture class.

The class named SimplePicture, (which is the superclass of the Picture class), is a
large and complex class that defines almost forty methods and several constructors. By
learning about those constructors and methods, you have learned that objects of the
Picture class are useful for much more than simply serving as living quarters for
turtles. They are also useful for manipulating images in interesting and complex ways.

In the previous lesson, you learned how to apply affine transforms to pictures to achieve
scaling, rotation, and translation.

What you will learn in this lesson

Near the end of the previous lesson, I told you that there remained nine methods of the
SimplePicture class that were sufficiently interesting or complicated that you would do
well to learn about them.

I will explain and illustrate the following six methods from the SimplePicture class in
this lesson:

 Picture getPictureWithHeight(int height)
 Picture getPictureWithWidth(int width)
 Pixel[] getPixels()
 void addMessage(String message, int xPos, int yPos)
 void drawString(String text, int xPos, int yPos)
 boolean loadPictureAndShowIt(String fileName)

Unable to illustrate the file writing capability

I also attempted to illustrate the following two methods to write Picture objects into
image files:

 boolean write(String fileName)
 void writeOrFail(String fileName)throws IOException

However, the behavior of these two methods was very unreliable when running under
Windows Vista Home Premium Edition and Java v1.6. Sometimes the program was
able to write the file and sometimes it wasn't. Sometimes when the file was written, it
would contain the image and sometimes it would be empty. As a result, I abandoned
that effort for the time being. Someday I may find the time to investigate further and
determine what the problem is.

The explore method and the PictureExplorer class

Several lessons back, I told you that I would illustrate and explain all of the methods in
the SimplePicture class. With the exception of the two methods listed above, the only
remaining method that I haven't explained is the explore method.

The explore method consists of a single statement that creates an object of the
PictureExplorer class. The PictureExplorer class is a relatively complex class in its
own right. Therefore, I will defer an explanation of the explore method until a future
lesson that is dedicated to an explanation of the PictureExplorer class.

Source code listings

A complete listing of Ericson's Picture class is provided in Listing 16 and a listing of
Ericson's SimplePicture class is provided in Listing 17. A listing of Ericson's
DigitalPicture interface is provided in Listing 18. A listing of the program that I will
present and explain in this lesson is provided in Listing 19.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Initial pictures of the rose and the butterfly.
 Figure 2. Pictures of rose and width-adjusted butterfly.
 Figure 3. Picture with side-by-side images of rose and butterfly.
 Figure 4. Picture with red color component reduced by a factor of two.

Listings

 Listing 1. Background color for the SimplePicture class.
 Listing 2. Background color for the program named Java360a.
 Listing 3. Beginning of the program named Java360a.
 Listing 4. Beginning of the run method of the Runner class.
 Listing 5. The loadPictureAndShowIt method of the SimplePicture class.
 Listing 6. Create a picture with a butterfly image.
 Listing 7. Create a new width-controlled picture of the butterfly.
 Listing 8. The getPictureWithWidth method of the SimplePicture class.
 Listing 9. The drawString method of the SimplePicture class.
 Listing 10. The addMessage method of the SimplePicture class.
 Listing 11. Create new pictures of the rose and the butterfly with the same height.
 Listing 12. Copy the picture of the rose into the right side of a new picture.
 Listing 13. Copy the butterfly into the left side of the picture with the rose.
 Listing 14. The getPixels method of the SimplePicture class.
 Listing 15. Reduce the red color component value by a factor of two.
 Listing 16. Source code for Ericson's Picture class.
 Listing 17. Source code for Ericson's SimplePicture class.
 Listing 18. Source code for Ericson's DigitalPicture interface.
 Listing 19. Source code for the program named Java360a.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

As I mentioned earlier, I will explain and illustrate the following six methods from the
SimplePicture class in this lesson:

http://www.dickbaldwin.com/toc.htm

 Picture getPictureWithHeight(int height)
 Picture getPictureWithWidth(int width)
 Pixel[] getPixels()
 void addMessage(String message, int xPos, int yPos)
 void drawString(String text, int xPos, int yPos)
 boolean loadPictureAndShowIt(String fileName)

I will present and explain a sample program that illustrates the use of the methods in the
above list

Reducing the confusion

Because I will be switching back and forth between code fragments extracted from
Ericson's SimplePicture class and code fragments extracted from my sample program,
things can get confusing.

In an attempt to reduce the confusion, I will present code fragments from Ericson's
SimplePicture class against the background color shown in Listing 1.

Listing 1. Background color for the SimplePicture class.

I will present code fragments from the

SimplePicture class

against this background color.

Similarly, I will present code fragments from my sample program against the
background color shown in Listing 2.

Listing 2. Background color for the program named Java360a.

I will present code fragments from my sample

programs

with this background color.

Discussion and sample code

The sample program named Java360a

The purpose of this program is to illustrate the use of the following methods of the
SimplePicture class:

 boolean loadPictureAndShowIt(String fileName)
 Picture getPictureWithWidth(int width)
 void drawString(String text,int xPos,int yPos)
 void addMessage(String message, int xPos, int yPos)
 Picture getPictureWithHeight(int height)

 Pixel[] getPixels()

Unable to illustrate image file output

An attempt was also made to illustrate the following methods to write Picture objects
into image files:

 boolean write(String fileName)
 void writeOrFail(String fileName)throws IOException

However, the results were very unreliable under Windows Vista Home Premium Edition
and Java 1.6. Sometimes the program was able to write the file and sometimes it
wasn't. Sometimes when the file was written, it would contain the image and sometimes
it would be empty. Therefore, I abandoned the effort to illustrate and explain these two
methods.

Will explain the explore method in a future lesson

This program completes the illustrations and explanations of the methods of the
SimplePicture class with the exception of the explore method. The explore method
will be explained in a future lesson that is dedicated to an explanation of the
PictureExplorer class.

Behavior of the program

The program begins by calling the loadPictureAndShowIt method to load and show a
picture of a rose. The title shown in the JFrame object is "None." (The method doesn't
set the filename as a title on the JFrame object.)

A large butterfly picture

Then the program reads an image file to create a picture of a butterfly, which is much
larger than the picture of the rose. These first two pictures are shown in the top and
bottom of Figure 1 respectively.

Figure 1. Initial pictures of the rose and the butterfly.

Call getPictureWithWidth

Then the program calls the getPictureWithWidth method to create a new Picture
object containing the butterfly image with the width set to match the width of the picture
of the rose. (Note that the aspect ratio of the butterfly picture is preserved when the
width is adjusted.)

Call the drawString method

After that, the program calls the drawString method to draw a white text string on the
picture of the butterfly. The drawString method calls the addMessage method to
actually draw the text on the image. (The color white is fixed and cannot be changed
without modifying the method.)

Pictures of rose and width-adjusted butterfly

Figure 2 shows the original picture of the rose at the top along with the new picture of
the butterfly. This is the butterfly picture for which:

 The width has been adjusted to match the width of the rose.
 The white text has been drawn on the butterfly picture.

Figure 2. Pictures of rose and width-adjusted butterfly.

Call the getPictureWithHeight method

Following that, the program calls the getPictureWithHeight method twice to create two
new pictures of the rose and the butterfly with their heights adjusted to be the
same. Again, the original aspect ratio of each image is preserved.

Compose side-by-side images

Then the program calls my method named translatePicture from the previous lesson
(see Resources) to copy the picture of the rose into the right side of another new
Picture object. (You can view the source code for the translatePicture method in
Listing 19.)

The program also calls the copyPicture method, (which I also explained in the previous
lesson) to copy the picture of the butterfly into the left side of the same picture.

The pictures used as input to this operation are the pictures of the rose and the butterfly
with the same height. This procedure results in a new Picture object containing side-
by-side images of the butterfly and the rose as shown in Figure 3.

Figure 3. Picture with side-by-side images of rose and butterfly.

An important difference

It is important to understand that there is a major difference between Figure 3 on one
hand and Figure 2 on the other. The pairing of two pictures in Figure 2 was
accomplished at the HTML level using two screen-shot image files. In other words, in
the case of Figure 2, there were actually two Picture objects that produced two screen
output images, which I captured with screen capture software. Each image in Figure 2
is in a different image file.

However, the images of the butterfly and the rose in Figure 3 were placed in the same
Picture object by program code. The screen display of that Picture object was
captured into a single image file, which was inserted into this document to produce
Figure 3.

Call the getPixels method

Finally, the program uses the getPixels method to create a new picture of the butterfly
and the rose side-by-side with the value of the red color component reduced by a factor
of two as shown by the bottom picture in Figure 4. (The top picture in Figure 4 is the
same image file shown in Figure 3.)

Figure 4. Picture with red color component reduced by a factor of two.

The getPixels method is very useful when you want to perform the same operation on
every pixel in a Picture object.

Will explain the code in fragments

As is my custom, I will explain the program code in fragments. (A complete listing of the
program named Java360a is provided in Listing 19 near the end of the lesson.)

The first such code fragment, which shows the beginning of the program named
Java360a, is shown in Listing 3. (Remember, the background color in Listing 3
indicates that the code fragment was extracted from my sample program named
Java360a.)

Listing 3. Beginning of the program named Java360a.

import java.awt.Graphics2D;

import java.awt.Color;

import java.awt.geom.AffineTransform;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main method

}//end class Main

Listing 3 simply defines an object of a new class named Runner and calls the run
method on that object. When the run method returns, the main method will terminate
causing the program to terminate.

Beginning of the run method of the Runner class

The run method of the Runner class begins in Listing 4.

Listing 4. Beginning of the run method of the Runner class.

class Runner{

 void run(){

 //The following code will load and show

the rose with

 // a title of "None"

 Picture pixA = new Picture(1,1);

 pixA.loadPictureAndShowIt("rose.jpg");

The loadPictureAndShowIt method

Listing 4 begins by creating a new Picture object with 1x1 pixels. Then it calls the
loadPictureAndShowIt method to load an image from a specific image file into the
Picture object and to display the resulting Picture object on the screen.

The loadPictureAndShowIt method of the SimplePicture class is shown in its entirety
in Listing 5. (Remember, the background color in Listing 5 indicates that the code
fragment was extracted from Ericson's SimplePicture class.)

Listing 5. The loadPictureAndShowIt method of the SimplePicture class.

 /***

 * Method to load a picture from a file name

and show it

 * in a picture frame

 * @param fileName the file name to load the

picture

 * from

 * @return true if success else false

 */

 public boolean loadPictureAndShowIt(String

fileName){

 boolean result = true;// the default is

that it worked

 // try to load the picture into the

buffered image from

 // the file name

 result = load(fileName);

 // show the picture in a picture frame

 show();

 return result;

 }//end loadPictureAndShowIt method

Call the load method

The method in Listing 5 begins by calling the load method to load the image from the
image file into the current Picture object. (I explained the load method in the earlier
lesson titled The DigitalPicture Interface: Multimedia Programming with Java. See
Resources).

Call the show method

Then the method in Listing 5 calls the show method to display the picture on the
screen. (I explained the show method in the earlier lesson titled The show Method and
the PictureFrame Class: Multimedia Programming with Java. See Resources).

No further explanation needed

Since I have already explained the methods that are called in Listing 5, no further
explanation of the loadPictureAndShowIt method of the SimplePicture class should
be needed.

The onscreen image produced by the call to the loadPictureAndShowIt method in
Listing 4 is shown as the top picture in Figure 1.

Create a picture with a butterfly image

Listing 6 uses code that you have seen in numerous previous programs to create a new
Picture object containing an image of a butterfly.

Listing 6. Create a picture with a butterfly image.

 //Create a picture of a butterfly, which

is much

 // larger than the picture of the rose.

 Picture pixB = new

Picture("butterfly1.jpg");

 pixB.setTitle("pixB");

 pixB.show();

I purposely chose an image that was larger than the picture of the rose in order to
demonstrate size control in some of the later code. The onscreen image produced by
Listing 6 is shown as the bottom picture in Figure 1.

The getPictureWithWidth method

Listing 7 begins by calling the getPictureWithWidth method to create a new Picture
object containing the butterfly image. The width of the new picture is set to match the
width of the picture of the rose. Note that the aspect ratio of the butterfly image is
preserved throughout this process.

Listing 7. Create a new width-controlled picture of the butterfly.

 Picture pixC =

pixB.getPictureWithWidth(pixA.getWidth());

 pixC.setTitle("pixC");

 //Draw white text on the picture of the

butterfly.

 pixC.drawString("Same width as

rose.",20,20);

 pixC.show();

Source code for the getPictureWithWidth method

The getPictureWithWidth method is shown in its entirety in Listing 8.

Listing 8. The getPictureWithWidth method of the SimplePicture class.

 /**

 * Method to create a new picture of the

passed width.

 * The aspect ratio of the width and height

will stay

 * the same.

 * @param width the desired width

 * @return the resulting picture

 */

 public Picture getPictureWithWidth(int

width){

 // set up the scale transform

 double xFactor = (double) width /

this.getWidth();

 Picture result = scale(xFactor,xFactor);

 return result;

 }//end getPictureWithWidth method

A scaled replica of the current Picture object

This method receives an integer value that specifies the desired width in pixels of a new
Picture object that is a scaled replica of the current Picture object. In this case, the
specified width was set to the width of the picture of the rose (see Listing 7).

Call the scale method

Listing 8 computes a scale factor that must be applied to the current picture to produce
a new picture with the specified width. Then Listing 8 calls the scale method, passing
the same value for both the x and y scale factors required by the scale method. (I
explained the scale method in the previous lesson titled Applying Affine Transforms to
Picture Objects: Multimedia Programming with Java. See Resources.)

The scale method creates and returns a reference to a properly scaled replica of the
current Picture object, which is saved and then returned by the code in Listing 8.

The drawString method

Please return your attention to Listing 7, which calls the drawString method on the new
scaled picture of the butterfly to draw some text on the picture.

Source code for the drawString method

The drawString method of the SimplePicture class is shown in Listing 9.

Listing 9. The drawString method of the SimplePicture class.

 /**

 * Method to draw a string at the given

location on the

 * picture

 * @param text the text to draw

 * @param xPos the left x for the text

 * @param yPos the top y for the text

 */

 public void drawString(String text, int xPos,

int yPos){

 addMessage(text,xPos,yPos);

 }//end drawString method

As you can see, this method contains a single statement, which calls the method named
addMessage to do all the work.

The addMessage method

The addMessage method is shown in its entirety in Listing 10.

Listing 10. The addMessage method of the SimplePicture class.

 /**

 * Method to draw a message as a string on

the buffered

 * image

 * @param message the message to draw on the

buffered

 * image

 * @param xPos the leftmost point of the

string in x

 * @param yPos the bottom of the string in y

 */

 public void addMessage(

 String message, int

xPos, int yPos){

 // get a graphics context to use to draw on

the

 // buffered image

 Graphics2D graphics2d =

bufferedImage.createGraphics();

 // set the color to white

 graphics2d.setPaint(Color.white);

 // set the font to Helvetica bold style and

size 16

 graphics2d.setFont(new

Font("Helvetica",Font.BOLD,16));

 // draw the message

 graphics2d.drawString(message,xPos,yPos);

 }//end addMessage method

A relatively straightforward method

This method begins by getting a reference to the graphics context on the
BufferedImage object belonging to the current Picture object as type Graphics2D.

Then it calls the following three methods of the Graphics2D class to perform the
actions shown:

 setPaint - set the text color to white.
 setFont - set the font to the typeface, style, and size shown
 drawString - draw the text on the BufferedImage object at the position specified

by the x and y coordinate values.

The Graphics2D class

If you are familiar with the use of the Graphics2D class, you should have no problem
understanding the code in Listing 10. If not, you may want to go back and study the
topic. (See the links to my Graphics2D lessons in Resources.)

Call the show method

The call to the drawString method followed by the call to the show method in Listing 7
produced the width-controlled picture of the butterfly with white text shown as the
bottom picture in Figure 2. As explained above, the width of the top picture of the rose
in Figure 2 was used to specify the width of the new picture of the butterfly.

The getPictureWithHeight method

Listing 11 makes two consecutive calls to the getPictureWithHeight method to create
new pictures of the rose and the butterfly having the same height while preserving the
aspect ratio of each picture.

Listing 11. Create new pictures of the rose and the butterfly with the same height.

 Picture pixD =

pixA.getPictureWithHeight(200);

 Picture pixE =

pixB.getPictureWithHeight(200);

Very similar code as before

Code in the getPictureWithHeight method is very similar to the code in the
getPictureWithWidth method that I explained earlier. Therefore, it shouldn't be
necessary to provide another explanation of the code. (You can view the
getPictureWithHeight method in its entirety in Listing 17.)

The translatePicture method

Listing 12 calls the translatePicture method that I explained in the previous lesson (see
Resources) to copy the picture of the rose into the right side of a new Picture object.

Listing 12. Copy the picture of the rose into the right side of a new picture.

 Picture pixF =

translatePicture(pixD,pixE.getWidth(),0);

This produced the picture that is shown in Figure 3, except that the butterfly is not yet a
part of the picture.

The copyPicture method

Listing 13 calls the copyPicture method to copy the picture of the butterfly into the
picture already containing the image of the rose. (See Figure 3.)

Listing 13. Copy the butterfly into the left side of the picture with the rose.

 pixF.copyPicture(pixE);

 pixF.setTitle("pixF");

 pixF.show();

When the copyPicture method is used to copy one picture into another, it always aligns
the two pictures at the upper-left corner. I also explained the copyPicture method in
the previous lesson. (See Resources.)

This results in a Picture object containing side-by-side images of the butterfly and the
rose, both with the same height as shown in Figure 3.

The getPixels method

That brings us to the last method of the SimplePicture class that I will explain in this
lesson. The getPixels method, shown in Listing 14, constructs, populates, and returns
a reference to a one-dimensional array of type Pixel[].

Listing 14. The getPixels method of the SimplePicture class.

 /**

 * Method to get a one-dimensional array of

Pixels for

 * this simple picture

 * @return a one-dimensional array of Pixel

objects

 * starting with y=0

 * to y=height-1 and x=0 to x=width-1.

 */

 public Pixel[] getPixels(){

 int width = getWidth();

 int height = getHeight();

 Pixel[] pixelArray = new Pixel[width *

height];

 // loop through height rows from top to

bottom

 for (int row = 0; row < height; row++)

 for (int col = 0; col < width; col++)

 pixelArray[row * width + col] =

 new

Pixel(this,col,row);

 return pixelArray;

 }//end getPixels method

A description of the array contents

Each element in the returned array contains a reference to a Pixel object. Each Pixel
object represents one of the physical pixels in the current picture.

The first element in the array represents the single pixel in the upper-left corner of the
picture. Successive elements represent adjacent pixels moving from left to right across
the row.

When the number of elements reaches the width of the picture, the next element
represents the left-most pixel in the second row of pixels, etc.

A useful representation in some cases

This representation of pixels is very useful when you need to perform the same
operation on every pixel in the picture. It allows for the use of a single for loop to
access and operate on each pixel. It also eliminates the requirement to know the width
and the height of the picture as would be the case for nested for loops.

Not so handy in other cases

On the other hand, this representation isn't so handy when you need to keep track of
the location of the individual pixels in terms of rows and columns. You have seen code
in earlier lessons (see Resources) involving a pair of nested for loops that is easier to
use in those cases.

Reduce the red color component value by a factor of two

Listing 15 begins by creating a new Picture object that is a copy of the picture shown in
Figure 3.

Listing 15. Reduce the red color component value by a factor of two.

 Picture pixG = new Picture(pixF);

 pixG.setTitle("pixG");

 Pixel[] pixels = pixG.getPixels();

 int red = 0;

 for(int cnt = 0;cnt <

pixels.length;cnt++){

 red = pixels[cnt].getRed();

 pixels[cnt].setRed((int)(red*0.5));

 }//end for loop

 pixG.show();

 }//end run method

Get a reference to an array containing pixel data

Then Listing 15 calls the getPixels method on the new Picture object to get a reference
to a one-dimensional array containing pixel data as described above.

Iterate on the array modifying the pixel values

Then Listing 15 executes a for loop in which the value of the red color component in
each pixel is reduced by a factor of two.

Call the show method

Finally, Listing 15 shows the modified picture, producing the screen output shown in the
bottom picture in Figure 4.

The end of the run method and the end of the program

Listing 14 also signals the end of the run method, causing the run method to return
control to the main method shown in Listing 3. Having nothing more to do, the main
method terminates, which causes the program to terminate.

Run the program

I encourage you to copy the code from Listing 19, compile the code, and execute
it. Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

Summary

I explained and illustrated the following six methods from the SimplePicture class in
this lesson:

 Picture getPictureWithHeight(int height)
 Picture getPictureWithWidth(int width)
 Pixel[] getPixels()
 void addMessage(String message, int xPos, int yPos)
 void drawString(String text, int xPos, int yPos)
 boolean loadPictureAndShowIt(String fileName)

You learned how to:

 Cause two or more pictures to have the same width or the same height and
otherwise maintain their individual aspect ratios.

 Create composite pictures containing side-by-side images.
 Draw text on a picture.
 Apply the same operation to every pixel in a Picture object.

What's next?

As I mentioned earlier, with the exception of the explore method, this completes the
explanation of the SimplePicture class. I will defer an explanation of the explore
method until the next lesson when I begin explaining the PictureExplorer class.

In the next and future lessons, you will learn about the PictureExplorer class, which
allows you to determine the numeric color values for any pixel in a picture by placing a
cursor on the pixel. The pixel position is controlled by clicking or dragging the mouse
within the picture, clicking buttons, or typing coordinate values. You can also zoom in
and out to view the pixel in more or less detail and you can see the actual color of the
pixel in a large square.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA
 Vector Cad-Cam XI Lathe Tutorial
 Classification of 3D to 2D projections
 Color model from Wikipedia
 Light and color: an introduction by Norman Koren
 Color Principles - Hue, Saturation, and Value
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://en.wikipedia.org/wiki/Color_model
../Light%20and%20color:%20%20an%20introduction
http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#(HSV)
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm

 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight
404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
408 Processing Image Pixels, Performing Convolution on Images
410 Processing Image Pixels, Understanding Image Convolution in Java
412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
416 Processing Image Pixels, An Improved Image-Processing Framework in
Java
418 Processing Image Pixels, Creating Visible Watermarks in Java
450 A Framework for Experimenting with Java 2D Image-Processing Filters
452 Using the Java 2D LookupOp Filter Class to Process Images
454 Using the Java 2D AffineTransformOp Filter Class to Process Images
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble
Images
458 Using the Java 2D BandCombineOp Filter Class to Process Images
460 Using the Java 2D ConvolveOp Filter Class to Process Images
462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to
Process Images

 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java
 350 3D Displays, Color Distance, and Edge Detection
 351 A Slider-Controlled Softening Program for Digital Photos
 352 Adding Animated Movement to Your Java Application
 353 A Slider-Controlled Sharpening Program for Digital Photos
 354 The DigitalPicture Interface
 355 The HSB Color Model
 356 The show Method and the PictureFrame Class
 357 An HSB Color-Editing Program for Digital Photos
 358 Applying Affine Transforms to Picture Objects

http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm
http://www.dickbaldwin.com/java/Java354.htm
http://www.dickbaldwin.com/java/Java355.htm
http://www.dickbaldwin.com/java/Java356.htm
http://www.dickbaldwin.com/java/Java357.htm
http://www.dickbaldwin.com/java/Java358.htm

 359 Creating a lasso for editing digital photos in Java

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 16
through Listing 19 below.

Listing 16. Source code for Ericson's Picture class.

import java.awt.*;

import java.awt.font.*;

import java.awt.geom.*;

import java.awt.image.BufferedImage;

import java.text.*;

/**

 * A class that represents a picture. This

class inherits

 * from SimplePicture and allows the student

to add

 * functionality to the Picture class.

 *

 * Copyright Georgia Institute of Technology

2004-2005

 * @author Barbara Ericson

ericson@cc.gatech.edu

 */

public class Picture extends SimplePicture

{

 ///////////////////// constructors

/////////////////////

 /**

 * Constructor that takes no arguments

 */

 public Picture ()

 {

 /* not needed but use it to show students

the implicit

 * call to super()

 * child constructors always call a parent

constructor

 */

 super();

 }

 /**

 * Constructor that takes a file name and

creates the

 * picture

 * @param fileName the name of the file to

create the

 * picture from

http://www.dickbaldwin.com/java/Java359.htm

 */

 public Picture(String fileName)

 {

 // let the parent class handle this

fileName

 super(fileName);

 }

 /**

 * Constructor that takes the width and

height

 * @param width the width of the desired

picture

 * @param height the height of the desired

picture

 */

 public Picture(int width, int height)

 {

 // let the parent class handle this width

and height

 super(width,height);

 }

 /**

 * Constructor that takes a picture and

creates a

 * copy of that picture

 */

 public Picture(Picture copyPicture)

 {

 // let the parent class do the copy

 super(copyPicture);

 }

 /**

 * Constructor that takes a buffered image

 * @param image the buffered image to use

 */

 public Picture(BufferedImage image)

 {

 super(image);

 }

 ////////////////////// methods

/////////////////////////

 /**

 * Method to return a string with

information about this

 * picture.

 * @return a string with information about

the picture

 * such as fileName, height and width.

 */

 public String toString()

 {

 String output =

 "Picture, filename " + getFileName() +

 " height " + getHeight()

 + " width " + getWidth();

 return output;

 }

} // this } is the end of class Picture, put

all new

 // methods before this

Listing 17. Source code for Ericson's SimplePicture class.

import javax.imageio.ImageIO;

import java.awt.image.BufferedImage;

import javax.swing.ImageIcon;

import java.awt.*;

import java.io.*;

import java.awt.geom.*;

/**

 * A class that represents a simple picture. A

simple

 * picture may have an associated file name and a

title.

 * A simple picture has pixels, width, and height.

A

 * simple picture uses a BufferedImage to hold the

pixels.

 * You can show a simple picture in a PictureFrame

(a

 * JFrame).

 *

 * Copyright Georgia Institute of Technology 2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class SimplePicture implements

DigitalPicture

{

 /////////////////////// Fields

/////////////////////////

 /**

 * the file name associated with the simple

picture

 */

 private String fileName;

 /**

 * the title of the simple picture

 */

 private String title;

 /**

 * buffered image to hold pixels for the simple

picture

 */

 private BufferedImage bufferedImage;

 /**

 * frame used to display the simple picture

 */

 private PictureFrame pictureFrame;

 /**

 * extension for this file (jpg or bmp)

 */

 private String extension;

 /////////////////////// Constructors

////////////////////

 /**

 * A Constructor that takes no arguments. All

fields

 * will be null. A no-argument constructor must

be given

 * in order for a class to be able to be

subclassed. By

 * default all subclasses will implicitly call

this in

 * their parent's no argument constructor unless

a

 * different call to super() is explicitly made

as the

 * first line of code in a constructor.

 */

 public SimplePicture()

 {this(200,100);}

 /**

 * A Constructor that takes a file name and uses

the

 * file to create a picture

 * @param fileName the file name to use in

creating the

 * picture

 */

 public SimplePicture(String fileName)

 {

 // load the picture into the buffered image

 load(fileName);

 }

 /**

 * A constructor that takes the width and height

desired

 * for a picture and creates a buffered image of

that

 * size. This constructor doesn't show the

picture.

 * @param width the desired width

 * @param height the desired height

 */

 public SimplePicture(int width, int height)

 {

 bufferedImage = new BufferedImage(

 width, height,

BufferedImage.TYPE_INT_RGB);

 title = "None";

 fileName = "None";

 extension = "jpg";

 setAllPixelsToAColor(Color.white);

 }

 /**

 * A constructor that takes the width and height

desired

 * for a picture and creates a buffered image of

that

 * size. It also takes the color to use for the

 * background of the picture.

 * @param width the desired width

 * @param height the desired height

 * @param theColor the background color for the

picture

 */

 public SimplePicture(

 int width, int height, Color

theColor)

 {

 this(width,height);

 setAllPixelsToAColor(theColor);

 }

 /**

 * A Constructor that takes a picture to copy

 * information from

 * @param copyPicture the picture to copy from

 */

 public SimplePicture(SimplePicture copyPicture)

 {

 if (copyPicture.fileName != null)

 {

 this.fileName = new

String(copyPicture.fileName);

 this.extension = copyPicture.extension;

 }

 if (copyPicture.title != null)

 this.title = new String(copyPicture.title);

 if (copyPicture.bufferedImage != null)

 {

 this.bufferedImage =

 new

BufferedImage(copyPicture.getWidth(),

copyPicture.getHeight(),

BufferedImage.TYPE_INT_RGB);

 this.copyPicture(copyPicture);

 }

 }

 /**

 * A constructor that takes a buffered image

 * @param image the buffered image

 */

 public SimplePicture(BufferedImage image)

 {

 this.bufferedImage = image;

 title = "None";

 fileName = "None";

 extension = "jpg";

 }

 ////////////////////////// Methods

//////////////////////

 /**

 * Method to get the extension for this picture

 * @return the extendsion (jpg or bmp)

 */

 public String getExtension() { return extension;

}

 /**

 * Method that will copy all of the passed source

 * picture into the current picture object

 * @param sourcePicture the picture object to

copy

 */

 public void copyPicture(SimplePicture

sourcePicture)

 {

 Pixel sourcePixel = null;

 Pixel targetPixel = null;

 // loop through the columns

 for (int sourceX = 0, targetX = 0;

 sourceX < sourcePicture.getWidth() &&

 targetX < this.getWidth();

 sourceX++, targetX++)

 {

 // loop through the rows

 for (int sourceY = 0, targetY = 0;

 sourceY < sourcePicture.getHeight() &&

 targetY < this.getHeight();

 sourceY++, targetY++)

 {

 sourcePixel =

sourcePicture.getPixel(sourceX,sourceY);

 targetPixel =

this.getPixel(targetX,targetY);

targetPixel.setColor(sourcePixel.getColor());

 }

 }

 }

 /**

 * Method to set the color in the picture to the

passed

 * color

 * @param color the color to set to

 */

 public void setAllPixelsToAColor(Color color)

 {

 // loop through all x

 for (int x = 0; x < this.getWidth(); x++)

 {

 // loop through all y

 for (int y = 0; y < this.getHeight(); y++)

 {

 getPixel(x,y).setColor(color);

 }

 }

 }

 /**

 * Method to get the buffered image

 * @return the buffered image

 */

 public BufferedImage getBufferedImage()

 {

 return bufferedImage;

 }

 /**

 * Method to get a graphics object for this

picture to

 * use to draw on

 * @return a graphics object to use for drawing

 */

 public Graphics getGraphics()

 {

 return bufferedImage.getGraphics();

 }

 /**

 * Method to get a Graphics2D object for this

picture

 * which can be used to do 2D drawing on the

picture

 */

 public Graphics2D createGraphics()

 {

 return bufferedImage.createGraphics();

 }

 /**

 * Method to get the file name associated with

the

 * picture

 * @return the file name associated with the

picture

 */

 public String getFileName() { return fileName; }

 /**

 * Method to set the file name

 * @param name the full pathname of the file

 */

 public void setFileName(String name)

 {

 fileName = name;

 }

 /**

 * Method to get the title of the picture

 * @return the title of the picture

 */

 public String getTitle()

 { return title; }

 /**

 * Method to set the title for the picture

 * @param title the title to use for the picture

 */

 public void setTitle(String title)

 {

 this.title = title;

 if (pictureFrame != null)

 pictureFrame.setTitle(title);

 }

 /**

 * Method to get the width of the picture in

pixels

 * @return the width of the picture in pixels

 */

 public int getWidth(){ return

bufferedImage.getWidth(); }

 /**

 * Method to get the height of the picture in

pixels

 * @return the height of the picture in pixels

 */

 public int getHeight(){

 return bufferedImage.getHeight();

 }

 /**

 * Method to get the picture frame for the

picture

 * @return the picture frame associated with this

 * picture (it may be null)

 */

 public PictureFrame getPictureFrame()

 { return

pictureFrame; }

 /**

 * Method to set the picture frame for this

picture

 * @param pictureFrame the picture frame to use

 */

 public void setPictureFrame(PictureFrame

pictureFrame)

 {

 // set this picture objects' picture frame to

the

 // passed one

 this.pictureFrame = pictureFrame;

 }

 /**

 * Method to get an image from the picture

 * @return the buffered image since it is an

image

 */

 public Image getImage()

 {

 return bufferedImage;

 }

 /**

 * Method to return the pixel value as an int for

the

 * given x and y location

 * @param x the x coordinate of the pixel

 * @param y the y coordinate of the pixel

 * @return the pixel value as an integer (alpha,

red,

 * green, blue)

 */

 public int getBasicPixel(int x, int y)

 {

 return bufferedImage.getRGB(x,y);

 }

 /**

 * Method to set the value of a pixel in the

picture

 * from an int

 * @param x the x coordinate of the pixel

 * @param y the y coordinate of the pixel

 * @param rgb the new rgb value of the pixel

(alpha, red,

 * green, blue)

 */

 public void setBasicPixel(int x, int y, int rgb)

 {

 bufferedImage.setRGB(x,y,rgb);

 }

 /**

 * Method to get a pixel object for the given x

and y

 * location

 * @param x the x location of the pixel in the

picture

 * @param y the y location of the pixel in the

picture

 * @return a Pixel object for this location

 */

 public Pixel getPixel(int x, int y)

 {

 // create the pixel object for this picture and

the

 // given x and y location

 Pixel pixel = new Pixel(this,x,y);

 return pixel;

 }

 /**

 * Method to get a one-dimensional array of

Pixels for

 * this simple picture

 * @return a one-dimensional array of Pixel

objects

 * starting with y=0

 * to y=height-1 and x=0 to x=width-1.

 */

 public Pixel[] getPixels()

 {

 int width = getWidth();

 int height = getHeight();

 Pixel[] pixelArray = new Pixel[width * height];

 // loop through height rows from top to bottom

 for (int row = 0; row < height; row++)

 for (int col = 0; col < width; col++)

 pixelArray[row * width + col] =

 new

Pixel(this,col,row);

 return pixelArray;

 }

 /**

 * Method to load the buffered image with the

passed

 * image

 * @param image the image to use

 */

 public void load(Image image)

 {

 // get a graphics context to use to draw on the

 // buffered image

 Graphics2D graphics2d =

bufferedImage.createGraphics();

 // draw the image on the buffered image

starting

 // at 0,0

 graphics2d.drawImage(image,0,0,null);

 // show the new image

 show();

 }

 /**

 * Method to show the picture in a picture frame

 */

 public void show()

 {

 // if there is a current picture frame then

use it

 if (pictureFrame != null)

 pictureFrame.updateImageAndShowIt();

 // else create a new picture frame with this

picture

 else

 pictureFrame = new PictureFrame(this);

 }

 /**

 * Method to hide the picture

 */

 public void hide()

 {

 if (pictureFrame != null)

 pictureFrame.setVisible(false);

 }

 /**

 * Method to make this picture visible or not

 * @param flag true if you want it visible else

false

 */

 public void setVisible(boolean flag)

 {

 if (flag)

 this.show();

 else

 this.hide();

 }

 /**

 * Method to open a picture explorer on a copy of

this

 * simple picture

 */

 public void explore()

 {

 // create a copy of the current picture and

explore it

 new PictureExplorer(new SimplePicture(this));

 }

 /**

 * Method to force the picture to redraw itself.

This is

 * very useful after you have changed the pixels

in a

 * picture.

 */

 public void repaint()

 {

 // if there is a picture frame tell it to

repaint

 if (pictureFrame != null)

 pictureFrame.repaint();

 // else create a new picture frame

 else

 pictureFrame = new PictureFrame(this);

 }

 /**

 * Method to load the picture from the passed

file name

 * @param fileName the file name to use to load

the

 * picture from

 */

 public void loadOrFail(

 String fileName) throws

IOException

 {

 // set the current picture's file name

 this.fileName = fileName;

 // set the extension

 int posDot = fileName.indexOf('.');

 if (posDot >= 0)

 this.extension = fileName.substring(posDot +

1);

 // if the current title is null use the file

name

 if (title == null)

 title = fileName;

 File file = new File(this.fileName);

 if (!file.canRead())

 {

 // try adding the media path

 file = new File(

FileChooser.getMediaPath(this.fileName));

 if (!file.canRead())

 {

 throw new IOException(this.fileName + "

could not"

 + " be opened. Check that you specified the

path");

 }

 }

 bufferedImage = ImageIO.read(file);

 }

 /**

 * Method to write the contents of the picture to

a file

 * with the passed name without throwing errors

 * (THIS MAY NOT BE A VALID DESCRIPTION - RGB)

 * @param fileName the name of the file to write

the

 * picture to

 * @return true if success else false

 */

 public boolean load(String fileName)

 {

 try {

 this.loadOrFail(fileName);

 return true;

 } catch (Exception ex) {

 System.out.println("There was an error

trying"

 + " to open " +

fileName);

 bufferedImage = new

BufferedImage(600,200,

BufferedImage.TYPE_INT_RGB);

 addMessage("Couldn't load " +

fileName,5,100);

 return false;

 }

 }

 /**

 * Method to load the picture from the passed

file name

 * this just calls load(fileName) and is for name

 * compatibility

 * @param fileName the file name to use to load

the

 * picture from

 * @return true if success else false

 */

 public boolean loadImage(String fileName)

 {

 return load(fileName);

}

 /**

 * Method to draw a message as a string on the

buffered

 * image

 * @param message the message to draw on the

buffered

 * image

 * @param xPos the leftmost point of the string

in x

 * @param yPos the bottom of the string in y

 */

 public void addMessage(

 String message, int xPos,

int yPos)

 {

 // get a graphics context to use to draw on the

 // buffered image

 Graphics2D graphics2d =

bufferedImage.createGraphics();

 // set the color to white

 graphics2d.setPaint(Color.white);

 // set the font to Helvetica bold style and

size 16

 graphics2d.setFont(new

Font("Helvetica",Font.BOLD,16));

 // draw the message

 graphics2d.drawString(message,xPos,yPos);

 }

 /**

 * Method to draw a string at the given location

on the

 * picture

 * @param text the text to draw

 * @param xPos the left x for the text

 * @param yPos the top y for the text

 */

 public void drawString(String text, int xPos, int

yPos)

 {

 addMessage(text,xPos,yPos);

 }

 /**

 * Method to create a new picture by scaling the

 * current picture by the given x and y factors

 * @param xFactor the amount to scale in x

 * @param yFactor the amount to scale in y

 * @return the resulting picture

 */

 public Picture scale(double xFactor, double

yFactor)

 {

 // set up the scale transform

 AffineTransform scaleTransform =

 new

AffineTransform();

 scaleTransform.scale(xFactor,yFactor);

 // create a new picture object that is the

right size

 Picture result = new Picture(

 (int) (getWidth() *

xFactor),

 (int) (getHeight() *

yFactor));

 // get the graphics 2d object to draw on the

result

 Graphics graphics = result.getGraphics();

 Graphics2D g2 = (Graphics2D) graphics;

 // draw the current image onto the result

image

 // scaled

g2.drawImage(this.getImage(),scaleTransform,null);

 return result;

 }

 /**

 * Method to create a new picture of the passed

width.

 * The aspect ratio of the width and height will

stay

 * the same.

 * @param width the desired width

 * @return the resulting picture

 */

 public Picture getPictureWithWidth(int width)

 {

 // set up the scale transform

 double xFactor = (double) width /

this.getWidth();

 Picture result = scale(xFactor,xFactor);

 return result;

 }

 /**

 * Method to create a new picture of the passed

height.

 * The aspect ratio of the width and height will

stay

 * the same.

 * @param height the desired height

 * @return the resulting picture

 */

 public Picture getPictureWithHeight(int height)

 {

 // set up the scale transform

 double yFactor = (double) height /

this.getHeight();

 Picture result = scale(yFactor,yFactor);

 return result;

 }

 /**

 * Method to load a picture from a file name and

show it

 * in a picture frame

 * @param fileName the file name to load the

picture

 * from

 * @return true if success else false

 */

 public boolean loadPictureAndShowIt(String

fileName)

 {

 boolean result = true;// the default is that it

worked

 // try to load the picture into the buffered

image from

 // the file name

 result = load(fileName);

 // show the picture in a picture frame

 show();

 return result;

 }

 /**

 * Method to write the contents of the picture to

a file

 * with the passed name

 * @param fileName the name of the file to write

the

 * picture to

 */

 public void writeOrFail(String fileName)

 throws

IOException

 {

 //the default is current

 String extension = this.extension;

 // create the file object

 File file = new File(fileName);

 File fileLoc = file.getParentFile();

 // canWrite is true only when the file exists

 // already! (alexr)

 if (!fileLoc.canWrite()) {

 // System.err.println(

 // "can't write the file but trying anyway?

...");

 throw new IOException(fileName +

 " could not be opened. Check to see if you

can"

 + " write to the directory.");

 }

 // get the extension

 int posDot = fileName.indexOf('.');

 if (posDot >= 0)

 extension = fileName.substring(posDot + 1);

 //write the contents of the buffered image to

the file

 // as jpeg

 ImageIO.write(bufferedImage, extension, file);

 }

 /**

 * Method to write the contents of the picture to

a file

 * with the passed name without throwing errors

 * @param fileName the name of the file to write

the

 * picture to

 * @return true if success else false

 */

 public boolean write(String fileName)

 {

 try {

 this.writeOrFail(fileName);

 return true;

 } catch (Exception ex) {

 System.out.println(

 "There was an error trying to

write "

 + fileName);

 return false;

 }

 }

 /**

 * Method to set the media path by setting the

directory

 * to use

 * @param directory the directory to use for the

media

 * path

 */

 public static void setMediaPath(String directory)

{

 FileChooser.setMediaPath(directory);

 }

 /**

 * Method to get the directory for the media

 * @param fileName the base file name to use

 * @return the full path name by appending

 * the file name to the media directory

 */

 public static String getMediaPath(String

fileName) {

 return FileChooser.getMediaPath(fileName);

 }

 /**

 * Method to get the coordinates of the

enclosing

 * rectangle after this transformation is

applied to

 * the current picture

 * @return the enclosing rectangle

 */

 public Rectangle2D getTransformEnclosingRect(

AffineTransform trans)

 {

 int width = getWidth();

 int height = getHeight();

 double maxX = width - 1;

 double maxY = height - 1;

 double minX, minY;

 Point2D.Double p1 = new Point2D.Double(0,0);

 Point2D.Double p2 = new

Point2D.Double(maxX,0);

 Point2D.Double p3 = new

Point2D.Double(maxX,maxY);

 Point2D.Double p4 = new

Point2D.Double(0,maxY);

 Point2D.Double result = new

Point2D.Double(0,0);

 Rectangle2D.Double rect = null;

 // get the new points and min x and y and max

x and y

 trans.deltaTransform(p1,result);

 minX = result.getX();

 maxX = result.getX();

 minY = result.getY();

 maxY = result.getY();

 trans.deltaTransform(p2,result);

 minX = Math.min(minX,result.getX());

 maxX = Math.max(maxX,result.getX());

 minY = Math.min(minY,result.getY());

 maxY = Math.max(maxY,result.getY());

 trans.deltaTransform(p3,result);

 minX = Math.min(minX,result.getX());

 maxX = Math.max(maxX,result.getX());

 minY = Math.min(minY,result.getY());

 maxY = Math.max(maxY,result.getY());

 trans.deltaTransform(p4,result);

 minX = Math.min(minX,result.getX());

 maxX = Math.max(maxX,result.getX());

 minY = Math.min(minY,result.getY());

 maxY = Math.max(maxY,result.getY());

 // create the bounding rectangle to return

 rect = new Rectangle2D.Double(

 minX,minY,maxX - minX + 1, maxY -

minY + 1);

 return rect;

 }

 /**

 * Method to return a string with information

about this

 * picture

 * @return a string with information about the

picture

 */

 public String toString()

 {

 String output =

 "Simple Picture, filename " + fileName +

 " height " + getHeight() + " width " +

getWidth();

 return output;

 }

} // end of SimplePicture class

Listing 18. Source code for Ericson's DigitalPicture interface.

import java.awt.Image;

import java.awt.image.BufferedImage;

/**

 * Interface to describe a digital picture. A

digital

 * picture can have a associated file name.

It can have

 * a title. It has pixels associated with it

and you can

 * get and set the pixels. You can get an

Image from a

 * picture or a BufferedImage. You can load

it from a

 * file name or image. You can show a

picture. You can

 * create a new image for it.

 *

 * Copyright Georgia Institute of Technology

2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public interface DigitalPicture

{

 // get the file name that the picture came

from

 public String getFileName();

 // get the title of the picture

 public String getTitle();

 // set the title of the picture

 public void setTitle(String title);

 // get the width of the picture in pixels

 public int getWidth();

 // get the height of the picture in pixels

 public int getHeight();

 // get the image from the picture

 public Image getImage();

 // get the buffered image

 public BufferedImage getBufferedImage();

 // get the pixel information as an int

 public int getBasicPixel(int x, int y);

 // set the pixel information

 public void setBasicPixel(int x, int y, int

rgb);

 // get the pixel information as an object

 public Pixel getPixel(int x, int y);

 // load the image into the picture

 public void load(Image image);

 // load the picture from a file

 public boolean load(String fileName);

 // show the picture

 public void show();

}

Listing 19. Source code for the program named Java360a.

/*Program Java360a

Copyright R.G.Baldwin 2009

The purpose of this program is to illustrate the use of

the following methods of the Picture class:

boolean loadPictureAndShowIt(String fileName)

Picture getPictureWithWidth(int width)

void drawString(String text,int xPos,int yPos)

void addMessage(String message, int xPos, int yPos)

Picture getPictureWithHeight(int height)

Pixel[] getPixels()

An attempt was also made to illustrate the following

methods to write Picture objects into image files.

However, the results were very unreliable. Sometimes the

program was able to write the file and sometimes it

wasn't. Sometimes when the file was written, it would

contain the image and sometimes it would be empty.

boolean write(String fileName)

void writeOrFail(String fileName)throws IOException

This program completes the illustrations of the methods of

the Picture class with the exception of the explore

method. The explore method will be explained in a future

lesson that is dedicated to that method alone.

The program begins by calling the loadPictureAndShowIt

method to load and show a picture of a rose. The title

shown in the JFrame object is "None"

Then the program reads an image file to create a picture

of a butterfly, which is much larger than the picture of

the rose.

Then the program calls the getPictureWithWidth method to

create a new Picture object containing the butterfly image

with the width being set to match the width of the picture

of the rose. Note that the aspect ratio of the butterfly

picture is preserved.

Then the program calls the drawString method to draw a

white text string on the picture of the butterfly. The

drawString method calls the addMessage method to actually

draw the text on the image. The color white is fixed and

cannot be changed without modifying the method.

Then the program calls the getPictureWithHeight method

twice to create pictures of the rose and the butterfly

with the same height. Again, the original aspect ratio of

each image is preserved.

Then the program calls the Baldwin method named

translatePicture to copy the picture of the rose into the

right side of a new Picture object. It calls the

copyPicture method to copy the picture of the butterfly

into the left side of the same picture. The pictures used

as input to this operation are the pictures with the same

height. This produces a new Picture object containing

side-by-side images of the butterfly and the rose.

Then the program uses the getPixels method to create a

new picture of the butterfly and the rose side-by-side

with the value of the red color component reduced by a

factor of two. This is a very useful approach when you

want to perform the same operation on every pixel in a

Picture object.

Tested using Windows Vista Premium Home edition and

Ericson's multimedia library.

***/

import java.awt.Graphics2D;

import java.awt.Color;

import java.awt.geom.AffineTransform;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main method

}//end class Main

//--//

class Runner{

 void run(){

 //The following code will load and show the rose with

 // a title of "None"

 Picture pixA = new Picture(1,1);

 pixA.loadPictureAndShowIt("rose.jpg");

 //Create a picture of a butterfly, which is much

 // larger than the picture of the rose.

 Picture pixB = new Picture("butterfly1.jpg");

 pixB.setTitle("pixB");

 pixB.show();

 //Create a new Picture object containing the butterfly

 // image. The width of the new picture is set to match

 // the width of the picture of the rose. Note that the

 // aspect ratio is preserved.

 Picture pixC =

 pixB.getPictureWithWidth(pixA.getWidth());

 pixC.setTitle("pixC");

 //Draw white text on the picture of the butterfly.

 pixC.drawString("Same width as rose.",20,20);

 pixC.show();

 //Create pictures of the rose and the butterfly with

 // the same height and their original aspect ratios.

 Picture pixD = pixA.getPictureWithHeight(200);

 Picture pixE = pixB.getPictureWithHeight(200);

 //Copy the picture of the rose into the right side of

 // a new picture.

 Picture pixF =

 translatePicture(pixD,pixE.getWidth(),0);

 //Copy the picture of the butterfly into the left side

 // of the same picture. This results in a Picture

 // object containing side-by-side images of the

 // butterfly and the rose, both with the same height.

 pixF.copyPicture(pixE);

 pixF.setTitle("pixF");

 pixF.show();

 //Create and show a new picture of the butterfly and

 // the rose side-by-side and reduce the value of the

 // red color component by a factor of two. The

 // getPixels method is very useful when you want to

 // perform the same operation on every pixel in a

 // picture.

 Picture pixG = new Picture(pixF);

 pixG.setTitle("pixG");

 Pixel[] pixels = pixG.getPixels();

 int red = 0;

 for(int cnt = 0;cnt < pixels.length;cnt++){

 red = pixels[cnt].getRed();

 pixels[cnt].setRed((int)(red*0.5));

 }//end for loop

 pixG.show();

 }//end run method

 //--//

 //The following method accepts a reference to a Picture

 // object along with positive x and y translation

 // values. It creates and returns a new Picture object

 // that contains a translated version of the original

 // image with whitespace to the left of and/or above the

 // translated image. If either translation value is

 // negative, the method simply returns a reference to a

 // copy of the original picture.

 public Picture translatePicture(

 Picture pix,double tx,double ty){

 if((tx < 0.0) || (ty < 0.0)){

 //Negative translation values are not supported.

 // Simply return a reference to a copy of the

 // incoming picture. Note that this constructor

 // creates a new picture by copying the image from

 // an existing picture.

 return new Picture(pix);

 }//end if

 //Set up the transform

 AffineTransform translateTransform =

 new AffineTransform();

 translateTransform.translate(tx,ty);

 //Compute the size of a rectangle that is of

 // sufficient size to contain and display the

 // translated image.

 int pixWidth = pix.getWidth() + (int)tx;

 int pixHeight = pix.getHeight() + (int)ty;

 //Create a new picture object that is the correct

 // size.

 Picture result = new Picture(pixWidth,pixHeight);

 //Get the graphics2D object to draw on the result.

 Graphics2D g2 = (Graphics2D)result.getGraphics();

 //Draw the translated image from pix onto the new

 // Picture object, applying the transform in the

 // process.

 g2.drawImage(pix.getImage(),translateTransform,null);

 return result;

 }//end translatePicture

 //--//

}//end class Runner

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

