
Continuing with the SimpleTurtle Class: Multimedia
Programming with Java

Learn how the World class and the Turtle class of the multimedia library implement a
practical version of the Model-View-Control programming paradigm. Investigate the
differences between placing a turtle in a world and placing a turtle in a picture.

Published: December 16, 2008
By Richard G. Baldwin

Java Programming Notes # 344

 Preface
o General
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o The DrJava IDE
o Software installation and testing

 Preview
 Discussion and sample code

o First sample program - Java344a
o Second sample program - Java344b
o The reason for the dead turtles
o The drop method
o Methods that cause the turtle to turn

 The turn(int degrees) method
 A model-view-control (MVC) programming paradigm
 The turnLeft() and turnRight() methods
 The turnToFace(int x,int y) method
 The turnToFace(SimpleTurtle turtle) method

 Run the programs
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

Preface

mailto:Baldwin@DickBaldwin.com

General

This is the third lesson in a series designed to teach you how to write Java programs to
do things like:

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters in videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Screen output from program named Java344a.
 Figure 2. Screen output from program named Java344b.

Listings

 Listing 1. Beginning of source code for program Java344a.
 Listing 2. Load the turtle image into a Picture object.
 Listing 3. Instantiate and manipulate a Turtle object in a World.
 Listing 4. Drop more pictures while turning and moving the turtle.
 Listing 5. Abbreviated listing of the program named Java344b.
 Listing 6. Abbreviated listing of the updateDisplay method.
 Listing 7. Beginning of the drop method.
 Listing 8. Construct a rotation and translation transform.
 Listing 9. Draw dropPicture on the graphics context.
 Listing 10. Remainder of the drop method.
 Listing 11. The turn(int degrees) method.
 Listing 12. The turnLeft and turnRight methods
 Listing 13. Beginning of the turnToFace(int x,int y) method.
 Listing 14. The turnToFace(SimpleTurtle turtle) method.
 Listing 15. Source code for the SimpleTurtle class.
 Listing 16. Source code for the program named Java344a.
 Listing 17. Source code for the program named Java344b.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

The DrJava IDE

In some cases, I will use a free lightweight Java IDE named DrJava (see
Resources). This IDE is useful because it provides an interactive Java programming
mode. The interactive mode makes it easy to "try things out" without the requirement to
write and compile a complete Java application. (The IDE also provides a typical Java
text editor, access to the Java compiler and runtime engine, a debugger, etc.)

Even though I will sometimes use DrJava, you should be able to use any Java IDE (for
the non-interactive material) to compile and execute my sample programs so long as
you set the classpath to include the multimedia class library. You should also be able to
avoid the use of a Java IDE altogether if you choose to do so. You can create the
source code files using a simple text editor, and then compile and execute the sample
programs from the command line using a batch file.

Software installation and testing

I explained how to download, install, and test both the multimedia class library and the
DrJava IDE in an earlier lesson titled Multimedia Programming with Java, Getting
Started (see Resources).

I also explained how to create a Windows batch file that you can use to set the
classpath and run programs that use the multimedia library in the total absence of an
IDE.

Preview

As I promised in the previous lesson (see Resources), I will begin this lesson with an
explanation of the drop method of the SimpleTurtle class. A complete listing of the
SimpleTurtle class is provided in Listing 15 near the end of the lesson.

http://www.dickbaldwin.com/toc.htm

Then I will explain the following methods from the SimpleTurtle class. The methods in
this group can be called to cause a turtle to face in a particular direction.

 turn(int degrees)
 turnLeft()
 turnRight()
 turnToFace(int x,int y)
 turnToFace(SimpleTurtle turtle)

Along the way, I will explain how the World class and the Turtle class implement a
practical version of the Model-View-Control programming paradigm.

Discussion and sample code

I will begin by explaining two sample programs that illustrate the use of the drop
method as well as some of the other methods that I will explain in this lesson.

First sample program - Java344a

The purpose of this program is to illustrate several different methods of the Turtle class
including the drop method. The program moves a Turtle object around on a World
and drops several copies of a small Picture object along the way.

The screen output

The screen output produced by this program is shown in Figure 1. I will refer back to
Figure 1 while discussing the program code.

Figure 1. Screen output from program named Java344a.

Set the mediapath property

As is my custom, I will explain this program in fragments. A complete listing of the
program is provided in Listing 16 near the end of the lesson. The source code begins
with the fragment shown in Listing 1.

Listing 1. Beginning of source code for program Java344a.

import java.awt.Color;

public class Main{

 public static void main(String[] args){

FileChooser.setMediaPath("M:/Ericson/mediasources/");

Set the mediapath

There are several ways to establish the location (on the disk) of an image file that will be
loaded into a Picture object. One of those ways is shown in Listing 1. The code in
Listing 1 calls the static setMediaPath method of the FileChooser class to set a
property value named mediapath. The value is set to point to a folder containing an
image file that will be loaded in Listing 2. (Note that all the slash characters in the

mediapath string are forward-leaning slash characters and the mediapath string is
terminated with a forward slash.)

Load the turtle image

Listing 2 instantiates a new object of the class Picture initializing its contents with the
image of the smiling turtle shown in Figure 1. Note that after having set the mediapath
property, only the name of the image file is required as type String.

Listing 2. Load the turtle image into a Picture object.

 Picture p2 = new Picture("turtle.jpg");

Eliminating the need to set the mediapath

You can also access an image file by omitting the mediapath entirely and providing a
full path to the image file in Listing 2. Just be sure to use forward-leaning slashes and
not backward-leaning slashes in the string. For the special case where the image file is
in the current directory, you can also eliminate the path and simply specify the name of
the image file.

The Picture class

I will be explaining the Picture class in some detail in a future lesson so I won't go into
much detail regarding that class in this lesson. Suffice it at this point to say that one of
the overloaded constructors for the Picture class accepts an image file name as a
String and uses that information to encapsulate the image in the new object.

Instantiate and manipulate a Turtle object in a World

Listing 3 begins by instantiating a new World object with dimensions of 400 by 500
pixels as shown in Figure 1.

Listing 3. Instantiate and manipulate a Turtle object in a World.

 World mars = new World(400,500);

 Turtle joe = new Turtle(300,400,mars);

 joe.setShellColor(Color.RED);

 joe.setPenColor(Color.BLUE);

 joe.setPenWidth(2);

 joe.drop(p2);//Draw a small picture

Then Listing 3 instantiates a new Turtle object and places it in the world at coordinates
300,400. This places the turtle at the bottom of the vertical blue line on the bottom right
side of Figure 1. (Recall that the origin is the upper left corner. Positive x is to the right
and positive y is down.)

Not related to the turtle image

It is also important to note that this Turtle object is completely independent of the turtle
image that was loaded in Listing 2. Listing 2 places an image of a turtle in an object of
the Picture class. This turtle is an object of the Turtle class.

Set Turtle object properties

Then Listing 3 calls three property setter methods to:

 Change the color of the turtle's shell from default green to red.
 Change the color of the pen from default green to blue.
 Change the width of the pen from the default of one pixel to two pixels.

Drop a picture

Finally, Listing 3 calls the drop method on the Turtle object to draw the image of the
smiling turtle at the current location and orientation of the Turtle object. Note that at
this point the turtle is facing north and is centered at the bottom of the blue line
segment. Also note that when you drop a picture, the upper-left corner of the picture
coincides with the current location of the turtle. Thus, the bulk of the turtle image is to
the right of and below the end of the blue line in Figure 1.

Drop more pictures while turning and moving the turtle

Listing 4 begins by moving the turtle forward (north) by 90 pixels and then dropping
another picture of the turtle image. This is the second turtle image from the bottom in
Figure 1. Because the Turtle object is still facing north at this point, this turtle image is
oriented the same as the turtle image at the bottom.

Listing 4. Drop more pictures while turning and moving the turtle.

 joe.forward(90);

 joe.drop(p2);

 joe.turn(-30);

 joe.forward();

 joe.drop(p2);

 joe.turn(-30);

 joe.forward();

 joe.drop(p2);

 }//end main

}//end class

Turn, move, and drop

Then Listing 4 turns the turtle by -30 degrees, moves it forward by the default 100
pixels, and drops another picture. This is the third turtle image from the bottom, and it
has been rotated by 30 degrees counter-clockwise. (Positive angles represent
clockwise rotation.)

That process is repeated one more time producing the turtle image at the top along with
the visual manifestation of the Turtle object with the green body and the red shell.

Only one Turtle object is visible

Note that unlike the next sample program, the Turtle object in this program is visible
only at the final location. However, if we were to slow the execution down significantly,
we would see the Turtle object jumping from the end of one line segment to the end of
the next line segment and dropping a picture each time it stops. We could do that by
calling the sleep method of the Thread class to insert a time delay immediately
following each call to the drop method.

Second sample program - Java344b

A complete listing of this program is shown in Listing 17 near the end of the lesson.

The purpose of this program is to illustrate the use of several different methods of the
Turtle class, as well as to illustrate the placement of a Turtle object on a Picture object
(as opposed to a World object).

The program also illustrates dropping pictures at the current position and orientation of
the Turtle object.

The program moves a Turtle object around on a Picture and drops several copies of a
smaller Picture object along the way.

The screen output

The screen output produced by this program is shown in Figure 2. Except for the fact
that this program places the Turtle object on a Picture object instead of a World object,
the program is very similar to the previous program. There are, however, some
significant differences in the behavior of the Turtle object in these two cases.

Figure 2. Screen output from program named Java344b.

Lots of dead turtles lying around

We learned in the previous lesson that when a Turtle object is placed on a Picture
object, it is made invisible by default. Therefore, in order to make the turtle visible, it
was necessary for me to set the turtle's visible property to true.

I was initially surprised to learn that unlike the case of the World in Figure 1, an old
image of the Turtle object remains on the screen when it moves from one location to
the next. Further complicating matters, when a turtle is simply rotated, two images of
the turtle appear, one on top of the other. As a result, two of the images of the Turtle
object in Figure 2 appear to have two heads and eight legs. (In each these two cases,
there are really two images of the turtle, one on top of the other.)

I suppose that serves to illustrate the reason why the turtle is invisible by default. When
you place a visible turtle on a picture and move it around, it leaves a trail of dead turtles
along the way.

An abbreviated listing of program named Java344b

An abbreviated listing of this program is shown in Listing 5.

Listing 5. Abbreviated listing of the program named Java344b.

import java.awt.Color;

public class Main{

 public static void main(String[] args){

 //...code deleted

 //Instantiate two objects of Picture

class, each of

 // which encapsulates an image.

 Picture p1 = new

Picture("butterfly1.jpg");//large

 Picture p2 = new

Picture("turtle.jpg");//small

 //Note that the Turtle object is different

from the

 // image of the turtle in the Picture

object.

 Turtle joe = new Turtle(300,400,p1);

 //..code deleted

 joe.setVisible(true);

 //..code deleted

 p1.show();

 }//end main

}//end class

Listing 5 contains only the code that is different from the code that I explained earlier in
Listing 1 through Listing 4. Hopefully the embedded comments in Listing 5 are sufficient
to help you understand the difference between these two programs.

The reason for the dead turtles

Before getting into an explanation of the drop method, let's see if we can understand
why Figure 1 shows only one image of the turtle with the red shell and Figure 2 shows
five images of the turtle with the red shell. (Some of the turtle images in Figure 2 are
drawn on top of other turtle images.) To understand this, we need to go back and take
another look at the updateDisplay method that I explained in the previous lesson (see
Resources).

The updateDisplay method

An abbreviated listing of the updateDisplay method is shown in Listing 6.

Listing 6. Abbreviated listing of the updateDisplay method.

 public synchronized void updateDisplay(){

 //...code deleted

 if (picture != null){

 //...code deleted

 //Turtle was placed in a Picture object

 Graphics g = picture.getGraphics();

 paintComponent(g);

 }//end if

 else if (modelDisplay != null){

 //...code deleted

 //Turtle was placed in a World object

 modelDisplay.modelChanged();

 }//end else if

 }//end updateDisplay

I refer to this as an abbreviated listing because I deleted all of the code that is not
germane to the question regarding dead turtles.

Called by many other methods

We learned in the previous lesson that the updateDisplay method is called by many
other methods that make changes to the position or orientation of a turtle. In fact, it is
called by all of the following methods:

 turnToFace
 setVisible
 forward
 moveTo
 turn

In addition, the methods in the above list are called by other methods resulting
ultimately in a call to the updateDisplay method by many different methods. For
example, the forward method is called by the backward method with a negative
parameter value.

Behavior of the updateDisplay method

Now consider the behavior of the updateDisplay method shown in Listing 6. As you
can see, the behavior is different depending on whether the turtle was placed in a
Picture object or in a World object.

A turtle in a Picture object

For the case where the turtle was placed in a Picture object, the paintComponent
method is called every time the updateDisplay method is called. Nothing is done to
erase the old image of the turtle before drawing a new one at the same or at a different
location. This results in the multiple images of the turtle, some on top of others, shown
in Figure 2.

A turtle in a World object

For the case where the turtle was placed in a World object, the updateDisplay method
does not call the paintComponent method directly. Instead it calls the modelChanged
method on the World object. This sends a message to the World object indicating that
the turtle has changed. The decision as to whether or not to repaint the turtle is made
by the world.

As we will see when we study the World class later, if the World object decides to
repaint the turtle as a result of that notification, it first draws a background image on the
entire world, erasing everything that was previously displayed. Then it draws the turtle
in its new location and/or orientation on the world's background image.

An important question

This raises the question as to why this process erases old images of the turtle with the
red shell but doesn't erase the pictures that were previously dropped. The answer is
rather complicated, but I will attempt to answer it in conjunction with my explanation of
the drop method later.

What about the history of pen movements?

This display approach also has very significant ramifications for the display of the turtle's
track created by the pen, but that is another topic for another lesson. In effect, this
means that the pen must maintain a history of its movements so that every time the
world is repainted, the entire history of pen movements can be redrawn. I will explain
the Pen class in a future lesson.

The drop method

The purpose of this method is to draw an incoming Picture object at the current location
of the turtle with the same orientation as the turtle in either a ModelDisplay object (such
as a World object) or a Picture object.

Beginning of the drop method

The beginning of the drop method is shown in Listing 7.

Listing 7. Beginning of the drop method.

 public synchronized void drop(Picture

dropPicture){

 Graphics2D g2 = null;

 if (picture != null)

 //Draw dropPicture on a Picture object

 g2 = (Graphics2D) picture.getGraphics();

 else if (modelDisplay != null)

 //Draw dropPicture on a ModelDisplay

(World) object

 g2 = (Graphics2D)

modelDisplay.getGraphics();

Figure 1 shows the result of dropping a picture of a smiling turtle four times in a World
object. Figure 2 shows the result of dropping the same picture four times in a Picture
object. As I explained earlier, the upper-left corner of the dropped picture is aligned with
the location of the turtle and the orientation of the picture matches the orientation of the
turtle. This is most obvious in Figure 2 where images of the turtle at the time of the drop
are still showing.

Decision between World and Picture object

The code in Listing 7 determines whether dropPicture is to be drawn on a Picture
object or on a World object. The case for a Picture object is relatively simple. The
getGraphics method is called on the Picture object to get a reference to the graphics
context for that object (as type Graphics). The reference is cast to type Graphics2D
and saved in the variable named g2 for later use in drawing the image.

A much more complicated situation

The case for a World object in Listing 7 is much more complicated and provides the
answer to the earlier question as to why this process erases old images of the turtle with
the red shell but doesn't erase the pictures that have been dropped as shown in Figure
1.

Get a reference to a graphics context

Listing 7 calls the getGraphics method on the reference to the World object. Normally,
you might expect this call to return a reference to the graphics context for the world, but
that is not the case here.

Every World object contains a Picture object

By default, every World object contains a Picture object which is used to produce the
background for the world. By default, this picture is simply a white image the same size
as the world as shown by the background in Figure 1. (You can easily replace the
default picture with a different one.)

An overridden getGraphics method

The getGraphics method of the World class is overridden so that it returns a reference
to the graphics context for that background Picture object instead of returning a
reference to the graphics context for the World object.

When the getGraphics method is called in Listing 7, the returned reference value is
cast to type Graphics2D and stored in the variable named g2 for later use. (I will
continue this explanation later.)

Construct a rotation and translation transform

Listing 8 begins by confirming that the reference stored in g2 is not null. If it is null, no
attempt will be made to draw the picture referred to by the incoming parameter named
dropPicture.

Listing 8. Construct a rotation and translation transform.

 if (g2 != null){

 // save the current transform

 AffineTransform oldTransform =

g2.getTransform();

 // rotate to turtle heading and

translate to xPos

 // and yPos

g2.rotate(Math.toRadians(heading),xPos,yPos);

When g2 is not null...

When g2 is not null, Listing 8 saves the current affine transform for the graphics context
referred to by g2 and then modifies the current transform to match the location and
orientation of the turtle. (I explained the use of the affine transform in some detail in the
previous lesson. See Resources for a link to that lesson.) From this point forward, until
the original transform is restored in Listing 10, the modified transform will be applied to
any drawing commands that are issued against g2.

Draw dropPicture on the graphics context

Listing 9 calls the drawImage method to draw the image referred to by dropPicture at
the specified location on the graphics context referenced by g2.

Listing 9. Draw dropPicture on the graphics context.

g2.drawImage(dropPicture.getImage(),xPos,yPos,null);

Where does that leave us?

At this point, we have drawn dropPicture at a specified
location with a specified orientation on another Picture
object. For the case where the program placed the
turtle in a Picture object (as in Figure 2), that's pretty
much the end of the story.

Not the end of the story for a World object

However, for the case where the program placed the turtle in a World object, there is
much more to the story. In this case, g2 is a reference to the Picture object owned by
the World object AND IS not a reference to the World object itself.

When the statement in Listing 9 has been executed, the Picture object owned by the
World object has been permanently modified such that the picture referred to by
dropPicture has been drawn on that picture. (Except in some very special
circumstances, drawing one image on another image is a non-reversible process.)

Because the World object uses its Picture object to create a background, dropPicture
has now become a permanent part of that background.

Repainting the world

Sometime later, for a variety of reasons, the World object will need to be
repainted. This can result from the execution of program code, or can result from user
actions such as minimizing and later restoring the World. When the World object
decides that it needs to be repainted, it will call its repaint method.

Speaking in broad terms, a call to the repaint method sends a message to the
operating system telling the operating system that the world would like to be repainted
as soon as possible. Sometime after that, the operating system will cause the world's
overridden paintComponent method to be executed. (Essentially the same thing
happens when the need to repaint results from user actions except that there is no call
to the repaint method by the program.)

Behavior of the world's paintComponent method

Although the code from the World class isn't shown here, the first thing that the world's
overridden paintComponent method does is to draw its Picture object on its own
graphics context to create a background image. That completely overwrites or erases
everything that was previously drawn there, (including any Turtle objects that may have
been drawn there).

At that point, the world's visual representation consists only of the background image
contained in the world's Picture object. If that Picture object has been modified to

ImageObserver
The last parameter to the

drawImage method must

either be null or must be a

referenced to an

ImageObserver object. In

this case, we don't need such

an object so we are passing

null as the last parameter.

include the image referred to by dropPicture, the dropPicture image will be a
permanent part of the background.

Cause the turtles to draw themselves

Then the world's paintComponent method cycles through a list of turtles that have
been placed in the world, calling the paintComponent method belonging to each turtle
and passing the graphics context for the world as a parameter to the paintComponent
method. (Note that the graphics context for the world's Picture object is not passed as
a parameter.)

Behavior of the turtle's paintComponent method

We learned in the previous lesson that the turtle's paintComponent method draws a
shape that looks something like a turtle (see Figure 1) on the incoming graphics context
by drawing five overlapping filled ovals in the correct location with the correct
orientation. Then it may optionally draw some text on the same graphics context,
following which it will call the paintComponent method belonging to its Pen object to
draw all of the line segments in the pen's history on the same graphics context. (The
Pen class is very interesting, so I will explain it in a future lesson.)

The important point

The important point is that the drop method draws an image on the graphics context
belonging to the Picture object that belongs to the world, making a permanent change
to that object. Later on, the world will draw the picture on its own graphics context to
form a background for whatever else may be drawn there.

On the other hand, the turtle draws itself on the graphics context belonging to the world
and does not draw itself on the graphics context belonging to the Picture
object. Therefore, the next time the world repaints itself by drawing its Picture object as
a background, all of the turtles that have been drawn on the world's graphics context are
overwritten or erased. The result is that each time the drop method is called to draw a
picture "on the world", that picture actually becomes a permanent part of the world's
background. However, the ovals that are drawn on the world's graphic context remain
visible only until the next time the world repaints its background.

Remainder of the drop method

The remainder of the drop method is shown in Listing 10. Listing 10 restores the
original affine transform for the graphics context referred to by g2 and then causes the
pen to draw its history of line segments on the graphics context stored in g2.

Listing 10. Remainder of the drop method.

 // reset the transformation matrix

 g2.setTransform(oldTransform);

 // draw the pen

 pen.paintComponent(g2);

 }

 }//end drop

A possible redundancy

I believe that the call to the pen's paintComponent
method in Listing 10 may be redundant with a similar
call in the paintComponent method belonging to the
turtle. However, there may be some circumstance in
which it is necessary to have that call in both locations.

In any event, placing the call in Listing 10 causes the lines drawn by the pen to become
a permanent part of the background for the world when a picture is dropped into the
world. The similar call in the turtle's paintComponent method causes the lines to be
drawn on the world's graphics context instead of the background picture's graphics
context.

Methods that cause the turtle to turn

I have identified the following methods that cause the turtle to turn and face in a
different direction:

 turn(int degrees)
 turnLeft()
 turnRight()
 turnToFace(int x,int y)
 turnToFace(SimpleTurtle turtle)

The turn(int degrees) method

The turn(int degrees) method, which is shown in its entirety in Listing 11, causes a
turtle to rotate around its center by a specified number of degrees. A positive value
causes the turtle to rotate clockwise and a negative value causes the turtle to rotate
counter-clockwise.

Listing 11. The turn(int degrees) method.

 public void turn(int degrees){

 this.heading = (heading + degrees) % 360;

 this.updateDisplay();

 }//end turn

Not actually true

Nothing is really permanent
The World class contains a

method named

clearBackground that can be

called to erase everything in

the world's background image.

In truth, this method really doesn't cause the turtle to rotate. Instead, it simply changes
the value of an instance variable belonging to the turtle named heading. This is one of
many variables that maintain the current state of a turtle. This variable keeps track of
the direction that the turtle is facing. The value for heading is ultimately used to modify
the affine transform to implement a rotation as I explained in the previous lesson (see
Resources).

The modulus operation in Listing 11 constrains the angle to the range from -359
degrees to +359 degrees where 0 degrees, 360 degrees, and -360 degrees all mean
the same thing.

A model-view-control (MVC) programming paradigm

In case you haven't already recognized it, the Turtle class and the World class work
together to implement a practical form of the MVC programming paradigm. If you are
unfamiliar with MVC, don't worry about it. It isn't necessary to understand MVC to
understand the library. If you are familiar with MVC, however, you might want to think
about how it is implemented here.

The view

In this case, the World object is the view. (Perhaps that is why it implements an
interface named ModelDisplay.) Among other methods, the ModelDisplay interface
declares a method named modelChanged, whereby a model (turtle) can notify the view
(world) that the state of the model has changed. The world then has the discretion to
decide whether or not it wants to update the display to reflect those changes in the
model.

The model

The model is represented by the many state variables in a Turtle object (such as
heading, visible, xPos, and yPos) that maintain the state of the object.

The control

The control is represented by many of the methods that can be called to modify the
state variables, including but not limited to the following:

 turnToFace
 setVisible
 forward
 moveTo
 turn

Many of those methods modify one or more state variables and then cause the turtle's
updateDisplay method to be called. The updateDisplay method in turn calls the

world's modelChanged method to notify the world that the model has changed. For
example, the turn method in Listing 11 modifies the value of the heading variable
belonging to the Turtle object and then calls the turtle's updateDisplay method to
cause the World object to be notified that the state of
the Turtle object has changed.

Updating the view

As explained earlier, when the world object decides to
update the view of the turtles, it first creates a new
background image for the view. Then it calls the
paintComponent method on each turtle in
sequence. This causes each turtle to draw itself in its
current state on the new background.

The turnLeft() and turnRight() methods

These two methods, which are shown in Listing 12, are very simple.

Listing 12. The turnLeft and turnRight methods

 //Method to turn left

 public void turnLeft(){this.turn(-90);}

 //Method to turn right

 public void turnRight(){this.turn(90);}

Each method makes a call to the turn method from Listing 11 passing either -90
degrees or 90 degrees as a parameter value.

The turnToFace(int x,int y) method

The purpose of this method, which is shown in Listing 13, is to cause a turtle to turn to
face a given point in 2D space specified by a pair of x and y coordinates. This method
is much more complex than the other turn methods discussed above.

Behavior of the method

The behavior of this method is to:

 Consider a line that joins the turtle and the point in space to be the hypotenuse of
a right triangle.

 Determine the length of the base and the length of the opposite side of the right
triangle.

 Use trigonometry to compute the near angle in degrees for the right triangle.
 Adjust the angle to be within the range of -180 to +180 degrees based on the

sign of the base of the right triangle.

More information
If you would like to learn more

about MVC, see

Implementing the Model-
View-Controller Paradigm
using Observer and
Observable in Resources

 Store the resulting angle in the state variable named heading.
 Notify the world that the state of the turtle has changed.

Along the way, the method is careful to avoid division by zero.

Listing 13. Beginning of the turnToFace(int x,int y) method.

 public void turnToFace(int x, int y){

 double dx = x - this.xPos;

 double dy = y - this.yPos;

 double arcTan = 0.0;

 double angle = 0.0;

 // avoid a divide by 0

 if (dx == 0){

 // if below the current turtle

 if (dy > 0) heading = 180;

 // if above the current turtle

 else if (dy < 0) heading = 0;

 }

 // dx isn't 0 so can divide by it

 else{

 arcTan =

Math.toDegrees(Math.atan(dy/dx));

 if (dx < 0) heading = arcTan - 90;

 else heading = arcTan + 90;

 }//end else

 // notify the display that we need to

repaint

 updateDisplay();

 }//end turnToFace

If you already understand trigonometry, you should have no problem understanding this
method. Otherwise, you will simply have to take it on faith that this method behaves as
described above.

The turnToFace(SimpleTurtle turtle) method

This method can be called to cause one turtle to face another turtle.

Listing 14. The turnToFace(SimpleTurtle turtle) method.

 /**

 * Method to turn to face another simple

turtle

 */

 public void turnToFace(SimpleTurtle turtle){

 turnToFace(turtle.xPos,turtle.yPos);

 }//turnToFace

This method calls the method from Listing 13, passing the coordinates of the target
turtle as parameters.

Run the programs

I encourage you to copy the code from Listing 16 and Listing 17, compile the code, and
execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

Summary

I began this lesson with an explanation of the drop method of the SimpleTurtle class.

Then I explained the following methods that cause a turtle to face in a particular
direction:

 turn(int degrees)
 turnLeft()
 turnRight()
 turnToFace(int x,int y)
 turnToFace(SimpleTurtle turtle)

Along the way, I explained how the World class and the Turtle class implement a
practical version of the Model-View-Control programming paradigm.

What's next?

In the next lesson, I will explain the methods in the following list along with some of the
other methods in the multimedia library:

 forward()
 forward(int pixels)
 backward()
 backward(int pixels)
 moveTo(int x,int y)

These are the methods that make it possible for a turtle to move around in either a
World object or a Picture object.

Resources

 Creative Commons Attribution 3.0 United States License

http://creativecommons.org/licenses/by/3.0/us/

 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 15
through Listing 17 below.

Listing 15. Source code for the SimpleTurtle class.

import javax.swing.*;

import java.awt.*;

import java.awt.font.*;

import java.awt.geom.*;

import java.util.Observer;

import java.util.Random;

/**

 * Class that represents a Logo-style turtle. The

turtle

 * starts off facing north.

 * A turtle can have a name, has a starting x and y

 * position, has a heading, has a width, has a

height,

http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086

 * has a visible flag, has a body color, can have a

shell

 * color, and has a pen.

 * The turtle will not go beyond the model display

or

 * picture boundaries.

 *

 * You can display this turtle in either a picture

or in

 * a class that implements ModelDisplay.

 *

 * Copyright Georgia Institute of Technology 2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class SimpleTurtle{

 ///////////////// fields ////////////////////////

 /** count of the number of turtles created */

 private static int numTurtles = 0;

 /** array of colors to use for the turtles */

 private static Color[] colorArray = {Color.green,

 Color.cyan,new

Color(204,0,204),Color.gray};

 /** who to notify about changes to this turtle */

 private ModelDisplay modelDisplay = null;

 /** picture to draw this turtle on */

 private Picture picture = null;

 /** width of turtle in pixels */

 private int width = 15;

 /** height of turtle in pixels */

 private int height = 18;

 /** current location in x (center) */

 private int xPos = 0;

 /** current location in y (center) */

 private int yPos = 0;

 /** heading angle */

 private double heading = 0; // default is facing

north

 /** pen to use for this turtle */

 private Pen pen = new Pen();

 /** color to draw the body in */

 private Color bodyColor = null;

 /** color to draw the shell in */

 private Color shellColor = null;

 /** color of information string */

 private Color infoColor = Color.black;

 /** flag to say if this turtle is visible */

 private boolean visible = true;

 /** flag to say if should show turtle info */

 private boolean showInfo = false;

 /** the name of this turtle */

 private String name = "No name";

 ////////////////// constructors

///////////////////

 /**

 * Constructor that takes the x and y position for

the

 * turtle

 * @param x the x pos

 * @param y the y pos

 */

 public SimpleTurtle(int x, int y){

 xPos = x;

 yPos = y;

 bodyColor =

 colorArray[numTurtles %

colorArray.length];

 setPenColor(bodyColor);

 numTurtles++;

 }//end constructor

 /**

 * Constructor that takes the x and y position and

the

 * model displayer

 * @param x the x pos

 * @param y the y pos

 * @param display the model display

 */

 public SimpleTurtle(int x, int y, ModelDisplay

display){

 this(x,y); // invoke constructor that takes x

and y

 modelDisplay = display;

 display.addModel(this);

 }//end constructor

 /**

 * Constructor that takes a model display and adds

 * a turtle in the middle of it

 * @param display the model display

 */

 public SimpleTurtle(ModelDisplay display){

 // invoke constructor that takes x and y

 this((int) (display.getWidth() / 2),

 (int) (display.getHeight() / 2));

 modelDisplay = display;

 display.addModel(this);

 }//end constructor

 /**

 * Constructor that takes the x and y position and

the

 * picture to draw on

 * @param x the x pos

 * @param y the y pos

 * @param picture the picture to draw on

 */

 public SimpleTurtle(int x, int y, Picture

picture){

 this(x,y); // invoke constructor that takes x

and y

 this.picture = picture;

 this.visible = false;//default is not to see

turtle

 }//end constructor

 /**

 * Constructor that takes the

 * picture to draw on and will appear in the

middle

 * @param picture the picture to draw on

 */

 public SimpleTurtle(Picture picture){

 // invoke constructor that takes x and y

 this((int) (picture.getWidth() / 2),

 (int) (picture.getHeight() / 2));

 this.picture = picture;

 this.visible = false;//default is not to see

turtle

 }//end constructor

 //////////////////// methods

/////////////////////////

 /**

 * Get the distance from the passed x and y

location

 * @param x the x location

 * @param y the y location

 */

 public double getDistance(int x, int y){

 int xDiff = x - xPos;

 int yDiff = y - yPos;

 return (Math.sqrt((xDiff * xDiff) + (yDiff *

yDiff)));

 }//end getDistance

 /**

 * Method to turn to face another simple turtle

 */

 public void turnToFace(SimpleTurtle turtle){

 turnToFace(turtle.xPos,turtle.yPos);

 }//turnToFace

 /**

 * Method to turn towards the given x and y

 * @param x the x to turn towards

 * @param y the y to turn towards

 */

 public void turnToFace(int x, int y){

 double dx = x - this.xPos;

 double dy = y - this.yPos;

 double arcTan = 0.0;

 double angle = 0.0;

 // avoid a divide by 0

 if (dx == 0){

 // if below the current turtle

 if (dy > 0) heading = 180;

 // if above the current turtle

 else if (dy < 0) heading = 0;

 }

 // dx isn't 0 so can divide by it

 else{

 arcTan = Math.toDegrees(Math.atan(dy/dx));

 if (dx < 0) heading = arcTan - 90;

 else heading = arcTan + 90;

 }//end else

 // notify the display that we need to repaint

 updateDisplay();

 }//end turnToFace

 /**

 * Method to get the picture for this simple

turtle

 * @return the picture for this turtle (may be

null)

 */

 public Picture getPicture() { return this.picture;

}

 /**

 * Method to set the picture for this simple

turtle

 * @param pict the picture to use

 */

 public void setPicture(Picture pict){

 this.picture = pict;

 }//end setPicture

 /**

 * Method to get the model display for this simple

 * turtle.

 * @return the model display if there is one else

null

 */

 public ModelDisplay getModelDisplay(){

 return this.modelDisplay;

 }//end getModelDisplay

 /**

 * Method to set the model display for this simple

 * turtle.

 * @param theModelDisplay the model display to use

 */

 public void setModelDisplay(

 ModelDisplay

theModelDisplay){

 this.modelDisplay = theModelDisplay;

 }//end setModelDisplay

 /**

 * Method to get value of show info

 * @return true if should show info, else false

 */

 public boolean getShowInfo(){return

this.showInfo;}

 /**

 * Method to show the turtle information string

 * @param value the value to set showInfo to

 */

 public void setShowInfo(boolean value){

 this.showInfo = value;

 }//end setShowInfo

 /**

 * Method to get the shell color

 * @return the shell color

 */

 public Color getShellColor(){

 Color color = null;

 if(this.shellColor == null && this.bodyColor !=

null)

 color = bodyColor.darker();

 else color = this.shellColor;

 return color;

 }//end getShellColor

 /**

 * Method to set the shell color

 * @param color the color to use

 */

 public void setShellColor(Color color){

 this.shellColor = color;

 }//setShellColor

 /**

 * Method to get the body color

 * @return the body color

 */

 public Color getBodyColor(){return

this.bodyColor;}

 /**

 * Method to set the body color which

 * will also set the pen color

 * @param color the color to use

 */

 public void setBodyColor(Color color){

 this.bodyColor = color;

 setPenColor(this.bodyColor);

 }//end setBodyColor

 /**

 * Method to set the color of the turtle.

 * This will set the body color

 * @param color the color to use

 */

 public void setColor(Color color){

 this.setBodyColor(color);

 }//end setColor

 /**

 * Method to get the information color

 * @return the color of the information string

 */

 public Color getInfoColor(){return

this.infoColor;}

 /**

 * Method to set the information color

 * @param color the new color to use

 */

 public void setInfoColor(Color color){

 this.infoColor = color;

 }//setInfoColor

 /**

 * Method to return the width of this object

 * @return the width in pixels

 */

 public int getWidth(){return this.width;}

 /**

 * Method to return the height of this object

 * @return the height in pixels

 */

 public int getHeight(){return this.height;}

 /**

 * Method to set the width of this object

 * @param theWidth in width in pixels

 */

 public void setWidth(int theWidth){

 this.width = theWidth;

 }//end setWidth

 /**

 * Method to set the height of this object

 * @param theHeight the height in pixels

 */

 public void setHeight(int theHeight){

 this.height = theHeight;

 }//end setHeight

 /**

 * Method to get the current x position

 * @return the x position (in pixels)

 */

 public int getXPos(){return this.xPos;}

 /**

 * Method to get the current y position

 * @return the y position (in pixels)

 */

 public int getYPos(){return this.yPos;}

 /**

 * Method to get the pen

 * @return the pen

 */

 public Pen getPen(){return this.pen;}

 /**

 * Method to set the pen

 * @param thePen the new pen to use

 */

 public void setPen(Pen thePen){this.pen = thePen;}

 /**

 * Method to check if the pen is down

 * @return true if down else false

 */

 public boolean isPenDown(){return

this.pen.isPenDown();}

 /**

 * Method to set the pen down boolean variable

 * @param value the value to set it to

 */

 public void setPenDown(boolean value){

 this.pen.setPenDown(value);

 }//end setPenDown

 /**

 * Method to lift the pen up

 */

 public void penUp(){this.pen.setPenDown(false);}

 /**

 * Method to set the pen down

 */

 public void penDown(){this.pen.setPenDown(true);}

 /**

 * Method to get the pen color

 * @return the pen color

 */

 public Color getPenColor(){return

this.pen.getColor();}

 /**

 * Method to set the pen color

 * @param color the color for the pen ink

 */

 public void setPenColor(Color color){

 this.pen.setColor(color);

 }//end setPenColor

 /**

 * Method to set the pen width

 * @param width the width to use in pixels

 */

 public void setPenWidth(int width){

 this.pen.setWidth(width);

 }//end setPenWidth

 /**

 * Method to get the pen width

 * @return the width of the pen in pixels

 */

 public int getPenWidth(){return

this.pen.getWidth();}

 /**

 * Method to clear the path (history of

 * where the turtle has been)

 */

 public void clearPath(){

 this.pen.clearPath();

 }//end clearPath

 /**

 * Method to get the current heading

 * @return the heading in degrees

 */

 public double getHeading(){return this.heading;}

 /**

 * Method to set the heading

 * @param heading the new heading to use

 */

 public void setHeading(double heading){

 this.heading = heading;

 }//end setHeading

 /**

 * Method to get the name of the turtle

 * @return the name of this turtle

 */

 public String getName(){return this.name;}

 /**

 * Method to set the name of the turtle

 * @param theName the new name to use

 */

 public void setName(String theName){

 this.name = theName;

 }//end setName

 /**

 * Method to get the value of the visible flag

 * @return true if visible else false

 */

 public boolean isVisible(){return this.visible;}

 /**

 * Method to hide the turtle (stop showing it)

 * This doesn't affect the pen status

 */

 public void hide(){this.setVisible(false);}

 /**

 * Method to show the turtle (doesn't affect

 * the pen status

 */

 public void show(){this.setVisible(true);}

 /**

 * Method to set the visible flag

 * @param value the value to set it to

 */

 public void setVisible(boolean value){

 // if the turtle wasn't visible and now is

 if (visible == false && value == true){

 // update the display

 this.updateDisplay();

 }//end if

 // set the visibile flag to the passed value

 this.visible = value;

 }//end setVisible

 /**

 * Method to update the display of this turtle and

 * also check that the turtle is in the bounds

 */

 public synchronized void updateDisplay(){

 // check that x and y are at least 0

 if (xPos < 0) xPos = 0;

 if (yPos < 0) yPos = 0;

 // if picture

 if (picture != null){

 if (xPos >= picture.getWidth())

 xPos = picture.getWidth() - 1;

 if (yPos >= picture.getHeight())

 yPos = picture.getHeight() - 1;

 Graphics g = picture.getGraphics();

 paintComponent(g);

 }//end if

 else if (modelDisplay != null){

 if (xPos >= modelDisplay.getWidth())

 xPos = modelDisplay.getWidth() - 1;

 if (yPos >= modelDisplay.getHeight())

 yPos = modelDisplay.getHeight() - 1;

 modelDisplay.modelChanged();

 }//end else if

 }//end updateDisplay

 /**

 * Method to move the turtle foward 100 pixels

 */

 public void forward(){forward(100);}

 /**

 * Method to move the turtle forward the given

number

 * of pixels

 * @param pixels the number of pixels to walk

forward in

 * the heading direction

 */

 public void forward(int pixels){

 int oldX = xPos;

 int oldY = yPos;

 // change the current position

 xPos = oldX + (int)(pixels *

Math.sin(Math.toRadians(

heading)));

 yPos = oldY + (int)(pixels * -

Math.cos(Math.toRadians(

heading)));

 // add a move from the old position to the new

 // position to the pen

 pen.addMove(oldX,oldY,xPos,yPos);

 // update the display to show the new line

 updateDisplay();

 }//end forward

 /**

 * Method to go backward by 100 pixels

 */

 public void backward(){backward(100);}

 /**

 * Method to go backward a given number of pixels

 * @param pixels the number of pixels to walk

backward

 */

 public void backward(int pixels){

 forward(-pixels);

 }//end backward

 /**

 * Method to move to turtle to the given x and y

 * location

 * @param x the x value to move to

 * @param y the y value to move to

 */

 public void moveTo(int x, int y){

 this.pen.addMove(xPos,yPos,x,y);

 this.xPos = x;

 this.yPos = y;

 this.updateDisplay();

 }//end moveTo

 /**

 * Method to turn left

 */

 public void turnLeft(){this.turn(-90);}

 /**

 * Method to turn right

 */

 public void turnRight(){this.turn(90);}

 /**

 * Method to turn the turtle the passed degrees

 * use negative to turn left and pos to turn right

 * @param degrees the amount to turn in degrees

 */

 public void turn(int degrees){

 this.heading = (heading + degrees) % 360;

 this.updateDisplay();

 }//end turn

 /**

 * Method to draw a passed picture at the current

turtle

 * location and rotation in a picture or model

display

 * @param dropPicture the picture to drop

 */

 public synchronized void drop(Picture

dropPicture){

 Graphics2D g2 = null;

 // only do this if drawing on a picture

 if (picture != null)

 g2 = (Graphics2D) picture.getGraphics();

 else if (modelDisplay != null)

 g2 = (Graphics2D) modelDisplay.getGraphics();

 // if g2 isn't null

 if (g2 != null){

 // save the current tranform

 AffineTransform oldTransform =

g2.getTransform();

 // rotate to turtle heading and translate to

xPos

 // and yPos

 g2.rotate(Math.toRadians(heading),xPos,yPos);

 // draw the passed picture

g2.drawImage(dropPicture.getImage(),xPos,yPos,null);

 // reset the tranformation matrix

 g2.setTransform(oldTransform);

 // draw the pen

 pen.paintComponent(g2);

 }

 }//end drop

 /**

 * Method to paint the turtle

 * @param g the graphics context to paint on

 */

 public synchronized void paintComponent(Graphics

g){

 // cast to 2d object

 Graphics2D g2 = (Graphics2D) g;

 // if the turtle is visible

 if (visible){

 // save the current tranform

 AffineTransform oldTransform =

g2.getTransform();

 // rotate the turtle and translate to xPos and

yPos

 g2.rotate(Math.toRadians(heading),xPos,yPos);

 // determine the half width and height of the

shell

 int halfWidth = (int) (width/2); // of shell

 int halfHeight = (int) (height/2); // of shell

 int quarterWidth = (int) (width/4); // of

shell

 int thirdHeight = (int) (height/3); // of

shell

 int thirdWidth = (int) (width/3); // of shell

 // draw the body parts (head)

 g2.setColor(bodyColor);

 g2.fillOval(xPos - quarterWidth,

 yPos - halfHeight - (int)

(height/3),

 halfWidth, thirdHeight);

 g2.fillOval(xPos - (2 * thirdWidth),

 yPos - thirdHeight,

 thirdWidth,thirdHeight);

 g2.fillOval(xPos - (int) (1.6 * thirdWidth),

 yPos + thirdHeight,

 thirdWidth,thirdHeight);

 g2.fillOval(xPos + (int) (1.3 * thirdWidth),

 yPos - thirdHeight,

 thirdWidth,thirdHeight);

 g2.fillOval(xPos + (int) (0.9 * thirdWidth),

 yPos + thirdHeight,

 thirdWidth,thirdHeight);

 // draw the shell

 g2.setColor(getShellColor());

 g2.fillOval(xPos - halfWidth,

 yPos - halfHeight, width, height);

 // draw the info string if the flag is true

 if (showInfo) drawInfoString(g2);

 // reset the tranformation matrix

 g2.setTransform(oldTransform);

 }//end if

 // draw the pen

 pen.paintComponent(g);

 }//end paintComponent

 /**

 * Method to draw the information string

 * @param g the graphics context

 */

 public synchronized void drawInfoString(Graphics

g){

 g.setColor(infoColor);

 g.drawString(

 this.toString(),xPos + (int)

(width/2),yPos);

 }//end drawInfoString

 /**

 * Method to return a string with information

 * about this turtle

 * @return a string with information about this

object

 */

 public String toString(){

 return this.name + " turtle at " + this.xPos +

", " +

 this.yPos + " heading " + this.heading + ".";

 }//end toString

} // end of class

Listing 16. Source code for the program named Java344a.

/*Java344a

 * The purpose of this program is to illustrate the

use

 * of several different methods of the Turtle class.

 *

 * Also illustrates dropping pictures at the current

 * position and orientation of the turtle.

 *

 * Moves a Turtle object around on a World and drops

 * several copies of a small Picture along the way.

 */

import java.awt.Color;

public class Main{

 public static void main(String[] args){

 //Following statement eliminates necessity to

manually

 // establish location of media files. Modify this

to

 // point to the mediasources folder on your

machine.

FileChooser.setMediaPath("M:/Ericson/mediasources/");

 //Instantiate an object of a small picture of a

turtle

 // with a white background.

 Picture p2 = new Picture("turtle.jpg");

 //Note that the Turtle object is different from

the

 // image of the turtle in the Picture object.

 World mars = new World(400,500);

 Turtle joe = new Turtle(300,400,mars);

 joe.setShellColor(Color.RED);

 joe.setPenColor(Color.BLUE);

 joe.setPenWidth(2);

 joe.drop(p2);//Draw a small picture

 joe.forward(90);

 joe.drop(p2);

 joe.turn(-30);

 joe.forward();

 joe.drop(p2);

 joe.turn(-30);

 joe.forward();

 joe.drop(p2);

 }//end main

}//end class

Listing 17. Source code for the program named Java344b.

/*Java344b

 * The purpose of this program is to illustrate the

use

 * of several different methods of the Turtle class,

as

 * well as to illustrate the placement of a Turtle

object

 * on a Picture object.

 *

 * Also illustrates dropping pictures at the current

 * position and orientation of the turtle.

 *

 * Moves a Turtle object around on a Picture and

drops

 * several copies of a smaller Picture along the way.

 */

import java.awt.Color;

public class Main{

 public static void main(String[] args){

 //Following statement eliminates necessity to

manually

 // establish location of media files. Modify this

to

 // point to the mediasources folder on your

machine.

FileChooser.setMediaPath("M:/Ericson/mediasources/");

 //Instantiate two objects of Picture class, each

of

 // which encapsulates an image.

 Picture p1 = new

Picture("butterfly1.jpg");//large

 Picture p2 = new Picture("turtle.jpg");//small

 //Note that the Turtle object is different from

the

 // image of the turtle in the Picture object.

 Turtle joe = new Turtle(300,400,p1);

 joe.setShellColor(Color.RED);

 joe.setPenColor(Color.BLUE);

 joe.setPenWidth(2);

 joe.setVisible(true);

 joe.drop(p2);//Draw a small picture

 joe.forward(90);

 joe.drop(p2);

 joe.turn(-30);

 joe.forward();

 joe.drop(p2);

 joe.turn(-30);

 joe.forward();

 joe.drop(p2);

 p1.show();

 }//end main

}//end class

Copyright

Copyright 2008, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

