
Wrapping Up the SimpleTurtle Class: Multimedia
Programming with Java

Learn more about the methods and the properties of a Turtle object from Ericson's Java
multimedia library.

Published: December 30, 2008
By Richard G. Baldwin

Java Programming Notes # 346

 Preface
o General
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
 Discussion and sample code

o The movement methods
o The set and get property methods
o Sample program named Java346a
o The pen's properties
o Miscellaneous methods
o That's a wrap

 Run the programs
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

Preface

General

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

mailto:Baldwin@DickBaldwin.com

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters in videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Screen output from the program named Java346a.

Listings

 Listing 1. The basic move forward method.
 Listing 2. The three trivial move methods.
 Listing 3. The moveTo method.
 Listing 4. Turtle methods related to the pen's up/down state.
 Listing 5. Source code for the SimpleTurtle class.
 Listing 6. Source code for the program named Java346a.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

http://www.dickbaldwin.com/toc.htm

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

I will complete my explanation of the multimedia class named SimpleTurtle in this
lesson.

I will begin by explaining the methods that are used to cause the turtle to move. Then I
will explain most of the turtle's property methods and provide a sample program that
illustrates several of the property methods.

Following that, I will explain three of the pen's properties that are accessible via a turtle
object and several miscellaneous methods that belong to the turtle.

Discussion and sample code

The movement methods

In this lesson, we continue to examine the class named SimpleTurtle. A complete
listing of the SimpleTurtle class is provided in Listing 5 near the end of the lesson.

The methods in the following list are dedicated to moving the turtle:

1. forward(int pixels)
2. moveTo(int x,int y)
3. forward()
4. backward()
5. backward(int pixels)

The code in the last three methods in the list is fairly trivial. However, the code in the
first two methods is slightly more complicated. Therefore, I will begin my discussion
with the first method in the list, which is shown in its entirety in Listing 1.

Listing 1. The basic move forward method.

 public void forward(int pixels){

 int oldX = xPos;

 int oldY = yPos;

 // change the current position

 xPos = oldX + (int)(pixels *

Math.sin(Math.toRadians(

heading)));

 yPos = oldY + (int)(pixels * -

Math.cos(Math.toRadians(

heading)));

 // add a move from the old position to the

new

 // position to the pen

 pen.addMove(oldX,oldY,xPos,yPos);

 // update the display to show the new line

 updateDisplay();

 }//end forward

This method receives an incoming parameter that specifies a distance (specified in units
of pixels), and causes the turtle to move forward by that number of pixels the next time
the display is updated.

Can be facing in any direction

Recall that at any point in time, the turtle may be facing in any direction. (The direction
that the turtle is facing is saved in one of the turtle's instance variables named heading,
which saves the direction as an angle in degrees.) A value of zero-degrees indicates
that the turtle is facing to the north. Increasing the value of the angle in heading
indicates that the turtle should rotate clockwise. Similarly, decreasing the value
indicates that the turtle should rotate counter-clockwise.

Trigonometry and vector concepts

Because the turtle can be facing in any direction at any time, telling the turtle to move
forward by a specified distance in pixels is a little more complicated than simply adding
that value to either the x or y coordinate value of the turtle's current position. Instead, it
may be necessary to modify both the x and y coordinate values in the turtle's position
coordinates.

Listing 1 uses trigonometry and vector concepts to compute the projection of the
distance onto the x and y axes individually, and then adds the projected values to the
turtle's current x and y position coordinates. (Note that the projected distance can be
negative for certain angles of heading.)

If you understand trigonometry and vector concepts, you should have no problem
understanding the code in Listing 1. Otherwise, you will simply need to take it on faith
that this method behaves as advertised.

Update the pen's history

After adjusting the turtle's position coordinates, Listing 1 calls the addMove method on
the turtle's Pen object to add the move information to the turtle's history of

movements. (This information is used under certain circumstances to recreate the
turtle's historical movement path when the display is updated.)

Update the display, maybe...

Finally Listing 1 calls the updateDisplay method to trigger a possible update of the
display. I explained the behavior of the updateDisplay method in detail in the previous
lesson. To make a long story short, whether or not the display actually gets updated to
reflect the new position of the turtle depends on several other factors, some of which
are beyond the control of the turtle object.

The three trivial move methods

The code for each of the last three methods in the above list is shown in Listing 2.

Listing 2. The three trivial move methods.

 //Method to move the turtle 100 pixels

forward

 public void forward(){forward(100);}

 //Method to move the turtle 100 pixels

backward

 public void backward(){backward(100);}

 //Method to move the turtle a given number

of pixels

 // backward

 public void backward(int pixels){

 forward(-pixels);

 }//end backward

As you can see, each of these methods causes the method in Listing 1 to be called to
cause the turtle to move. The turtle is moved backwards by calling the method in
Listing 1 with a negative distance for the turtle to move.

The moveTo method

The remaining method from the above list is shown in Listing 3.

Listing 3. The moveTo method.

 //Method to move to turtle to a given x and

y location

 public void moveTo(int x, int y){

 this.pen.addMove(xPos,yPos,x,y);

 this.xPos = x;

 this.yPos = y;

 this.updateDisplay();

 }//end moveTo

Instead of adjusting the current position coordinates of the turtle incrementally, the code
in Listing 3 simply sets new values into the two variables (xPos and yPos) that specify
the current location of the turtle.

In addition to changing the turtle's position coordinates, Listing 3 also calls the
addMove method on the turtle's Pen object to add the move information to the turtle's
history of movements. Finally Listing 3 calls the updateDisplay method to trigger a
possible update of the display.

The set and get property methods

Many of the instance variables belonging to a turtle
constitute properties, which can be manipulated by set
and get methods. Those properties are shown in the
following list:

 picture (Picture object on which the turtle may be drawn)
 modelDisplay (World object on which the turtle may be drawn)
 showInfo (used to draw text information about the turtle)
 infoColor (color of text information drawn about turtle)
 shellColor (color of the turtle's shell)
 bodyColor (color of the turtle's body)
 width (horizontal component of turtle's size)
 height (vertical component of turtle's size)
 xPos (current position coordinate along x-axis)
 yPos (current position coordinate along y-axis)
 pen (reference to Pen object used to draw the turtle's track)
 heading (direction the turtle is facing in degrees)
 name (turtle's name, "No name" by default)
 visible (used to cause turtle to be visible or

invisible)

What is a property?
If you are unfamiliar with the

concept of properties, see my

tutorial titled Understanding
Properties in Java and C#
in Resources.

The "is" property method
Another standard form of

property method begins with

the word "is". This form

always returns type boolean,

and is used to inquire about the

true/false state of a

property. For example, the

turtle's isVisible method (see

Listing 5) returns a boolean

value indicating whether or not

Source code for property methods

You will find the source code for the set and get methods for the properties in the above
list in Listing 5 near the end of the lesson. (Note that some of the properties, such as
xPos and yPos, are "read only" properties, in which case there is no set method.)

Sample program named Java346a

The purpose of most of the properties in the above list is self-explanatory and shouldn't
require further explanation. However, it might be useful to provide a short program that
illustrates typical usage of such properties. Source code for the program is provided in
Listing 6 near the end of the lesson. Because the code is very simple, no explanation of
the code should be necessary.

Screen output from the program named Java346a

The screen output from the program named Java346a is shown in Figure 1.

Figure 1. Screen output from the program named Java346a.

the turtle is visible.

Default turtle colors
The default color of a turtle

Create and manipulate the uppermost turtle

Two different Turtle objects are displayed in Figure
1. The program begins by creating the turtle shown
near the top of Figure 1 and placing it in the default
position (the center of the world). By default, since this
turtle is the first one created by the program it would be
all green. The track created by the pen would also be
green by default and would be one pixel wide.

The program calls a set method to change the shellColor property to red, leaving the
turtle's body green. Then the program calls two other set methods to change the color
of the pen to blue and change the width of the pen to two pixels. (I will have more to
say about controlling pen properties later.)

After that, the program causes the turtle to make two moves and one turn, producing
the wide blue track shown in Figure 1. This all happens so quickly that all you will see is
the turtle in its final position with the wide blue track shown in Figure 1.

Create and manipulate the other turtle

After performing the operations described above on the turtle near the top of Figure 1,
the program turns its attention to the turtle shown near the bottom of Figure 1.

The program creates this turtle and places it in the center of the world by default. It
calls two different get methods to get the current x and y position coordinates of the
turtle. The position-coordinate values are used as parameters to the moveTo method
(see Listing 3) to move the turtle to the position shown in Figure 1. By default, the color
of this turtle and its pen is cyan and the pen is one pixel wide.

Set the name property

By default, a turtle has a name property with the name "No name". The program calls
the setName method to change the turtle's name property value to "Bill." It is very
important to understand that the value of the name property is distinct and different from
the name of the reference variable named bill that holds a reference to the Turtle
object.

Display a text string describing the turtle

Figure 1 shows a red text string to the right of this turtle. By default, this text string is
not displayed. When it is displayed, it is black by default. The program causes this text
string to be displayed by calling a set method to change the value of the showInfo
property to true. It changes the display color of the text string by calling a set method
that changes the infoColor property value to Color.RED. The contents of the text

and its pen is determined by

the constructor for the

SimpleTurtle class. The turtle

and the pen are the same color

by default. The color is

selected from an array of four

different colors on the basis of

the order in which the Turtle

objects are created.

string are determined by an overridden toString method that composes the string using
the values of the following properties:

 name
 xPos
 yPos
 heading

The values of the x and y position properties, along with the value of the width property
are used to establish the position of the string when it is drawn on the display.

Change the size of the turtle

Finally, the program calls two get methods to get the current width and height property
values for the turtle. The program also calls two set methods to set the width and
height property values to twice the current width and height. This results in the shown
near the bottom of Figure 1 being twice the size of the turtle shown near the top of
Figure 1.

The pen's properties

As you can see in Figure 1, a pen that is attached to the center of each turtle can be
used to draw a line as the turtle moves. The pen is actually an object of the Pen class
that is instantiated when the Turtle object is instantiated. (The Pen object is referred to
by the instance variable named pen.) Like the turtle object, the pen object has several
properties. You will learn more about these properties when I explain the Pen class in
detail in a future lesson. However, the values of the following three pen properties are
made available to the programmer via the turtle object so you need to know how to
access them in your programs:

 penDown
 color
 width

At this point, the most important thing to note is that the values of the pen properties are
not stored in the turtle object. Instead, they are stored in the pen object that belongs to
the turtle. As a result, indirection is required to access the values of the pen's properties
by way of a turtle object.

Historical perspective
The concept of the pen being

up or down harkens back to the

early days of computers when

CalComp brand mechanical

plotters were the primary

mechanism for displaying

http://www.calcompgraphics.com/

The pen's penDown property

For example, the four turtle methods shown in Listing 4
deal with the up or down state of the pen. (When the pen is down, a line is drawn as
the turtle moves. No line is drawn when the pen is up.)

Listing 4. Turtle methods related to the pen's up/down state.

 //Method to check if the pen is down

 //Returns true if down and false if up

 public boolean isPenDown(){

 return this.pen.isPenDown();

 }//end isPenDown

 //Method to set the penDown boolean variable

 public void setPenDown(boolean value){

 this.pen.setPenDown(value);

 }//end setPenDown

 //Method to lift the pen up

 public void penUp(){

 this.pen.setPenDown(false);

 }//end penUp

 //Method to set the pen down

 public void penDown(){

 this.pen.setPenDown(true);

 }//end penDown

The most important thing to note about the code in Listing 4 is that each of the turtle's
methods in Listing 4 calls one of the pen's property methods to accomplish the intended
purpose.

The pen's color and width properties

Similarly, the following turtle methods call property methods belonging to the pen to
access and/or control the pen's color and width properties:

 getPenColor
 setPenColor
 getPenWidth
 setPenWidth

You can view the code for these methods in Listing 5 near the end of the lesson.

Miscellaneous methods

This leaves the following methods that I haven't explained:

graphic output from

computers.

 getDistance - returns the distance from the turtle to a specified location given by
x and y coordinate values.

 setColor - calls the turtle's setBodyColor method to set the color of a turtle.
 clearPath - calls the pen's clearPath method to delete historical data regarding

the pen's path that is maintained by the pen object.
 hide - calls the turtle's setVisible method, passing false as a parameter, to

cause the turtle to become invisible.
 show - calls the turtle's setVisible method, passing true as a parameter, to

cause the turtle to become visible.
 drawInfoString - method called from inside the paintComponent method to

cause the text string shown in Figure 1 to be drawn on the right side of the turtle.
 toString - Overridden method that constructs the text string shown in Figure 1,

which is drawn by the drawInfoString method.

The code in each of these methods is straightforward. You can view that code in Listing
5 near the end of the lesson.

That's a wrap

That concludes the explanation of the SimpleTurtle class.

Run the programs

I encourage you to copy the code from Listing 6, compile the code, and execute
it. Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

Summary

I completed my explanation of the multimedia class named SimpleTurtle in this lesson.

I began by explaining the methods that are used to cause the turtle to move. Then I
explained most of the turtle's property methods and provided a sample program that
illustrates several of the property methods.

Following that, I explained three of the pen's properties that are accessible via a turtle
object and several miscellaneous methods that belong to the turtle.

What's next?

In the next lesson, I will explain the Pen and PathSegment classes, which are used by
the turtle to draw the lines shown in Figure 1.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 2100 Understanding Properties in Java and C#
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 5 and
Listing 6 below.

Listing 5. Source code for the SimpleTurtle class.

import javax.swing.*;

import java.awt.*;

import java.awt.font.*;

import java.awt.geom.*;

import java.util.Observer;

import java.util.Random;

/**

 * Class that represents a Logo-style turtle. The

turtle

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291

 * starts off facing north.

 * A turtle can have a name, has a starting x and y

 * position, has a heading, has a width, has a

height,

 * has a visible flag, has a body color, can have a

shell

 * color, and has a pen.

 * The turtle will not go beyond the model display

or

 * picture boundaries.

 *

 * You can display this turtle in either a picture

or in

 * a class that implements ModelDisplay.

 *

 * Copyright Georgia Institute of Technology 2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class SimpleTurtle{

 ///////////////// fields ////////////////////////

 /** count of the number of turtles created */

 private static int numTurtles = 0;

 /** array of colors to use for the turtles */

 private static Color[] colorArray = {Color.green,

 Color.cyan,new

Color(204,0,204),Color.gray};

 /** who to notify about changes to this turtle */

 private ModelDisplay modelDisplay = null;

 /** picture to draw this turtle on */

 private Picture picture = null;

 /** width of turtle in pixels */

 private int width = 15;

 /** height of turtle in pixels */

 private int height = 18;

 /** current location in x (center) */

 private int xPos = 0;

 /** current location in y (center) */

 private int yPos = 0;

 /** heading angle */

 private double heading = 0; // default is facing

north

 /** pen to use for this turtle */

 private Pen pen = new Pen();

 /** color to draw the body in */

 private Color bodyColor = null;

 /** color to draw the shell in */

 private Color shellColor = null;

 /** color of information string */

 private Color infoColor = Color.black;

 /** flag to say if this turtle is visible */

 private boolean visible = true;

 /** flag to say if should show turtle info */

 private boolean showInfo = false;

 /** the name of this turtle */

 private String name = "No name";

 ////////////////// constructors

///////////////////

 /**

 * Constructor that takes the x and y position for

the

 * turtle

 * @param x the x pos

 * @param y the y pos

 */

 public SimpleTurtle(int x, int y){

 xPos = x;

 yPos = y;

 bodyColor =

 colorArray[numTurtles %

colorArray.length];

 setPenColor(bodyColor);

 numTurtles++;

 }//end constructor

 /**

 * Constructor that takes the x and y position and

the

 * model displayer

 * @param x the x pos

 * @param y the y pos

 * @param display the model display

 */

 public SimpleTurtle(int x, int y, ModelDisplay

display){

 this(x,y); // invoke constructor that takes x

and y

 modelDisplay = display;

 display.addModel(this);

 }//end constructor

 /**

 * Constructor that takes a model display and adds

 * a turtle in the middle of it

 * @param display the model display

 */

 public SimpleTurtle(ModelDisplay display){

 // invoke constructor that takes x and y

 this((int) (display.getWidth() / 2),

 (int) (display.getHeight() / 2));

 modelDisplay = display;

 display.addModel(this);

 }//end constructor

 /**

 * Constructor that takes the x and y position and

the

 * picture to draw on

 * @param x the x pos

 * @param y the y pos

 * @param picture the picture to draw on

 */

 public SimpleTurtle(int x, int y, Picture

picture){

 this(x,y); // invoke constructor that takes x

and y

 this.picture = picture;

 this.visible = false;//default is not to see

turtle

 }//end constructor

 /**

 * Constructor that takes the

 * picture to draw on and will appear in the

middle

 * @param picture the picture to draw on

 */

 public SimpleTurtle(Picture picture){

 // invoke constructor that takes x and y

 this((int) (picture.getWidth() / 2),

 (int) (picture.getHeight() / 2));

 this.picture = picture;

 this.visible = false;//default is not to see

turtle

 }//end constructor

 //////////////////// methods

/////////////////////////

 /**

 * Get the distance from the passed x and y

location

 * @param x the x location

 * @param y the y location

 */

 public double getDistance(int x, int y){

 int xDiff = x - xPos;

 int yDiff = y - yPos;

 return (Math.sqrt((xDiff * xDiff) + (yDiff *

yDiff)));

 }//end getDistance

 /**

 * Method to turn to face another simple turtle

 */

 public void turnToFace(SimpleTurtle turtle){

 turnToFace(turtle.xPos,turtle.yPos);

 }//turnToFace

 /**

 * Method to turn towards the given x and y

 * @param x the x to turn towards

 * @param y the y to turn towards

 */

 public void turnToFace(int x, int y){

 double dx = x - this.xPos;

 double dy = y - this.yPos;

 double arcTan = 0.0;

 double angle = 0.0;

 // avoid a divide by 0

 if (dx == 0){

 // if below the current turtle

 if (dy > 0) heading = 180;

 // if above the current turtle

 else if (dy < 0) heading = 0;

 }

 // dx isn't 0 so can divide by it

 else{

 arcTan = Math.toDegrees(Math.atan(dy/dx));

 if (dx < 0) heading = arcTan - 90;

 else heading = arcTan + 90;

 }//end else

 // notify the display that we need to repaint

 updateDisplay();

 }//end turnToFace

 /**

 * Method to get the picture for this simple

turtle

 * @return the picture for this turtle (may be

null)

 */

 public Picture getPicture() { return this.picture;

}

 /**

 * Method to set the picture for this simple

turtle

 * @param pict the picture to use

 */

 public void setPicture(Picture pict){

 this.picture = pict;

 }//end setPicture

 /**

 * Method to get the model display for this simple

 * turtle.

 * @return the model display if there is one else

null

 */

 public ModelDisplay getModelDisplay(){

 return this.modelDisplay;

 }//end getModelDisplay

 /**

 * Method to set the model display for this simple

 * turtle.

 * @param theModelDisplay the model display to use

 */

 public void setModelDisplay(

 ModelDisplay

theModelDisplay){

 this.modelDisplay = theModelDisplay;

 }//end setModelDisplay

 /**

 * Method to get value of show info

 * @return true if should show info, else false

 */

 public boolean getShowInfo(){return

this.showInfo;}

 /**

 * Method to show the turtle information string

 * @param value the value to set showInfo to

 */

 public void setShowInfo(boolean value){

 this.showInfo = value;

 }//end setShowInfo

 /**

 * Method to get the shell color

 * @return the shell color

 */

 public Color getShellColor(){

 Color color = null;

 if(this.shellColor == null && this.bodyColor !=

null)

 color = bodyColor.darker();

 else color = this.shellColor;

 return color;

 }//end getShellColor

 /**

 * Method to set the shell color

 * @param color the color to use

 */

 public void setShellColor(Color color){

 this.shellColor = color;

 }//setShellColor

 /**

 * Method to get the body color

 * @return the body color

 */

 public Color getBodyColor(){return

this.bodyColor;}

 /**

 * Method to set the body color which

 * will also set the pen color

 * @param color the color to use

 */

 public void setBodyColor(Color color){

 this.bodyColor = color;

 setPenColor(this.bodyColor);

 }//end setBodyColor

 /**

 * Method to set the color of the turtle.

 * This will set the body color

 * @param color the color to use

 */

 public void setColor(Color color){

 this.setBodyColor(color);

 }//end setColor

 /**

 * Method to get the information color

 * @return the color of the information string

 */

 public Color getInfoColor(){return

this.infoColor;}

 /**

 * Method to set the information color

 * @param color the new color to use

 */

 public void setInfoColor(Color color){

 this.infoColor = color;

 }//setInfoColor

 /**

 * Method to return the width of this object

 * @return the width in pixels

 */

 public int getWidth(){return this.width;}

 /**

 * Method to return the height of this object

 * @return the height in pixels

 */

 public int getHeight(){return this.height;}

 /**

 * Method to set the width of this object

 * @param theWidth in width in pixels

 */

 public void setWidth(int theWidth){

 this.width = theWidth;

 }//end setWidth

 /**

 * Method to set the height of this object

 * @param theHeight the height in pixels

 */

 public void setHeight(int theHeight){

 this.height = theHeight;

 }//end setHeight

 /**

 * Method to get the current x position

 * @return the x position (in pixels)

 */

 public int getXPos(){return this.xPos;}

 /**

 * Method to get the current y position

 * @return the y position (in pixels)

 */

 public int getYPos(){return this.yPos;}

 /**

 * Method to get the pen

 * @return the pen

 */

 public Pen getPen(){return this.pen;}

 /**

 * Method to set the pen

 * @param thePen the new pen to use

 */

 public void setPen(Pen thePen){this.pen = thePen;}

 /**

 * Method to check if the pen is down

 * @return true if down else false

 */

 public boolean isPenDown(){return

this.pen.isPenDown();}

 /**

 * Method to set the pen down boolean variable

 * @param value the value to set it to

 */

 public void setPenDown(boolean value){

 this.pen.setPenDown(value);

 }//end setPenDown

 /**

 * Method to lift the pen up

 */

 public void penUp(){this.pen.setPenDown(false);}

 /**

 * Method to set the pen down

 */

 public void penDown(){this.pen.setPenDown(true);}

 /**

 * Method to get the pen color

 * @return the pen color

 */

 public Color getPenColor(){return

this.pen.getColor();}

 /**

 * Method to set the pen color

 * @param color the color for the pen ink

 */

 public void setPenColor(Color color){

 this.pen.setColor(color);

 }//end setPenColor

 /**

 * Method to set the pen width

 * @param width the width to use in pixels

 */

 public void setPenWidth(int width){

 this.pen.setWidth(width);

 }//end setPenWidth

 /**

 * Method to get the pen width

 * @return the width of the pen in pixels

 */

 public int getPenWidth(){return

this.pen.getWidth();}

 /**

 * Method to clear the path (history of

 * where the turtle has been)

 */

 public void clearPath(){

 this.pen.clearPath();

 }//end clearPath

 /**

 * Method to get the current heading

 * @return the heading in degrees

 */

 public double getHeading(){return this.heading;}

 /**

 * Method to set the heading

 * @param heading the new heading to use

 */

 public void setHeading(double heading){

 this.heading = heading;

 }//end setHeading

 /**

 * Method to get the name of the turtle

 * @return the name of this turtle

 */

 public String getName(){return this.name;}

 /**

 * Method to set the name of the turtle

 * @param theName the new name to use

 */

 public void setName(String theName){

 this.name = theName;

 }//end setName

 /**

 * Method to get the value of the visible flag

 * @return true if visible else false

 */

 public boolean isVisible(){return this.visible;}

 /**

 * Method to hide the turtle (stop showing it)

 * This doesn't affect the pen status

 */

 public void hide(){this.setVisible(false);}

 /**

 * Method to show the turtle (doesn't affect

 * the pen status

 */

 public void show(){this.setVisible(true);}

 /**

 * Method to set the visible flag

 * @param value the value to set it to

 */

 public void setVisible(boolean value){

 // if the turtle wasn't visible and now is

 if (visible == false && value == true){

 // update the display

 this.updateDisplay();

 }//end if

 // set the visibile flag to the passed value

 this.visible = value;

 }//end setVisible

 /**

 * Method to update the display of this turtle and

 * also check that the turtle is in the bounds

 */

 public synchronized void updateDisplay(){

 // check that x and y are at least 0

 if (xPos < 0) xPos = 0;

 if (yPos < 0) yPos = 0;

 // if picture

 if (picture != null){

 if (xPos >= picture.getWidth())

 xPos = picture.getWidth() - 1;

 if (yPos >= picture.getHeight())

 yPos = picture.getHeight() - 1;

 Graphics g = picture.getGraphics();

 paintComponent(g);

 }//end if

 else if (modelDisplay != null){

 if (xPos >= modelDisplay.getWidth())

 xPos = modelDisplay.getWidth() - 1;

 if (yPos >= modelDisplay.getHeight())

 yPos = modelDisplay.getHeight() - 1;

 modelDisplay.modelChanged();

 }//end else if

 }//end updateDisplay

 /**

 * Method to move the turtle foward 100 pixels

 */

 public void forward(){forward(100);}

 /**

 * Method to move the turtle forward the given

number

 * of pixels

 * @param pixels the number of pixels to walk

forward in

 * the heading direction

 */

 public void forward(int pixels){

 int oldX = xPos;

 int oldY = yPos;

 // change the current position

 xPos = oldX + (int)(pixels *

Math.sin(Math.toRadians(

heading)));

 yPos = oldY + (int)(pixels * -

Math.cos(Math.toRadians(

heading)));

 // add a move from the old position to the new

 // position to the pen

 pen.addMove(oldX,oldY,xPos,yPos);

 // update the display to show the new line

 updateDisplay();

 }//end forward

 /**

 * Method to go backward by 100 pixels

 */

 public void backward(){backward(100);}

 /**

 * Method to go backward a given number of pixels

 * @param pixels the number of pixels to walk

backward

 */

 public void backward(int pixels){

 forward(-pixels);

 }//end backward

 /**

 * Method to move to turtle to the given x and y

 * location

 * @param x the x value to move to

 * @param y the y value to move to

 */

 public void moveTo(int x, int y){

 this.pen.addMove(xPos,yPos,x,y);

 this.xPos = x;

 this.yPos = y;

 this.updateDisplay();

 }//end moveTo

 /**

 * Method to turn left

 */

 public void turnLeft(){this.turn(-90);}

 /**

 * Method to turn right

 */

 public void turnRight(){this.turn(90);}

 /**

 * Method to turn the turtle the passed degrees

 * use negative to turn left and pos to turn right

 * @param degrees the amount to turn in degrees

 */

 public void turn(int degrees){

 this.heading = (heading + degrees) % 360;

 this.updateDisplay();

 }//end turn

 /**

 * Method to draw a passed picture at the current

turtle

 * location and rotation in a picture or model

display

 * @param dropPicture the picture to drop

 */

 public synchronized void drop(Picture

dropPicture){

 Graphics2D g2 = null;

 // only do this if drawing on a picture

 if (picture != null)

 g2 = (Graphics2D) picture.getGraphics();

 else if (modelDisplay != null)

 g2 = (Graphics2D) modelDisplay.getGraphics();

 // if g2 isn't null

 if (g2 != null){

 // save the current tranform

 AffineTransform oldTransform =

g2.getTransform();

 // rotate to turtle heading and translate to

xPos

 // and yPos

 g2.rotate(Math.toRadians(heading),xPos,yPos);

 // draw the passed picture

g2.drawImage(dropPicture.getImage(),xPos,yPos,null);

 // reset the tranformation matrix

 g2.setTransform(oldTransform);

 // draw the pen

 pen.paintComponent(g2);

 }

 }//end drop

 /**

 * Method to paint the turtle

 * @param g the graphics context to paint on

 */

 public synchronized void paintComponent(Graphics

g){

 // cast to 2d object

 Graphics2D g2 = (Graphics2D) g;

 // if the turtle is visible

 if (visible){

 // save the current tranform

 AffineTransform oldTransform =

g2.getTransform();

 // rotate the turtle and translate to xPos and

yPos

 g2.rotate(Math.toRadians(heading),xPos,yPos);

 // determine the half width and height of the

shell

 int halfWidth = (int) (width/2); // of shell

 int halfHeight = (int) (height/2); // of shell

 int quarterWidth = (int) (width/4); // of

shell

 int thirdHeight = (int) (height/3); // of

shell

 int thirdWidth = (int) (width/3); // of shell

 // draw the body parts (head)

 g2.setColor(bodyColor);

 g2.fillOval(xPos - quarterWidth,

 yPos - halfHeight - (int)

(height/3),

 halfWidth, thirdHeight);

 g2.fillOval(xPos - (2 * thirdWidth),

 yPos - thirdHeight,

 thirdWidth,thirdHeight);

 g2.fillOval(xPos - (int) (1.6 * thirdWidth),

 yPos + thirdHeight,

 thirdWidth,thirdHeight);

 g2.fillOval(xPos + (int) (1.3 * thirdWidth),

 yPos - thirdHeight,

 thirdWidth,thirdHeight);

 g2.fillOval(xPos + (int) (0.9 * thirdWidth),

 yPos + thirdHeight,

 thirdWidth,thirdHeight);

 // draw the shell

 g2.setColor(getShellColor());

 g2.fillOval(xPos - halfWidth,

 yPos - halfHeight, width, height);

 // draw the info string if the flag is true

 if (showInfo) drawInfoString(g2);

 // reset the tranformation matrix

 g2.setTransform(oldTransform);

 }//end if

 // draw the pen

 pen.paintComponent(g);

 }//end paintComponent

 /**

 * Method to draw the information string

 * @param g the graphics context

 */

 public synchronized void drawInfoString(Graphics

g){

 g.setColor(infoColor);

 g.drawString(

 this.toString(),xPos + (int)

(width/2),yPos);

 }//end drawInfoString

 /**

 * Method to return a string with information

 * about this turtle

 * @return a string with information about this

object

 */

 public String toString(){

 return this.name + " turtle at " + this.xPos +

", " +

 this.yPos + " heading " + this.heading + ".";

 }//end toString

} // end of class

Listing 6. Source code for the program named Java346a.

/*Java346a

 * The purpose of this program is to

illustrate the use

 * of property setter and getter methods of

the

 * SimpleTurtle class.

 *

 * Draws two turtles in a World and sets

property values

 * on each of them.

 */

import java.awt.Color;

public class Main{

 public static void main(String[] args){

 World mars = new World(400,500);

 Turtle joe = new Turtle(mars);

 joe.setShellColor(Color.RED);

 joe.setPenColor(Color.BLUE);

 joe.setPenWidth(2);

 joe.forward(90);

 joe.turn(-30);

 joe.forward();

 Turtle bill = new Turtle(mars);

 bill.moveTo(bill.getXPos()-

100,bill.getYPos()+100);

 bill.setName("Bill");

 bill.setShowInfo(true);

 bill.setInfoColor(Color.RED);

 bill.setWidth(bill.getWidth() * 2);

 bill.setHeight(bill.getHeight() * 2);

 }//end main

}//end class

Copyright

Copyright 2008, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

