
Creating a lasso for editing digital photos in Java

Learn how to write the code to use the mouse to create a lasso on an image in
Java. This capability is critical to the editing of digital photos.

Published: March 19, 2009
By Richard G. Baldwin

Java Programming Notes # 359

 Preface
o General
o What you have learned from earlier lessons
o What you will learn in this lesson
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
 Discussion and sample code

o Introductory remarks
o The program named Lasso02

 The constructor
 Registering listener objects
 The method named makeRectLasso
 The method named processRectPixels
 The method named makeCircleLasso
 The method named processCirclePixels

 Run the program
 Summary
 What's next?
 Resources
 Complete program listing
 Copyright
 About the author

Preface

General

mailto:Baldwin@DickBaldwin.com

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

 Edit the color of your digital photos
 Create a lasso to isolate pixels by dragging the mouse in an image.
 Blur, soften, or sharpen your digital photos.
 Remove redeye from your digital photos.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters into videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

What you have learned from earlier lessons

If you have studied the earlier lessons in this series, you have learned:

 How to download, install, and test a Java multimedia library from Georgia
Institute of Technology.

 How to edit the pixels in an image on a pixel-by-pixel basis using a program
written entirely in Java.

 About the HSB color model and how to use that model to adjust the hue,
saturation, and brightness of your digital photos.

 Many aspects of image processing, including color distance, projecting 3D
coordinates onto a 2D display plane, and edge detection.

 How to write an animated flocking program.
 How to sharpen or soften your digital photos.

What you will learn in this lesson

You will learn how to write the code to create a circular lasso to isolate a group of pixels
as shown by the black circle around the red pupil in the eyeball in Figure 1. Having
written the code to create the lasso, you will learn how to write the code required to
process the pixels isolated by the lasso.

Figure 1. A circular lasso surrounding the red pupil of an eyeball.

A rectangular lasso

You will also learn how to write the code to create a rectangular lasso with an inscribed
ellipse as shown in Figure 2.

Figure 2. A rectangular lasso with an inscribed ellipse.

In this case, you can write code to process the pixels isolated by the rectangle, the
pixels isolated by the ellipse, or some combination of the two.

Being able to create a lasso to isolate a group of pixels for subsequent processing is a
critical aspect of editing digital photos.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. A circular lasso surrounding the red pupil of an eyeball.
 Figure 2. A rectangular lasso with an inscribed ellipse.
 Figure 3. The eyeball with all of the red removed from the pupil.
 Figure 4. Processed pixels in the rectangular, elliptical lasso.
 Figure 5. Program GUI at startup.

Listings

 Listing 1. Beginning of the class named Lasso02.
 Listing 2. Beginning of the constructor.
 Listing 3. Beginning of an ActionListener registered on the text field.
 Listing 4. Load the image file.
 Listing 5. Get the information required to write the output files.
 Listing 6. Create a separate Picture object that will be used for processing.

 Listing 7. Get and save several useful references.
 Listing 8. Adjust the width and location of the GUI.
 Listing 9. Enable and disable components.
 Listing 10. Register a MouseListener object on the JFrame containing the image.
 Listing 11. Register a MouseMotionListener object on the JFrame containing the

image.
 Listing 12. Finish defining the ActionListener on the text field.
 Listing 13. Register an ActionListener object on the Write button.
 Listing 14. Register a WindowListener object on the GUI.
 Listing 15. Register an ActionListener object on the Process Pixels button.
 Listing 16. Beginning of the method named makeRectLasso.
 Listing 17. Get the angle of the diagonal line.
 Listing 18. Create the rectangle and the ellipse in the correct quadrant.
 Listing 19. Draw the rectangle and the ellipse.
 Listing 20. Beginning of the method named processRectPixels.
 Listing 21. Change the colors of the pixels.
 Listing 22. Beginning of the method named makeCircleLasso.
 Listing 23. Compute the angle.
 Listing 24. Construct and draw a circular ellipse.
 Listing 25. The method named processCirclePixels.
 Listing 26. Source code for the program named Lasso02.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

http://www.dickbaldwin.com/toc.htm

Several weeks ago, I needed to write the code to create a circular lasso to isolate a
group of pixels for subsequent processing. My initial reaction was that although I had
never written such code, it would be a simple matter to find a tutorial somewhere on the
web that would show me how to do it.

I couldn't have been more wrong. Despite hours of searching the web, I couldn't find a
website where the requirement was even discussed in the context of Java
programming, much less a website that showed how to do it. Therefore, I concluded
that I would have to figure out how to do it on my own. This tutorial is based on the
fruits of that effort.

Discussion and sample code

Introductory remarks

In this lesson, I will explain a program named Lasso02 that was used to produce the
images with the lassos in Figure 1 and Figure 2. In addition to showing you how to write
the code to create the lassos, I will also show you how to write code to process the
pixels isolated by the lassos. For example, Figure 3 shows an image similar to Figure 1
where all of the red color has been removed from the pixels that were isolated by the
circular lasso.

Figure 3. The eyeball with all of the red removed from the pupil.

Not very attractive

Figure 3 isn't the most attractive look around, but it does illustrate the use of a circular
lasso. (I will explain a proper redeye correction program in a future lesson.)

Processed pixels in the rectangular, elliptical lasso

The image in Figure 4 is similar to the one shown in Figure 2. However, in Figure 4, all
of the green color was removed from the pixels isolated by the ellipse and all of the red
color was removed from the pixels that were isolated by the rectangle, but were outside
the ellipse.

Figure 4. Processed pixels in the rectangular, elliptical lasso.

The program named Lasso02

This is a demonstration program that shows how to create two different lasso styles by
dragging a mouse across an image in a Picture object.

The graphical user interface (GUI)

The program begins by displaying a GUI in the upper left corner of the screen as shown
in Figure 5.

Figure 5. Program GUI at startup.

At startup, the GUI contains a text field for entry of the name of the image file to be
processed and some other user-input components, which are disabled. (A default
image file name is automatically entered into the text field to assist in testing and
debugging the program.)

Required location of image file

If the image file is in the current directory, only the file name and extension must be
entered. Otherwise, the full path, name, and extension for the file must be
entered. Files of types jpg, bmp, and png are supported.

The image is loaded and the GUI is relocated

When the user enters the name of the image file into the text field, the image file is
loaded into a Picture object. The Picture object is displayed in the upper left corner of
the screen and the GUI is moved to a location immediately below the Picture object.

Disable and enable components

At this point, the text field and its label are disabled. The two JButton objects and the
two JRadioButton objects are enabled. One button is labeled Process Pixels and the
other button is labeled Write. One of the radio buttons is labeled Rect/Ellipse and the
other radio button is labeled Circle. The Rect/Lasso button is initially selected by
default.

Creating a rectangular lasso

When the Rect/Ellipse button selected, the user can drag the mouse in the image to
create a lasso consisting of a rectangle with an inscribed ellipse as shown in Figure 2.

The rectangle containing the ellipse can be created in any quadrant relative to the
anchor point, which is the location at which the drag operation begins. One corner of
the rectangle will always touch the anchor point. The diagonal length of the rectangle is
equal to the distance from the anchor point to the mouse pointer.

Creating a circular lasso

When the Circle button is selected, the user can drag the mouse in the image to create
a circular lasso as shown by the black circle surrounding the red pupil in the eyeball in
Figure 1. The circle can be created in any direction relative to the anchor point. The
diameter of the circular lasso is equal to the distance from the anchor point to the
mouse pointer.

Dragging outside the picture

Dragging the mouse outside the bounds of the picture causes the size of the either
lasso to continue to grow until the mouse reaches the edge of the desktop.

Setting the shape and size

Creation of the lasso ends and the shape and size of the lasso becomes fixed when the
user releases the mouse button. At this point, the lasso remains on the screen until the
user clicks the image with the mouse, clicks the Process Pixels button, or does
something else to cause the image to be repainted, (such as minimizing and then
restoring the JFrame object that contains the picture).

Processing the pixels isolated by the lasso

After the lasso has been drawn, the button labeled Process Pixels can be clicked to
call a method to process the pixels that are isolated by the lasso. Different methods are
called for the two different styles of lasso in this program. The method is selected on
the basis of which radio button is selected when the Process Pixels button is
clicked. You can modify either or both of these methods to satisfy your own pixel-
processing needs.

For the Rect/Ellipse lasso, the method can be written to process all of the pixels that
are isolated by the rectangle, the ellipse, or a combination of the two. For the Circle
lasso, the method can be written to process all of the pixels that are isolated by the
circle. Another alternative would be to write methods to process all of the pixels that are
not contained in the lasso.

Refreshing the display

Clicking anywhere in the image will erase an existing lasso and allow the user to start
over with a clean image to create a new lasso. Clicking the image also erases the
effects of having previously clicked the Process Pixels button.

Backup files

Clicking the Write button causes a backup file of type bmp to be written into the
directory from which the image file was read. The five most recent backup files are
saved. The names of the backup files are the same as the name of the original image
file except that the characters BAKn are inserted immediately before the extension. The
character n is replaced by a digit from 0 through 4.

Terminating the program

Clicking the large X in the upper-right corner of the JFrame object that contains the
image does nothing. The button is disabled. The program is terminated by clicking the
large X in the upper-right corner of the GUI.

Before terminating, the program writes an output file containing the final state of the
display in the same format as the input file. The name of the output file is the same as
the name of the input file except that the word FINAL is inserted immediately before the
extension.

This program does not modify the contents of the original input file.

Will explain in fragments

As is my practice, I will explain this program by breaking it down into code fragments. A
complete listing of the program is provided in Listing 26 near the end of the lesson.

Beginning of the class named Lasso02

The program begins in Listing 1. Many different instance variables are declared at the
beginning of the program. I deleted most of them from Listing 1 for brevity. You can
view them in Listing 26.

Listing 1. Beginning of the class named Lasso02.

public class Lasso02 extends JFrame{

 //Create the components that are used to

construct the

 // GUI.

 private JPanel mainPanel = new JPanel();

 //Instance variables deleted for brevity.

 private final double pi =

Math.PI;//convenience constant

 //--

----------//

 public static void main(String[] args){

 new Lasso02();

 }//end main method

The main method

The main method is shown in Listing 1. This is a totally event-driven program. The
main method simply instantiates a new object of the class named Lasso02.

The constructor

The constructor creates the GUI, loads the image file into the display frame, and
registers a variety of event handlers on different components. Then the program
essentially goes idle waiting for the user to cause events to be fired. The event
handlers control the behavior of the program when events are fired as a result of user
activity.

Beginning of the constructor

The constructor begins in Listing 2. Much of the code in the early part of the constructor
is required simply to build up the GUI as a series of panels, buttons, etc. I assumed that
you are familiar with such code and deleted most of it from Listing 2 for brevity. You
can view this code in Listing 26.

Listing 2. Beginning of the constructor.

 public Lasso02(){//constructor

 //All close operations are handled in a

WindowListener

 // object.

 setDefaultCloseOperation(

WindowConstants.DO_NOTHING_ON_CLOSE);

 //Construct the GUI.

 mainPanel.setLayout(new BorderLayout());

 //Code deleted for brevity.

 //Disable the buttons until the user

enters the file

 // name.

 writeButton.setEnabled(false);

 processButton.setEnabled(false);

 rectButton.setEnabled(false);

 circleButton.setEnabled(false);

 //Set the size of the GUI and display it

in the upper-

 // left corner of the screen. It will be

moved later

 // to a position immediately below the

display of the

 // picture.

 getContentPane().add(mainPanel);

 pack();

 setVisible(true);

 //Request that the focus move to the text

field where

 // the file name is to be entered.

 fileNameField.requestFocus();

Disable buttons and radio buttons

Once the physical aspects of the GUI are constructed, the code in Listing 2 disables the
two JButton objects and the two JRadioButton objects to prevent them from firing
events before the image file has been loaded. They are subsequently enabled by the
event handler that is executed as a result of the user entering the name of the image file
into the text field shown in Figure 5.

Miscellaneous housekeeping details

Then Listing 2 adds the GUI to the content pane, calls the pack method to cause the
overall size to be set consistent with the preferred sizes of the components, and calls
the setVisible method to cause the GUI to become visible on the screen.

Finally Listing 2 requests that the focus be moved to the text field to make it easier to
enter the image file name in the text field.

Registering listener objects

This is where things start to get a little more interesting. The remaining code in the
constructor registers listener objects on the JFrame object that contains the image and
various GUI components.

Beginning of an ActionListener registered on the text field

Listing 3 shows the beginning of an anonymous ActionListener that is registered on
the text field. When the user enters the file name in the text field, the code in the event
handler sets everything up properly so that the program will continue to function as an
event-driven picture-manipulation program until the user clicks the large X in the upper-
right corner of the GUI to terminate the program.

Listing 3. Beginning of an ActionListener registered on the text field.

 fileNameField.addActionListener(

 new ActionListener(){

 public void

actionPerformed(ActionEvent e){

 fileNameField.setEnabled(false);

 fileNameLabel.setEnabled(false);

Listing 3 disables the text field and its label to prevent the user from entering anything
else into it and causing it to fire another event.

Load the image file

Listing 4 gets the file name from the text field and uses it to read the file and create a
new Picture object using the image contained in the file. Listing 4 also displays my
name in the image as a quick and easy way to create a watermark.

Listing 4. Load the image file.

 fileName = fileNameField.getText();

 picture = new Picture(fileName);

 picture.addMessage("Dick

Baldwin",10,20);

Get the information required to write the output files

Listing 5 gets and saves all of the information that will be required later to write the
output files.

Listing 5. Get the information required to write the output files.

 String inputPath = new

File(fileName).

getAbsolutePath();

 int posDot =

inputPath.lastIndexOf('.');

 outputPath =

inputPath.substring(0,posDot);

 //Write the first copy of the output

backup

 // file.

 picture.write(outputPath

 + "BAK" +

writeCounter++ + ".bmp");

 //Get filename extension. It will be

used later

 // to write the final output file.

 extension =

inputPath.substring(posDot);

 //Decorate the GUI.

 setTitle("Copyright 2009,

R.G.Baldwin");

While the code in Listing 5 is a little tedious, it is not complicated and should not require
an explanation beyond the embedded comments.

Listing 5 also sets the title in the GUI; an operation that is unrelated to the output files
but needs to be done somewhere.

Create a separate Picture object that will used for processing

Other than adding the watermark, the Picture object that is created in Listing 5 is not
modified by the program. Instead, a separate Picture object is created in Listing 6 and
this is the object that is modified as a result of user actions. It also contains the image
that is written into the output files.

Listing 6. Create a separate Picture object that will be used for processing.

 display = new Picture(picture);

 //Display the picture.

 display.show();

The original image is held in reserve in memory and is used to refresh the display with a
clean image whenever the user clicks the mouse in the display. This makes it possible
for the user to undo the most recent action and start fresh with a clean image.

Listing 6 also calls the show method to cause the image to be displayed in the upper-
left corner of the screen.

Get and save several useful references

Listing 7 gets and saves several references that will be used later in the program for a
variety of purposes.

Listing 7. Get and save several useful references.

 //Save a reference to the image.

Also save the

 // width and height of the picture.

 theImage =

(BufferedImage)(picture.getImage());

 pictureWidth = picture.getWidth();

 pictureHeight = picture.getHeight();

 //Get and save a reference to the

JFrame object

 // that contains the image.

 theFrame =

display.getPictureFrame().frame;

 //Get the graphics context on which

to draw a

 // lasso.

 g2 =

(Graphics2D)(theFrame.getGraphics());

Adjust the width and location of the GUI

Strictly for cosmetic purposes, Listing 8 adjusts the width of the GUI to match the width
of the display if possible. Then Listing 8 relocates the GUI to a position immediately
below the display.

Listing 8. Adjust the width and location of the GUI.

 pack();

 int packedHeight = getHeight();

 int packedWidth = getWidth();

 if((pictureWidth + 7) >=

packedWidth){

 //Make the width of the GUI the

same as the

 // width of the display.

 setSize(pictureWidth +

7,packedHeight);

 }//Else, just leave the GUI at its

current size.

 //Put the GUI in its new location

immediately

 // below the display.

 setLocation(0,pictureHeight + 30);

Enable and disable components

Listing 9 enables the user input components to make the program operational. Listing 9
also disables the large X in the upper-right corner of the JFrame object that contains
the image. The program can be terminated by clicking the large X in the upper-right
corner of the GUI.

Listing 9. Enable and disable components.

 //Enable the user input controls.

 writeButton.setEnabled(true);

 processButton.setEnabled(true);

 rectButton.setEnabled(true);

 circleButton.setEnabled(true);

 //Disable the X-button on the

display.

 theFrame.setDefaultCloseOperation(

WindowConstants.DO_NOTHING_ON_CLOSE);

Register a MouseListener and a MouseMotionListener

Now that an image has been loaded, a MouseListener object and a
MouseMotionListener object can be registered on the JFrame object that contains the
image.

Note that the registration code for these two listener objects is actually inside the code
for the ActionListener object that is registered on the text field. This code can't be
executed when the GUI is first constructed because a Picture object does not exist at
that point in time. Instead, this code is executed after the user enters the image
filename, the file has been read, and the Picture object referred to by display has been
constructed.

Register a MouseListener object on the JFrame containing the image

Listing 10 registers a MouseListener object on the JFrame object that contains the
image. This is the JFrame object shown in Figure 2.

Listing 10. Register a MouseListener object on the JFrame containing the image.

 theFrame.addMouseListener(

 new MouseAdapter(){

 public void

mousePressed(MouseEvent e){

 //Draw a new copy of the image

on the

 // display each time the user

clicks the

 // image with the mouse.

 graphics =

display.getGraphics();

 graphics.drawImage(

picture.getImage(),0,0,null);

 display.repaint();

 //Prepare the variables...

 anchorX = e.getX();

 anchorY = e.getY();

 deltaX = 0;

 deltaY = 0;

 }//end mousePressed

 }//end new MouseAdapter

);//end addMouseListener

Draw a new copy of the image

Listing 10 begins by drawing a new copy of the image on the display shown in Figure 2
each time the user clicks the image with the mouse. This makes it possible to erase an
existing lasso simply by clicking anywhere in the image. This also erases the effect of
having previously clicked the Process Pixels button to process pixels isolated by the
lasso.

Prepare the variables...

Then Listing 10 prepares several variables so that the mouseDragged event handler
method can lasso and isolate a group of pixels.

A possible point of confusion

Note that the reported coordinates for a mouse press on the upper-left corner of the
image will not be reported as 0,0 due to the top and left insets of the JFrame. This can
lead to some confusion when analyzing the code.

Listing 10 also signals the end of the code that registers a MouseListener object on the
JFrame object that contains the image.

Register a MouseMotionListener object on the JFrame containing the image

Listing 11 registers a MouseMotionListener object on the JFrame object containing
the image. This listener object calls one of two different methods to draw a lasso on the
image when the user drags the mouse on the image.

Listing 11. Register a MouseMotionListener object on the JFrame containing the
image.

 theFrame.addMouseMotionListener(

 new MouseMotionAdapter(){

 public void

mouseDragged(MouseEvent e){

 //Call the method to draw the

lasso on the

 // basis of which radio button

has been

 // selected.

 if(rectButton.isSelected()){

makeRectLasso(e.getX(),e.getY());

 }else

if(circleButton.isSelected()){

makeCircleLasso(e.getX(),e.getY());

 }//end else

 }//end mouseDragged

 }//end new MouseMotionAdapter

);//end addMouseMotionListener

Deciding which method to call

The decision as to which of the two methods to call is made on the basis of which radio
button in Figure 5 has been selected by the user. One of the methods, named
makeCircleLasso draws a circular lasso as shown by the black circle surrounding the
red pupil of the eyeball in Figure 1.

The other method named makeRectLasso draws a rectangular lasso with an inscribed
ellipse as shown in Figure 2. These two methods are the heart of this program. I will
explain both methods later.

Finish defining the ActionListener on the text field

As I mentioned earlier, the code shown in Listing 10 and Listing 11 is actually inside the
definition of an anonymous class that registers an ActionListener object on the text
field. Listing 7 contains the code required to complete the definition of that anonymous
class.

Listing 12. Finish defining the ActionListener on the text field.

 }//end actionPerformed

 }//end new ActionListener

);//end addActionListener

Register an ActionListener object on the Write button

Listing 13 registers an ActionListener object on the Write button shown in Figure 5.

Each time the user clicks the button, a backup image file of type bmp containing the
current state of the display is written into the directory from which the original picture
was read.

Listing 13. Register an ActionListener object on the Write button.

 writeButton.addActionListener(

 new ActionListener(){

 public void

actionPerformed(ActionEvent e){

 display.write(outputPath

 + "BAK" +

writeCounter++ + ".bmp");

 //Reset the writeCounter if it

exceeds 4 to

 // conserve disk space.

 if(writeCounter > 4){

 writeCounter = 0;

 }//end if

 }//end action performed

 }//end new ActionListener

);//end addActionListener

Five most recent backup files are saved

The five most recent backup files are saved. The names of the backup files are the
same as the name of the input file except that BAKn is inserted immediately ahead of
the extension where n is a digit ranging from 0 to 4.The value of n rolls over at 4 and
starts back at 0.

Register a WindowListener object on the GUI

Listing 14 registers a WindowListener object that responds when the user clicks the
large X in the upper-right corner of the GUI. This event handler writes the final display
image into an output file of the same type as the original input file. The name of the
output file is the same as the name of the input file except that the word FINAL is
inserted immediately ahead of the extension.

Listing 14. Register a WindowListener object on the GUI.

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent

e){

 display.write(outputPath + "FINAL" +

extension);

 System.exit(0);

 }//end windowClosing

 }//end new WindowAdapter

);//end addWindowListener

Register an ActionListener object on the Process Pixels button

Listing 15 registers an ActionListener object on the Process Pixels button.

Listing 15 begins by drawing a clean copy of the image to get rid of the black pixels that
constitute the lasso. Note that this does not destroy the underlying
Rectangle2D.Double and Ellipse2D.Double objects that define the lasso. (I will have
more to say about these objects later.)

Listing 15. Register an ActionListener object on the Process Pixels button.

 processButton.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent

e){

 //Get rid of the black lasso pixels

 graphics = display.getGraphics();

graphics.drawImage(picture.getImage(),0,0,null);

 display.repaint();

 //Call a method to process the pixels

on the

 // basis of which radio button is

selected.

 if(rectButton.isSelected()){

 processRectPixels();

 }else if(circleButton.isSelected()){

 processCirclePixels();

 }//end else

 }//end action performed

 }//end new ActionListener

);//end addActionListener

 //--

--------//

 }//end constructor

Call a method to process the pixels

Then Listing 15 calls one of two methods to process the pixels that have been isolated
inside of the lasso. The decision as to which method to call is made on the basis of
which radio button is selected at the time the button is clicked.

If the Rect/Ellipse button is selected, the method named processRectPixels is called
to process a lasso of the type shown in Figure 2. If the Circle button is selected, the
method named processCirclePixels is called to process a lasso of the type shown in
Figure 1.

Simple demo methods

I have provided simple demo versions of each of these methods, which I will explain
later. However, my expectation is that you will modify the methods to process the
isolated pixels in whatever way meets your specific needs.

The end of the constructor

Listing 15 also signals the end of the constructor. As mentioned earlier, when the
constructor terminates, the program goes into an idle state waiting for the user to do
something that causes an event to be fired, (for which a listener object has been
registered). When such an event is fired, the program handles the event and then
returns to the idle state waiting for the next event to be fired.

The method named makeRectLasso

That brings us to the methods that are called when the user drags the mouse in the
image to create a lasso. The method named makeRectLasso is conceptually the
simpler of the two so I will begin with that method.

This method is called each time the mouse fires a mouseDragged event if the radio
button labeled Rect/Ellipse is selected.

A rectangular lasso with an inscribed ellipse

This version of the method draws a lasso consisting of a rectangle with an inscribed
ellipse as shown in Figure 2. An anchor point is established when the user presses a
mouse button to drag the mouse across the image. A corner of the rectangle touches
the anchor point at all times.

Size and shape of the rectangle

The sides of the rectangle are always parallel with the top and the sides of the JFrame
object containing the image. The dimensions of the rectangle are determined by the
distance from the anchor point to the mouse pointer. That distance defines the length of
a line from the anchor point to a diagonal corner of the rectangle.

Location of the rectangle

The location of the rectangle is determined by the angle that an imaginary line going
through the anchor point and the mouse pointer makes with an imaginary horizontal line
going through the anchor point.

Assuming the anchor point to be the origin of an imaginary Cartesian coordinate
system, the rectangle can be drawn in any quadrant of that coordinate system with one
corner of the rectangle touching the anchor point. The rectangle can be drawn with any
size, even if the mouse pointer goes outside the bounds of the image.

Processing the isolated pixels

Pixels isolated by the rectangle and pixels isolated by the inscribed ellipse can be
process separately or in combination.

When the user releases the mouse button, the rectangle and the inscribed ellipse
remain on the screen until the user clicks the image with the mouse, clicks the Process
Pixels button, or does something else to cause the image to be repainted.

Beginning of the method named makeRectLasso

The method named makeRectLasso begins in Listing 16.

Listing 16. Beginning of the method named makeRectLasso.

 private void makeRectLasso(int x,int y){

 //Update the width and height of the

rectangular

 // lasso.

 deltaX = x - anchorX;

 deltaY = y - anchorY;

 //Copy the entire image from the backup

picture.

 g2.drawImage(theImage,

 theFrame.getInsets().left,

theFrame.getInsets().top,null);

The parameters x and y contain the coordinates of the mouse pointer when the event
was fired.

Update two instance variables

Listing 16 begins by updating the variables named deltaX and deltaY, which will be
used to establish the width and the height of the rectangular lasso.

These two variables are updated to contain the horizontal and vertical components of a
vector that extends from the anchor point to the current location of the mouse
pointer. In effect, they contain the horizontal and vertical components of an imaginary
line that extends from the anchor point to the diagonally opposite corner of the
rectangle.

Refresh the display

Then Listing 16 copies the entire image from the backup picture stored in memory onto
the picture referred to by display. This erases any lassos drawn earlier and also
erases the effects of earlier clicks on the Process Pixels button. (The user could have
saved this information in a disk file by clicking the Write button and copying the backup
file to a more permanent file.)

Caution, trigonometry ahead

In order to understand the remaining code in this method, you must understand
trigonometry. If you don't, you will simply have to take my word for it that trigonometry
was used correctly.

Get the angle of the diagonal line

Listing 17 calls the atan2 method of the Math class to
get and save the angle in radians that a line joining the
anchor point and the current mouse location makes with
a horizontal line going through the anchor point. This
angle that will be used in the computations that are
required to draw the rectangle in the correct quadrant
relative to the anchor point.

Listing 17. Get the angle of the diagonal line.

 angle =

Math.atan2((double)deltaY,(double)deltaX);

Create the rectangle and the ellipse in the correct quadrant

The objective is to draw a rectangle with an inscribed ellipse with one corner touching
the anchor point regardless of the direction that the user drags the mouse pointer
relative to the anchor point.

The Math.atan2 method

Note that unlike the
Math.atan method, the
atan2 method returns the
angle for the full angular
range of -pi to pi. The
atan2 method also handles
the issue of division by zero
when the horizontal value
goes to zero.

Listing 18 uses the angle produced by the code in Listing 17 to determine the quadrant,
(relative to the anchor point as the origin in a Cartesian coordinate system), in which to
draw the rectangle.

Then Listing 18 executes one of four alternative blocks of code to construct a
Rectangle2D.Double object and an inscribed Ellipse2D.Double object in the correct
quadrant positioned with one corner of the rectangle touching the anchor point at all
times.

Listing 18. Create the rectangle and the ellipse in the correct quadrant.

 if((angle >= 0) && (angle < pi/2)){

 //Create the rectangle in the lower-

right quadrant.

 rectangle = new Rectangle2D.Double(

 //Compute and specify the

coordinates of the

 // upper-left corner of the

rectangle.

 anchorX,

 anchorY,

 //Specify the width and the height

of the

 // rectangle.

 deltaX,

 deltaY);

 //Now inscribe an ellipse in the

rectangle.

 ellipse = new Ellipse2D.Double(anchorX,

 anchorY,

 deltaX,

 deltaY);

 }else if((angle >= pi/2) && (angle < pi)){

 //Create the rectangle in the lower-left

quadrant.

 rectangle = new

Rectangle2D.Double(anchorX + deltaX,

anchorY,

 -

deltaX,

deltaY);

 ellipse = new Ellipse2D.Double(anchorX +

deltaX,

 anchorY,

 -deltaX,

 deltaY);

 }else if((angle >= -pi/2) && (angle < 0)){

 //Create the rectangle in the upper-

right quadrant.

 rectangle = new

Rectangle2D.Double(anchorX,

anchorY + deltaY,

deltaX,

 -

deltaY);

 ellipse = new Ellipse2D.Double(anchorX,

 anchorY +

deltaY,

 deltaX,

 -deltaY);

 }else{

 //Create the rectangle in the upper-left

quadrant.

 rectangle = new

Rectangle2D.Double(anchorX + deltaX,

anchorY + deltaY,

 -

deltaX,

 -

deltaY);

 ellipse = new Ellipse2D.Double(anchorX +

deltaX,

 anchorY +

deltaY,

 -deltaX,

 -deltaY);

 }//end else

The code is straightforward

You should be able to understand the code in each of the alternative code blocks in
Listing 18 without a requirement for an explanation beyond the embedded
comments. When interpreting the comments, however, you need to remember that the
positive direction for an angle is clockwise.

Draw the rectangle and the ellipse

The two objects constructed in Listing 18 exist regardless of whether or not they are
physically drawn on the screen. Listing 19 draws them on the screen.

Listing 19. Draw the rectangle and the ellipse.

 g2.draw(rectangle);

 g2.draw(ellipse);

 }//end makeRectLasso

Listing 19 also signals the end of the method named makeRectLasso that began in
Listing 16.

The method named processRectPixels

Before I get into the method that is called to draw a circular lasso, I will explain a
demonstration method that shows how to process the pixels isolated in the rectangular
lasso shown in Figure 2.

This method is called by the ActionListener object registered on the Process Pixels
button in Listing 15 whenever the user clicks the Process Pixels button while the radio
button labeled Rect/Ellipse is selected.

A very simple pixel-processing algorithm

This method implements a very simple pixel-processing algorithm and is provided for
demonstration purposes only. My expectation is that you will modify this method to suit
your specific pixel-processing needs.

Modify isolated pixels

This demo method eliminates red from all pixels inside the rectangle but outside the
ellipse. Then it eliminates green from all pixels inside the ellipse. This produces the
results shown in Figure 4.

Beginning of the method named processRectPixels

The processRectPixels method begins in Listing 20.

Listing 20. Beginning of the method named processRectPixels.

 private void processRectPixels(){

 //Protect against clicking the button

before drawing

 // a lasso.

 if(rectangle == null) return;

Confirm the existence of the Rectangle2D.Double object

The pixel-processing code in the processRectPixels method expects that a
Rectangle2D.Double object and an Ellipse2D.Double object have been
created. However, that would not be the case if the user were to click the Process
Pixels button while the Rect/Ellipse radio button is selected before dragging the mouse
to create a rectangular lasso. Therefore, Listing 20 tests to confirm that the
Rectangle2D.Double object has been created, and if not, the method simply returns
quietly.

Change the colors of the pixels

The key to this entire program hinges on the behavior of the contains method
belonging to objects of the Rectangle2D.Double and Ellipse2D.Double classes.

The contains method accepts a pair of incoming coordinate values and return true if
the coordinates are inside the boundary of the shape, and false otherwise.

Cycle and test all pixels

Listing 21 uses a pair of nested for loops to cycle through all of the coordinate pairs
contained in the image being processed, calling the contains methods of the rectangle
and ellipse objects for each coordinate pair, to identify those pixels that are inside the
boundary of the object.

Listing 21. Change the colors of the pixels.

 for(int col = 0;col < pictureWidth;col++){

 for(int row = 0;row <

pictureHeight;row++){

 //Change the color of the pixels

inside the

 // rectangle and outside the ellipse.

 //Note: It is necessary to compensate

for the top

 // and left insets of the JFrame.

 if((rectangle.contains(

 col +

theFrame.getInsets().left,

 row +

theFrame.getInsets().top)) &&

 !((ellipse.contains(

 col +

theFrame.getInsets().left,

 row +

theFrame.getInsets().top)))){

 pixel = display.getPixel(col,row);

 pixel.setRed(0);

 }//end if

 //Change the color of the pixels

inside the

 // ellipse.

 if(ellipse.contains(

 col +

theFrame.getInsets().left,

 row +

theFrame.getInsets().top)){

 Pixel pixel =

display.getPixel(col,row);

 pixel.setGreen(0);

 }//end if

 }//end inner loop

 }//end outer loop

 display.repaint();

 }//end processRectPixels

Modify the contained pixels

Once a pixel is determined to be contained in either or both objects, the red or green
color value is set to zero to produce the result shown in Figure 4.

When all coordinate pairs in the image have been tested, and the color values in
selected pixels have been modified, Listing 21 calls the repaint method on the display
object to cause the display to be repainted on the screen.

Listing 21 also signals the end of the method named processRectPixels.

The method named makeCircleLasso

This method is called each time the mouse fires a mouseDragged event while the radio
button labeled Circle is selected.

This method constructs and draws a lasso consisting of a circular ellipse that touches
the anchor point at all times.

The diameter of the circle is determined by the distance of the mouse from the anchor
point. The location of the circle is determined by the angle that a line going through the
anchor point and the mouse pointer makes with a horizontal line going through the
anchor point.

The circle can be drawn at any angle, and with any diameter, even if the mouse goes
outside the bounds of the image.

When the user releases the mouse button, the circle remains on the screen until the
user clicks the image with the mouse, clicks the Process Pixels button, or does
something else to cause the image to be repainted.

Beginning of the method named makeCircleLasso

The method named makeCircleLasso begins in Listing 22.

Listing 22. Beginning of the method named makeCircleLasso.

 private void makeCircleLasso(int x,int y){

 //The parameters x and y contain the

coordinates of

 // the mouse pointer when the event was

fired. Update

 // the diameter of the circular lasso.

 deltaX = x - anchorX;

 deltaY = y - anchorY;

 diameter = (int)Math.hypot(deltaX,deltaY);

 //Copy the entire image from the backup

picture stored

 // in memory to erase any lassos drawn

earlier. Also

 // erases the effects of prior clicks on

the Process

 // Pixels button.

 g2.drawImage(theImage,

 theFrame.getInsets().left,

theFrame.getInsets().top,null);

As before, the parameters x and y contain the coordinates of the mouse pointer when
the event was fired. Listing 22 begins by updating the variables named deltaX and
deltaY, which are used to establish the diameter of the circular lasso in this method.

Also as before, these two variables are updated to contain the horizontal and vertical
components of a vector that extends from the anchor point to the current location of the
mouse pointer.

Get the length of the vector

Unlike before, the hypot method of the Math class is called to get the length of the
vector. The hypot method treats the horizontal and vertical components of the vector
as the sides of a right triangle and returns the length of the hypotenuse of that
triangle. This value defines the diameter of the circular lasso.

Refresh the display

As before, Listing 22 also refreshes the display by copying the backup image that is
stored in memory into the display.

Compute the angle

Listing 23 calls the atan2 method to compute the same angle that was computed earlier
in Listing 17. However, in this case, the angle is used for a somewhat different purpose
than before.

Listing 23. Compute the angle.

 //Get the angle in radians that a line

joining the

 // anchor point and the current mouse

location makes

 // with a horizontal line going through

the anchor

 // point. This is the angle that will be

used in the

 // computations required to rotate the

circular

 // ellipse around the anchor point while

continually

 // touching the anchor point.

 angle =

Math.atan2((double)deltaY,(double)deltaX);

Construct and draw a circular ellipse

Listing 24 constructs and then draws a circular version of an Ellipse2D.Double object
that touches the anchor point at all times.

Listing 24. Construct and draw a circular ellipse.

 ellipse = new Ellipse2D.Double(

 //Compute and specify the

coordinates of the

 // upper left corner of a box that

will contain

 // the circular ellipse.

 anchorX-(diameter/2-

Math.cos(angle)*diameter/2),

 anchorY-(diameter/2-

Math.sin(angle)*diameter/2),

 //Specify the width and the height

of the box.

 diameter,

 diameter);

 //Draw the ellipse.

 g2.draw(ellipse);

 }//end makeCircleLasso

Conceptually complex code

Although the code in Listing 24 is much shorter than the code in Listing 18, the code in
Listing 24 is conceptually more complex than the code in Listing 18.

In Listing 18, all that was required to was to select among, construct, and draw one of
four alternatives rectangles in which one corner of the rectangle touched the anchor
point at all times.

In Listing 24, however, the requirement is to construct and then draw any one of an
infinite number of circles such that the perimeter of the circle touches the anchor point
at all times.

Use an Ellipse2D.Double object for the circle

The circle is constructed by constructing an Ellipse2D.Double object that is inscribed in
a square (not a general rectangle). Beyond that, about all that I can tell you is that if
you really understand trigonometry (and perhaps vectors as well), you should be able to
understand the code in Listing 24 without an explanation beyond the embedded
comments. If you don't understand trigonometry, the code in Listing 24 probably won't
make any sense to you at all.

Listing 24 also signals the end of the method named makeCircleLasso.

The method named processCirclePixels

Listing 25 is a demonstration that shows how to process the pixels contained in a
circular elliptical lasso, producing results similar to those shown in Figure 3.

Listing 25. The method named processCirclePixels.

 private void processCirclePixels(){

 //Protect against clicking the button

before drawing

 // a lasso.

 if(ellipse == null) return;

 for(int col = 0;col < pictureWidth;col++){

 for(int row = 0;row <

pictureHeight;row++){

 //Change the color of the pixels

inside the

 // ellipse.

 //Note: It is necessary to compensate

for the top

 // and left insets of the JFrame.

 if(ellipse.contains(

 col +

theFrame.getInsets().left,

 row +

theFrame.getInsets().top)){

 //The pixel is inside the lasso.

Change its

 // color.

 Pixel pixel =

display.getPixel(col,row);

 pixel.setRed(0);

 }//end if

 }//end inner loop

 }//end outer loop

 display.repaint();

 }//end processCirclePixels

If you understood the method named processRectPixels that began in Listing 20, you
should have no difficulty understanding Listing 25.

As before, this method implements a very simple pixel-processing algorithm to eliminate
green from all of the pixels isolated by the lasso, and is provided for demonstration
purposes only. My expectation is that you will modify this method to suit your specific
pixel-processing needs.

Run the program

I encourage you to copy the code from Listing 26, compile the code, and execute
it. Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

Summary

In this lesson, I showed you how to write the code to create a circular lasso that isolates
a group of pixels as shown by the black circle around the red pupil in the eyeball in
Figure 1.

I also showed you how to write the code to create a rectangular lasso with an inscribed
ellipse as shown in Figure 2.

Finally, I provided demo methods that illustrate a methodology for processing the pixels
isolated by the lasso.

What's next?

In the next lesson, you will learn how to cause two or more pictures to have the same
width or the same height and otherwise maintain their individual aspect ratios, how to
create composite pictures containing side-by-side images, how to draw text on a
picture, and how to apply the same operation to every pixel in a Picture object.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/

 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA
 Vector Cad-Cam XI Lathe Tutorial
 Classification of 3D to 2D projections
 Color model from Wikipedia
 Light and color: an introduction by Norman Koren
 Color Principles - Hue, Saturation, and Value
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight
404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
408 Processing Image Pixels, Performing Convolution on Images
410 Processing Image Pixels, Understanding Image Convolution in Java
412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
416 Processing Image Pixels, An Improved Image-Processing Framework in
Java
418 Processing Image Pixels, Creating Visible Watermarks in Java
450 A Framework for Experimenting with Java 2D Image-Processing Filters
452 Using the Java 2D LookupOp Filter Class to Process Images
454 Using the Java 2D AffineTransformOp Filter Class to Process Images
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble
Images
458 Using the Java 2D BandCombineOp Filter Class to Process Images
460 Using the Java 2D ConvolveOp Filter Class to Process Images

http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://en.wikipedia.org/wiki/Color_model
../Light%20and%20color:%20%20an%20introduction
http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#(HSV)
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676

462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to
Process Images

 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java
 350 3D Displays, Color Distance, and Edge Detection
 351 A Slider-Controlled Softening Program for Digital Photos
 352 Adding Animated Movement to Your Java Application
 353 A Slider-Controlled Sharpening Program for Digital Photos
 354 The DigitalPicture Interface
 355 The HSB Color Model
 356 The show Method and the PictureFrame Class
 357 An HSB Color-Editing Program for Digital Photos
 358 Applying Affine Transforms to Picture Objects

Complete program listing

A complete listing of the program that I explained in this lesson is shown in Listing 26.

Listing 26. Source code for the program named Lasso02.

/*File Lasso02 Copyright 2009 R.G.Baldwin

This is a demonstration program that shows how to create

two different lasso styles by dragging a mouse in an image

in a Picture object.

The program begins by displaying a GUI in the upper left

corner of the screen. At that point, the GUI contains a

text field for entry of the name of the image file to be

processed and some other user-input components, which are

disabled. If the file is in the current directory, only

the file name and extension must be entered. Otherwise,

the full path and name and extension for the file must be

entered. Files of types jpg, bmp, and png are supported.

When the user enters the name of the image file into the

text field, the file is loaded into a Picture object. The

Picture object is displayed in the upper left corner of

the screen and the GUI is moved to a location immediately

below the Picture object. At this point, the text field

is disabled. Two buttons and two radio buttons are

enabled.

http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm
http://www.dickbaldwin.com/java/Java354.htm
http://www.dickbaldwin.com/java/Java355.htm
http://www.dickbaldwin.com/java/Java356.htm
http://www.dickbaldwin.com/java/Java357.htm
http://www.dickbaldwin.com/java/Java358.htm

One button is labeled Process Pixels and the other button

is labeled Write. One radio button is labeled Rect/Ellipse

and the other radio button is labeled Circle. The

Rect/Lasso button is initially selected by the program.

At this point with the Rect/Ellipse button selected, the

user can drag the mouse in the image to create a lasso

consisting of a rectangle with an inscribed ellipse. The

rectangle and the ellipse can be created in any quadrant

relative to the anchor point. The anchor point is the

location at which the drag operation begins. One corner

of the rectangle will always touch the anchor point.

When the Circle button is selected, the user can drag the

mouse in the image to create a circular lasso. It can be

created in any direction from the anchor point. The

diameter of the circular lasso is equal to the distance of

the mouse pointer from the anchor point.

Dragging the mouse outside the bounds of the picture

causes the size of the either lasso to continue to grow.

The lasso ends when the user releases the mouse button.

The lasso remains on the screen until the user clicks the

image with the mouse, clicks the Process Pixels button, or

does something else to cause the image to be repainted.

After the lasso has been drawn, the button labeled Process

Pixels can be clicked to cause a method to be called to

process the pixels in the image relative to the position

and size of the lasso. Different methods are called for

the two styles of lasso.

You can modify either or both of these methods to satisfy

your own pixel-processing needs.

For the Rect/Ellipse lasso, the method can be written to

process all of the pixels that are contained in the

rectangle, the ellipse, or a combination of the two. For

the Circle lasso, the method can be written to process

all of the pixels that are contained in the circle.

Another alternative would be to write methods to process

all of the pixels that are not contained in the lasso.

Clicking anywhere in the image will erase an existing

lasso and allow the user to start over with a clean image

to create a new lasso. Clicking the image also erases the

effects of having clicked the Process Pixels button.

Clicking the Write button causes a backup bmp file to be

written into the same directory from which the image file

was read. The five most recent backup files are saved.

The names of the backup file are the same as the name of

the original image file except that the characters BAKn

are inserted immediately before the extension. The

character n is replaced by a digit from 0 through 4.

Clicking the large X in the upper-right corner of the

image display does nothing. The button is disabled.

The program is terminated by clicking the large X in the

upper-right corner of the GUI. Before terminating, the

program writes an output file containing the final state

of the display in the same format as the input file. The

name of the output file is the same as the name of the

input file except that the word FINAL is inserted

immediately before the extension.

This program does not modify the contents of the original

input file.

Tested using Windows Vista Home Premium Edition,

Java 1.6x, and the version of Ericson's multimedia library

contained in bookClasses10-1-07.zip.

***/

import java.awt.Graphics;

import java.awt.Image;

import java.awt.BorderLayout;

import java.awt.Graphics2D;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import java.awt.event.MouseEvent;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseMotionListener;

import java.awt.event.MouseMotionAdapter;

import java.awt.geom.Ellipse2D;

import java.awt.geom.Ellipse2D.Double;

import java.awt.geom.Rectangle2D;

import java.awt.image.BufferedImage;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JLabel;

import javax.swing.JButton;

import javax.swing.JTextField;

import javax.swing.JRadioButton;

import javax.swing.ButtonGroup;

import javax.swing.WindowConstants;

import java.io.File;

public class Lasso02 extends JFrame{

 //Create the components that are used to construct the

 // GUI.

 private JPanel mainPanel = new JPanel();

 private JPanel northPanel = new JPanel();

 private JPanel centerPanel = new JPanel();

 private JPanel southPanel = new JPanel();

 private JButton processButton =

 new JButton("Process Pixels");

 private JButton writeButton = new JButton("Write");

 private JTextField fileNameField =

 new JTextField("Lasso02.jpg");

 private JLabel fileNameLabel = new JLabel("File Name:");

 private JRadioButton rectButton =

 new JRadioButton("Rect/Ellipse",true);

 private JRadioButton circleButton =

 new JRadioButton("Circle");

 private ButtonGroup buttonGroup = new ButtonGroup();

 //A reference to the original Picture object will be

 // stored here.

 private Picture picture = null;

 //A reference to a modified copy of the original

 // Picture object will be stored here.

 private Picture display = null;

 //Miscellaneous working variables. Many variables were

 // made instance variables instead of local variables

 // to improve responsiveness during a mouse drag

 // operation.

 private Graphics graphics = null;

 private Pixel pixel = null;

 private int writeCounter = 0;

 private String fileName = "NONE";

 private String outputPath = null;

 private String extension = null;

 private int pictureWidth = 0;

 private int pictureHeight = 0;

 private int anchorX = 0;

 private int anchorY = 0;

 private int deltaX = 0;

 private int deltaY = 0;

 private int diameter = 0;

 private double angle = 0;

 private BufferedImage theImage = null;

 private JFrame theFrame = null;

 private Rectangle2D.Double rectangle = null;

 private Ellipse2D.Double ellipse = null;

 private Graphics2D g2 = null;

 private final double pi = Math.PI;//convenience constant

 //--//

 public static void main(String[] args){

 new Lasso02();

 }//end main method

 //--//

 public Lasso02(){//constructor

 //All close operations are handled in a WindowListener

 // object.

 setDefaultCloseOperation(

 WindowConstants.DO_NOTHING_ON_CLOSE);

 //Construct the GUI.

 mainPanel.setLayout(new BorderLayout());

 mainPanel.add(northPanel,BorderLayout.NORTH);

 mainPanel.add(centerPanel,BorderLayout.CENTER);

 mainPanel.add(southPanel,BorderLayout.SOUTH);

 northPanel.add(processButton);

 //Add radio buttons to the center panel and make them

 // mutually exclusive.

 centerPanel.add(rectButton);

 buttonGroup.add(rectButton);

 centerPanel.add(circleButton);

 buttonGroup.add(circleButton);

 //Add a button, a label, and a text field to the south

 // panel.

 southPanel.add(writeButton);

 southPanel.add(fileNameLabel);

 southPanel.add(fileNameField);

 //Disable the buttons until the user enters the file

 // name.

 writeButton.setEnabled(false);

 processButton.setEnabled(false);

 rectButton.setEnabled(false);

 circleButton.setEnabled(false);

 //Set the size of the GUI and display it in the upper-

 // left corner of the screen. It will be moved later

 // to a position immediately below the display of the

 // picture.

 getContentPane().add(mainPanel);

 pack();

 setVisible(true);

 //Request that the focus move to the text field where

 // the file name is to be entered.

 fileNameField.requestFocus();

 //--//

 //Register a listener on the text field. When the user

 // enters the file name in the text field, set

 // everything up properly so that the program will

 // function as an event-driven picture-manipulation

 // program until the user clicks the large X in the

 // upper-right of the GUI.

 fileNameField.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 //Disable the text field and its label to

 // prevent the user from entering anything else

 // into it and causing it to fire another event.

 fileNameField.setEnabled(false);

 fileNameLabel.setEnabled(false);

 //Get the file name from the text field and use

 // it to create a new Picture object. Display my

 // name in the image.

 fileName = fileNameField.getText();

 picture = new Picture(fileName);

 picture.addMessage("Dick Baldwin",10,20);

 //Get information that will be used to write the

 // output files.

 String inputPath = new File(fileName).

 getAbsolutePath();

 int posDot = inputPath.lastIndexOf('.');

 outputPath = inputPath.substring(0,posDot);

 //Write the first copy of the output backup

 // file.

 picture.write(outputPath

 + "BAK" + writeCounter++ + ".bmp");

 //Get filename extension. It will be used later

 // to write the final output file.

 extension = inputPath.substring(posDot);

 //Decorate the GUI.

 setTitle("Copyright 2009, R.G.Baldwin");

 //Create the picture that will be used for

 // processing.

 //Note that the original image file is not

 // modified by this program.

 display = new Picture(picture);

 //Display the picture.

 display.show();

 //Save a reference to the image. Also save the

 // width and height of the picture.

 theImage = (BufferedImage)(picture.getImage());

 pictureWidth = picture.getWidth();

 pictureHeight = picture.getHeight();

 //Get and save a reference to the JFrame object

 // that contains the image.

 theFrame = display.getPictureFrame().frame;

 //Get the graphics context on which to draw a

 // lasso.

 g2 = (Graphics2D)(theFrame.getGraphics());

 //Adjust the width of the GUI to match the width

 // of the display if possible. Then relocate the

 // GUI to a position immediately below the

 // display.

 //Establish the preferred size now that the

 // input file name has been entered.

 pack();

 int packedHeight = getHeight();

 int packedWidth = getWidth();

 if((pictureWidth + 7) >= packedWidth){

 //Make the width of the GUI the same as the

 // width of the display.

 setSize(pictureWidth + 7,packedHeight);

 }//Else, just leave the GUI at its current size.

 //Put the GUI in its new location immediately

 // below the display.

 setLocation(0,pictureHeight + 30);

 //Enable the user input controls.

 writeButton.setEnabled(true);

 processButton.setEnabled(true);

 rectButton.setEnabled(true);

 circleButton.setEnabled(true);

 //Disable the X-button on the display.

 theFrame.setDefaultCloseOperation(

 WindowConstants.DO_NOTHING_ON_CLOSE);

 //--//

 /*

 Note that the following two anonymous listener

 registrations are actually inside the action

 listener that is registered on the text field.

 The code in these two listener registration

 blocks can't be executed when the GUI is first

 constructed because a Picture object does not

 exist at that point in time. This code is

 executed after the user enters the image file

 name, the file has been read, and the Picture

 object referred to by display has been

 constructed.

 Now that an image has been loaded, a mouse

 listener can be registered on the JFrame object

 that contains the image.

 */

 theFrame.addMouseListener(

 new MouseAdapter(){

 public void mousePressed(MouseEvent e){

 //Draw a new copy of the image on the

 // display each time the user clicks the

 // image with the mouse. This makes it

 // possible to erase an existing lasso

 // simply by clicking anywhere in the

 // image regardless of whether or not it

 // is intended to drag a new lasso.

 graphics = display.getGraphics();

 graphics.drawImage(

 picture.getImage(),0,0,null);

 display.repaint();

 //Prepare the variables so that the

 // mouseDragged event handler can lasso an

 // area.

 //Note that the reported coordinates for

 // a mouse press on the upper-left corner

 // of the image will not be reported

 // as 0,0 due to the top and left insets

 // of the JFrame. This can lead to some

 // confusion when analyzing the code.

 anchorX = e.getX();

 anchorY = e.getY();

 deltaX = 0;

 deltaY = 0;

 }//end mousePressed

 }//end new MouseAdapter

);//end addMouseListener

 //--//

 //Register a MouseMotionListener object that

 // will call a method to draw a lasso when the

 // mouse is dragged in the image.

 theFrame.addMouseMotionListener(

 new MouseMotionAdapter(){

 public void mouseDragged(MouseEvent e){

 //Call the method to draw the lasso on the

 // basis of which radio button has been

 // selected.

 if(rectButton.isSelected()){

 makeRectLasso(e.getX(),e.getY());

 }else if(circleButton.isSelected()){

 makeCircleLasso(e.getX(),e.getY());

 }//end else

 }//end mouseDragged

 }//end new MouseMotionAdapter

);//end addMouseMotionListener

 //--//

 //Now finish the action listener that is

 // registered on the text field.

 }//end actionPerformed

 }//end new ActionListener

);//end addActionListener

 //--//

 //Register an ActionListener on the writeButton.

 // Each time the user clicks the button, a backup bmp

 // file containing the current state of the display is

 // written into the directory from which the original

 // picture was read. The five most recent backup files

 // are saved. The names of the backup files are the

 // same as the name of the input file except that BAKn

 // is inserted immediately ahead of the extension

 // where n is a digit ranging from 0 to 4. The value

 // of n rolls over at 4 and starts back at 0.

 writeButton.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 display.write(outputPath

 + "BAK" + writeCounter++ + ".bmp");

 //Reset the writeCounter if it exceeds 4 to

 // conserve disk space.

 if(writeCounter > 4){

 writeCounter = 0;

 }//end if

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 //Register a WindowListener that will respond when the

 // user clicks the large X in the upper-right corner

 // of the GUI. This event handler will write the final

 // state of the display into an output file of the

 // same type as the original input file. The name will

 // be the same except that the word FINAL will be

 // inserted immediately ahead of the extension.

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 display.write(outputPath + "FINAL" + extension);

 System.exit(0);

 }//end windowClosing

 }//end new WindowAdapter

);//end addWindowListener

 //--//

 //Register an action listener on the processButton

 // that calls a method to process the lasso.

 processButton.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 //Get rid of the black lasso pixels

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 display.repaint();

 //Call a method to process the pixels on the

 // basis of which radio button is selected.

 if(rectButton.isSelected()){

 processRectPixels();

 }else if(circleButton.isSelected()){

 processCirclePixels();

 }//end else

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 }//end constructor

 //--//

 /*

 This method is called each time the mouse fires a

 mouseDragged event if the radio button labeled Circle

 is selected.

 This version of the method draws a lasso consisting of a

 circular ellipse that touches the anchor point at all

 times. The diameter of the circle is determined by the

 distance of the mouse from the anchor point. The

 location of the circle is determined by the angle that a

 line going through the anchor point and the mouse

 pointer location makes with a horizontal line going

 through the anchor point. The circle can be drawn at any

 angle, and with any diameter, even if the mouse goes

 outside the bounds of the image.

 The circle remains on the screen until the user

 clicks the image with the mouse, clicks the

 Process Pixels button, or does something else to cause

 the image to be repainted.

 */

 private void makeCircleLasso(int x,int y){

 //The parameters x and y contain the coordinates of

 // the mouse pointer when the event was fired. Update

 // the diameter of the circular lasso.

 deltaX = x - anchorX;

 deltaY = y - anchorY;

 diameter = (int)Math.hypot(deltaX,deltaY);

 //Copy the entire image from the backup picture stored

 // in memory to erase any lassos drawn earlier. Also

 // erases the effects of prior clicks on the Process

 // Pixels button.

 g2.drawImage(theImage,

 theFrame.getInsets().left,

 theFrame.getInsets().top,null);

 //Get the angle in radians that a line joining the

 // anchor point and the current mouse location makes

 // with a horizontal line going through the anchor

 // point. This is the angle that will be used in the

 // computations required to rotate the circular

 // ellipse around the anchor point while continually

 // touching the anchor point.

 angle = Math.atan2((double)deltaY,(double)deltaX);

 //Create and draw a circular ellipse that touches the

 // anchor point at all times.

 ellipse = new Ellipse2D.Double(

 //Compute and specify the coordinates of the

 // upper left corner of a box that will contain

 // the circular ellipse.

 anchorX-(diameter/2-Math.cos(angle)*diameter/2),

 anchorY-(diameter/2-Math.sin(angle)*diameter/2),

 //Specify the width and the height of the box.

 diameter,

 diameter);

 //Draw the ellipse.

 g2.draw(ellipse);

 }//end makeCircleLasso

 //--//

 //This is a demo method that shows how to process pixels

 // contained in a circular elliptical lasso. You can

 // modify this method to meet your own needs.

 //This demo method eliminates green from all pixels

 // inside the circle.

 private void processCirclePixels(){

 //Protect against clicking the button before drawing

 // a lasso.

 if(ellipse == null) return;

 for(int col = 0;col < pictureWidth;col++){

 for(int row = 0;row < pictureHeight;row++){

 //Change the color of the pixels inside the

 // ellipse.

 //Note: It is necessary to compensate for the top

 // and left insets of the JFrame.

 if(ellipse.contains(

 col + theFrame.getInsets().left,

 row + theFrame.getInsets().top)){

 //The pixel is inside the lasso. Change its

 // color.

 Pixel pixel = display.getPixel(col,row);

 pixel.setRed(0);

 }//end if

 }//end inner loop

 }//end outer loop

 display.repaint();

 }//end processCirclePixels

 //--//

 /*

 This method is called each time the mouse fires a

 mouseDragged event if the radio button labeled

 Rect/Ellipse is selected.

 This version of the method draws a lasso consisting of a

 rectangle with an inscribed ellipse. A corner of the

 rectangle touches the anchor point at all times.

 The dimensions of the rectangle are determined by the

 distance of the mouse from the anchor point. That

 distance is the diagonal length of the rectangle.

 The location of the rectangle is determined by the angle

 that a line going through the anchor point and the mouse

 pointer location makes with a horizontal line going

 through the anchor point.

 The rectangle can be drawn in any quadrant, and with any

 size, even if the mouse goes outside the bounds of the

 image.

 Pixels contained in the rectangle and pixels contained

 in the inscribed ellipse can be process separately or in

 combination.

 The rectangle remains on the screen until the user

 clicks the image with the mouse, clicks the

 Process Pixels button, or does something else to cause

 the image to be repainted.

 */

 private void makeRectLasso(int x,int y){

 //The parameters x and y contain the coordinates of

 // the mouse pointer when the event was fired. Update

 // the width and height of the rectangular lasso.

 deltaX = x - anchorX;

 deltaY = y - anchorY;

 //Copy the entire image from the backup picture stored

 // in memory to erase any lassos drawn earlier. This

 // also erases the effects of earlier clicks on the

 // Process Pixels button.

 g2.drawImage(theImage,

 theFrame.getInsets().left,

 theFrame.getInsets().top,null);

 //Get the angle in radians that a line joining the

 // anchor point and the current mouse location makes

 // with a horizontal line going through the anchor

 // point. This is the angle that will be used in the

 // computations required to draw the rectangle in the

 // correct quadrant.

 angle = Math.atan2((double)deltaY,(double)deltaX);

 //Create and draw a rectangle such that one of its

 // corners touches the anchor point at all times.

 if((angle >= 0) && (angle < pi/2)){

 //Create the rectangle in the lower-right quadrant.

 rectangle = new Rectangle2D.Double(

 //Compute and specify the coordinates of the

 // upper-left corner of the rectangle.

 anchorX,

 anchorY,

 //Specify the width and the height of the

 // rectangle.

 deltaX,

 deltaY);

 //Now inscribe an ellipse in the rectangle.

 ellipse = new Ellipse2D.Double(anchorX,

 anchorY,

 deltaX,

 deltaY);

 }else if((angle >= pi/2) && (angle < pi)){

 //Create the rectangle in the lower-left quadrant.

 rectangle = new Rectangle2D.Double(anchorX + deltaX,

 anchorY,

 -deltaX,

 deltaY);

 ellipse = new Ellipse2D.Double(anchorX + deltaX,

 anchorY,

 -deltaX,

 deltaY);

 }else if((angle >= -pi/2) && (angle < 0)){

 //Create the rectangle in the upper-right quadrant.

 rectangle = new Rectangle2D.Double(anchorX,

 anchorY + deltaY,

 deltaX,

 -deltaY);

 ellipse = new Ellipse2D.Double(anchorX,

 anchorY + deltaY,

 deltaX,

 -deltaY);

 }else{

 //Create the rectangle in the upper-left quadrant.

 rectangle = new Rectangle2D.Double(anchorX + deltaX,

 anchorY + deltaY,

 -deltaX,

 -deltaY);

 ellipse = new Ellipse2D.Double(anchorX + deltaX,

 anchorY + deltaY,

 -deltaX,

 -deltaY);

 }//end else

 //Draw the rectangle and the ellipse.

 g2.draw(rectangle);

 g2.draw(ellipse);

 }//end makeRectLasso

 //--//

 //This is a demo method that shows how to process pixels

 // contained in a rectangular lasso and an elliptical

 // lasso. You can modify this method to meet your own

 // needs.

 //This demo method eliminates red from all pixels inside

 // the rectangle but outside the ellipse. It eliminates

 // green from all pixels inside the ellipse.

 private void processRectPixels(){

 //Protect against clicking the button before drawing

 // a lasso.

 if(rectangle == null)return;

 for(int col = 0;col < pictureWidth;col++){

 for(int row = 0;row < pictureHeight;row++){

 //Change the color of the pixels inside the

 // rectangle and outside the ellipse.

 //Note: It is necessary to compensate for the top

 // and left insets of the JFrame.

 if((rectangle.contains(

 col + theFrame.getInsets().left,

 row + theFrame.getInsets().top)) &&

 !((ellipse.contains(

 col + theFrame.getInsets().left,

 row + theFrame.getInsets().top)))){

 pixel = display.getPixel(col,row);

 pixel.setRed(0);

 }//end if

 //Change the color of the pixels inside the

 // ellipse.

 if(ellipse.contains(

 col + theFrame.getInsets().left,

 row + theFrame.getInsets().top)){

 Pixel pixel = display.getPixel(col,row);

 pixel.setGreen(0);

 }//end if

 }//end inner loop

 }//end outer loop

 display.repaint();

 }//end processRectPixels

 //--//

}//end class Lasso02

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

mailto:Baldwin@DickBaldwin.com

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

