
The DigitalPicture Interface

Learn how to write programs using the methods defined in the Picture and
SimplePicture classes that are declared in the DigitalPicture interface.

Published: March 18, 2009
By Richard G. Baldwin

Java Programming Notes # 354

 Preface
o General
o The Picture class and the DigitalPicture Interface
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
 Discussion and sample code

o The program named Java354a
o The program named Java354b
o The program named Java354c

 Run the programs
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

Preface

General

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.

mailto:Baldwin@DickBaldwin.com

 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters into videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

The Picture class and the DigitalPicture Interface

If you have studied the earlier lessons in this series (see Resources), you have learned
all about the Turtle class, its superclass named SimpleTurtle, and the classes from
which a turtle's contained objects are instantiated (Pen and PathSegment). You have
learned how to instantiate new Turtle objects, placing them in either a World object or a
Picture object. You have learned how to manipulate the Turtle objects once you place
them in their environment.

You also need to know about the environment in which a turtle lives. You learned all
about the World class in the previous lesson (see Resources). In this lesson, you will
begin learning about the Picture class and its superclass named SimplePicture.

The Picture class is relatively simple

In reality, there isn't much to the Picture class. It is simply a skeleton class that
overrides the toString method and provides five different constructors that serve as
proxies for the constructors in the superclass named SimplePicture. Each Picture
constructor simply calls a SimplePicture constructor, passing the constructor
parameters to the SimplePicture constructor.

The real functionality lies in SimplePicture

All of the real functionality of a Picture object lies in the superclass named
SimplePicture. Therefore, the class named SimplePicture will be the target of this
and the next several lessons. However, I have provided a source listing for the Picture
class in Listing 30 near the end of the lesson for your examination. (The only changes
made to the listing were minor format changes necessary to force the source code to fit
into this narrow publication format.)

A large and complex class

The SimplePicture class is a large and complex class containing almost forty different
methods. That is obviously too much material for a single lesson, so I will break the
class down and explain it in parts.

A complete listing of Ericson's SimplePicture class is provided in Listing 31 near the
end of the lesson.

The DigitalPicture interface

The SimplePicture class implements the DigitalPicture interface, which declares the
following thirteen methods:

 String getFileName(); // get the file name that the picture came from
 String getTitle(); // get the title of the picture
 void setTitle(String title); // set the title of the picture
 int getWidth(); // get the width of the picture in pixels
 int getHeight(); // get the height of the picture in pixels
 Image getImage(); // get the image from the picture
 BufferedImage getBufferedImage(); // get the buffered image from the picture
 int getBasicPixel(int x, int y); // get the pixel information as an int value
 void setBasicPixel(int x, int y, int rgb); // set the pixel information as an int

value
 Pixel getPixel(int x, int y); // get the pixel information as an object of type Pixel
 void load(Image image); // load the image into the picture
 boolean load(String fileName); // load the picture from a file
 void show(); // show the picture

My first attempt to compartmentalize...

As my first attempt to compartmentalize and explain the SimplePicture class, this
lesson will illustrate and explain the thirteen methods in the above list in terms of how
they are implemented in the Picture and SimplePicture classes. In addition, the
thirteen methods in the above list often call other methods belonging to the
SimplePicture class, so I will explain those methods in this lesson as well.

There are also numerous methods defined in the SimplePicture class that are not
declared in the DigitalPicture interface. I will explain those methods in future lessons.

A complete listing of Ericson's DigitalPicture interface is provided in Listing 32 near the
end of the lesson.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Image from the file named ScaledAquarium.gif.
 Figure 2. Image from the file named ScaledBeach.jpg.
 Figure 3. Screen output from the program named Java354a.
 Figure 4. Text output from the program named Java354a.
 Figure 5. Screen output for a missing image file.
 Figure 6. Final Picture output from the program named Java354a.

 Figure 7. Sun's description of the getRGB method.
 Figure 8. Sun's description of the setRGB method.
 Figure 9. First two screen displays from the program named Java354b.
 Figure 10. Screen output produced by Listing 22.
 Figure 11. Screen output produced by Listing 24.
 Figure 12. Screen output from the program named Java354c.

Listings

 Listing 1. Background color for the SimplePicture class.
 Listing 2. Background color for Baldwin's code.
 Listing 3. Beginning of the program named Java354a.
 Listing 4. Beginning of the class named Runner.
 Listing 5. An overloaded constructor from the SimplePicture class.
 Listing 6. The overloaded load method that requires the name of an image file.
 Listing 7. The loadOrFail method.
 Listing 8. Instantiate a small Picture object.
 Listing 9. Constructor for a Picture with an all-white image.
 Listing 10. The method named setAllPixelsToAColor.
 Listing 11. Load an image from a jpg file and set the title.
 Listing 12. The getFileName method.
 Listing 13. The setTitle method.
 Listing 14. Display the Picture object in the explore format.
 Listing 15. Copy the right half of pix1 to the left half of pix2.
 Listing 16. The getBasicPixel method.
 Listing 17. The setBasicPixel method.
 Listing 18. The getWidth and getHeight methods.
 Listing 19. Display some text on the system console.
 Listing 20. Overridden toString method of the Picture class.
 Listing 21. Beginning of the Runner class and the run method.
 Listing 22. Instantiate a Picture object using a different constructor.
 Listing 23. Source code for the overloaded constructor.
 Listing 24. Use the other overloaded load method.
 Listing 25. Source code for the other overloaded load method.
 Listing 26. Beginning of the Runner class and the run method.
 Listing 27. Scale the green color component using bit manipulations.
 Listing 28. Scale the green color component using the getPixel method and

methods of the Pixel class.
 Listing 29. Source code for the getPixel method.
 Listing 30. Source code for Ericson's Picture class.
 Listing 31. Source code for Ericson's SimplePicture class.
 Listing 32. Source code for Ericson's DigitalPicture interface.
 Listing 33. Source code for the program named Java354a.
 Listing 34. Source code for the program named Java354b.
 Listing 35. Source code for the program named Java354c.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

I will explain the methods in the above list and some additional methods as well, in the
context of three sample programs. As usual, I will explain the code in
fragments. Because I will be switching back and forth between code fragments
extracted from Ericson's SimplePicture class and code fragments extracted from my
sample programs, things can get confusing.

Reducing the confusion

In an attempt to reduce the confusion, I will present code fragments from Ericson's
SimplePicture class against the background color shown in Listing 1.

Listing 1. Background color for the SimplePicture class.

I will present code fragments from the

SimplePicture class

against this background color.

Similarly, I will present code fragments from my sample programs against the
background color shown in Listing 2.

Listing 2. Background color for Baldwin's code.

http://www.dickbaldwin.com/toc.htm

I will present code fragments from my sample

programs

with this background color.

On the rare occasion that I need to display a code fragment from the Picture class, I will
present the code fragments against the gray
background that you see in Listing 20.

A preview of the images that will be used

As you might expect from the names of the classes and
interfaces that I will be explaining (Picture,
SimplePicture, and DigitalPicture), the sample programs
in this lesson will deal in one way or another with pictures and images. Two different
image files named ScaledAquarium.gif and ScaledBeach.jpg will be used in these
programs. The images contained in the two files are shown in Figure 1 and Figure 2.

Figure 1. Image from the file named ScaledAquarium.gif.

Figure 2. Image from the file named ScaledBeach.jpg.

Image file locations
For simplicity, both image

files were placed in the same

location as the class files for

the program.

Different display formats

In some cases, the sample program output will be displayed by calling Ericson's show
method, which produces the display format shown in Figure 1. In other cases, the
sample program output will be displayed by calling Ericson's explore method, which
produces the display format shown in Figure 2. (The show method and the explore
method are both methods of the SimplePicture class. They will be explained in a
future lesson.)

The images were scaled in advance

For reasons that will become apparent later, both images were scaled in advance to
have a height of 256 rows of pixels. Through pure coincidence, that also caused each
image to have a width of 341 pixels. (Although I didn't plan it that way, the two raw
images were the same size.)

Discussion and sample code

The program named Java354a

A complete listing of this program is provided in Listing 33 near the end of the lesson.

The purpose of this program is to illustrate and explain most of the methods that are
declared in the DigitalPicture interface and implemented in the SimplePicture class,
along with the methods called by those methods.

Instantiate a Picture object

One Picture object is instantiated in this program by using a Picture constructor that
accepts the name of an image file as a parameter and uses the image from that file as
the image in the Picture object. That picture is displayed by calling the show method
on the Picture object, producing the screen output shown in Figure 1.

Title matches the file name

Note that in this case, the title is automatically set to the name of the image file.

Instantiate another Picture object

A second Picture object is constructed by using a Picture constructor that accepts the
dimensions of the Picture object only and constructs a Picture object with a default all-
white image. The size of the Picture object that is constructed is 1x1 pixels.

Then the load method that takes the name of an image file is called to load the image
from an image file into the small Picture object. The size of the Picture object changes
automatically to accommodate the size of the image.

In this case, the default title is "None". In other words, unlike the previous case, the title
is not automatically set to the name of the image file.

The setTitle and getFileName methods are called to set the title for this picture. Then
the explore method is called to display the Picture object with its new image and title,
producing the screen output shown in Figure 2.

A caution regarding the repetitive calling of the show method

If you call the show method on a picture, then modify the picture, and then call the
show method on the picture again, only one copy of the picture will be
displayed. Furthermore, the results may not be what you expect to see. However,
displaying the picture in the explore format, modifying it, and then displaying it again in
the show format seems to work OK.

Processing the Picture objects

A pair of nested for loops is used in conjunction with the getBasicPixel and
setBasicPixel methods to copy the right half of the image in Figure 1 into the left half of
the image in Figure 2, leaving the right half of the image in Figure 2 undisturbed. Then
the show method is called on the modified second Picture object to display it,
producing the screen output shown in Figure 3.

Figure 3. Screen output from the program named Java354a.

Text output

At various points along the way, the program calls methods dealing with the file name
and the title and eventually prints that information on the system console as shown in
Figure 4.

Figure 4. Text output from the program named Java354a.

Picture, filename ScaledAquarium.gif height

256 width 341

pix1 Filename: ScaledAquarium.gif

Picture, filename ScaledBeach.jpg height 256

width 341

pix2 FileName: ScaledBeach.jpg

pix1 Title: ScaledAquarium.gif

pix2 Title: pix2: ScaledBeach.jpg

Methods illustrated by the program named Java354a

The following methods from the DigitalPicture interface are illustrated by this program.

 String getFileName()
 String getTitle()
 void setTitle(String title)
 int getWidth()
 int getHeight()
 int getBasicPixel(int x, int y)
 void setBasicPixel(int x, int y, int rgb)
 boolean load(String fileName)
 void show()

The following methods that are declared in the DigitalPicture interface are not
illustrated by this program.

 Image getImage()
 BufferedImage getBufferedImage()
 Pixel getPixel(int x, int y)
 void load(Image image)

These methods will be illustrated by the programs named Java354b and Java354c later
in this lesson.

Beginning of the program named Java354a

All three of the programs in this lesson begin with the code shown in Listing 3, so I will
show this code fragment only once.

Listing 3. Beginning of the program named Java354a.

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main method

}//end class Main

The main method for each program is defined in a class named Main. The main
method instantiates an object of the Runner class and calls a method named run on
that object. When the run method returns, the main method terminates and the
program terminates.

 Beginning of the class named Runner

Listing 4 shows the beginning of the class named Runner and the beginning of the
method named run for the program named Java354a.

Listing 4. Beginning of the class named Runner.

class Runner{

 void run(){

 Picture pix1 = new

Picture("ScaledAquarium.gif");

 pix1.show();//display the picture in the

show format

Listing 4 calls one of the overloaded constructors of the Picture class to construct a
new 341x256 Picture object passing the name of an image file as a parameter. As
mentioned earlier, for simplicity, the image file was placed in the same directory as the
class files for the program.

Picture constructors

The particular constructor called in Listing 4 requires the name of an image file as an
incoming String parameter. As I mentioned earlier, the constructors for the Picture
class simply call the corresponding constructors for the superclass named
SimplePicture passing the incoming parameter to the superclass constructor. You can
view the code for the Picture constructors in Listing 30 near the end of the lesson.

The SimplePicture constructor

Listing 5 shows the code for the corresponding constructor in the superclass named
SimplePicture. (Remember, the background color shown in Listing 5 indicates that the
code fragment was extracted from the class named SimplePicture.)

Listing 5. An overloaded constructor from the SimplePicture class.

 /**

 * A Constructor that takes a file name and

uses the

 * file to create a picture

 * @param fileName the file name to use in

creating the

 * picture

 */

 public SimplePicture(String fileName)

 {

 // load the picture into the buffered image

 load(fileName);

 }

As you can see, the code in Listing 5 simply calls one of the overloaded load methods
of the SimplePicture class to extract the image from the specified image file and load it
into a BufferedImage object. The BufferedImage object is referred to by a private
instance variable belonging to the Picture object being constructed.

Instance variables of the SimplePicture class

No instance variables are defined in the Picture class. The instance variables that are
defined in the SimplePicture class are listed below:

 private String fileName;
 private String title;
 private BufferedImage bufferedImage;
 private PictureFrame pictureFrame;
 private String extension;

The overloaded load method

The overloaded load method called in Listing 5 is shown in Listing 6. (Note that the
explanatory comments for this method appear to be incorrect, so I did not include them
in Listing 6. You can view those comments in Listing 31.)

Listing 6. The overloaded load method that requires the name of an image file.

 public boolean load(String fileName)

 {

 try {

 this.loadOrFail(fileName);

 return true;

 } catch (Exception ex) {

 System.out.println("There was an

error trying"

 + " to open "

+ fileName);

 bufferedImage = new

BufferedImage(600,200,

BufferedImage.TYPE_INT_RGB);

 addMessage("Couldn't load " +

fileName,5,100);

 return false;

 }

 }

Listing 6 calls the loadOrFail method (shown in Listing 7) of the SimplePicture class in
an attempt to read the file and extract the image from the file.

If the call to loadOrFail fails...

If the loadOrFail method is unsuccessful in finding the specified image file, it throws an
IOException. Therefore, the call to the loadOrFail method in Listing 6 is placed inside
a try block. In the case of a failure, the catch block in Listing 6 is executed. The code
in the catch block:

 Prints an error message on the standard output device.
 Instantiates a default BufferedImage object, storing its reference in the private

instance variable named bufferedImage that belongs to the Picture object being
constructed.

 Calls the addMessage method to display an error message on the default
BufferedImage object.

 Returns false.

Screen output for a missing image file

Figure 5 shows a reduced version of the screen output that occurs as a result of a
failure by the loadOrFail method to find the specified file. (It was necessary for me to
reduce the size of this image to force it to fit in this narrow publication format.)

Figure 5. Screen output for a missing image file.

If the loadOrFail method finds the file - but no image

If the loadOrFail method is successful in finding the specified image file, but is not
successful in extracting an image from the file, a runtime error will be thrown without the
frame shown in Figure 5 necessarily appearing on the screen.

If the loadOrFail method succeeds in reading an image...

If the loadOrFail method succeeds in reading the image from the file, it will encapsulate
that image in a BufferedImage object and will store that object's reference in the private
instance variable named bufferedImage belonging to the Picture object being
constructed.

The loadOrFail method

The source code for the loadOrFail method is shown in Listing 7.

Listing 7. The loadOrFail method.

 /**

 * Method to load the picture from the passed

file name

 * @param fileName the file name to use to

load the

 * picture from

 */

 public void loadOrFail(

 String fileName) throws

IOException

 {

 // set the current picture's file name

 this.fileName = fileName;

 // set the extension

 int posDot = fileName.indexOf('.');

 if (posDot >= 0)

 this.extension =

fileName.substring(posDot + 1);

 // if the current title is null use the

file name

 if (title == null)

 title = fileName;

 File file = new File(this.fileName);

 if (!file.canRead())

 {

 // try adding the media path

 file = new File(

FileChooser.getMediaPath(this.fileName));

 if (!file.canRead())

 {

 throw new IOException(this.fileName + "

could not"

 + " be opened. Check that you specified

the path");

 }

 }

 bufferedImage = ImageIO.read(file);

 }

File IO is a major topic

File IO is a major topic in its own right. Because this tutorial is not intended to teach you
about file IO, I won't explain the code in Listing 7 in detail. If you don't understand that
code, you might want to study up on file IO in Java.

Behavior of the loadOrFail method

Basically, the loadOrFail method either throws an IOException or:

 Finds the specified image file.
 Extracts the image from the image file.
 Encapsulates the image in an object of the BufferedImage class.
 Stores the object's reference in a private instance variable named

bufferedImage belonging to the Picture object being constructed.

Another possibility is that the method finds the specified file but is unable to extract an
image from it (the file may be corrupt) in which case an error or exception will ultimately
be thrown.

Instantiate a small Picture object

Having instantiated the Picture object based on an existing image file (see Figure 1),
the program named Java354a instantiates a new small Picture object with a default all-
white image. (Note that the size must be at least 1x1 pixels or a runtime error will
occur.) This Picture object is instantiated by calling the Picture constructor shown in
Listing 8.

Listing 8. Instantiate a small Picture object.

 Picture pix2 = new Picture(1,1);

Constructor for a Picture object with an all-white image

The source code for the SimplePicture constructor that is executed as a result of the
code in Listing 8 is shown in Listing 9.

Listing 9. Constructor for a Picture with an all-white image.

 /**

 * A constructor that takes the width and

height desired

 * for a picture and creates a buffered image

of that

 * size. This constructor doesn't show the

picture.

 * @param width the desired width

 * @param height the desired height

 */

 public SimplePicture(int width, int height)

 {

 bufferedImage = new BufferedImage(

 width, height,

BufferedImage.TYPE_INT_RGB);

 title = "None";

 fileName = "None";

 extension = "jpg";

 setAllPixelsToAColor(Color.white);

 }

Listing 9 begins by instantiating a new BufferedImage object of a specified size and a
particular type.

What is a BufferedImage object?

To make a long story short, a BufferedImage object encapsulates an image in a
sophisticated and accessible way. (Many methods are provided to access the data in
the object.)

How is the image data represented?

There are many different ways in which image data can be represented. The code in
Listing 9 specifies one of those ways. The parameter value
BufferedImage.TYPE_INT_RGB is a constant that causes the image to be represented
with three 8-bit color components (red, green, and blue) packed into pixels of type int.

Setting default property values

After instantiating the BufferedImage object and storing its reference in the private
instance variable named bufferedImage, Listing 9 sets default values for the title,
fileName, and extension properties.

Set all pixels to white

Then Listing 9 calls the method named setAllPixelsToAColor to set all of the pixels in
the new image to the color white. The source code for this method is shown in Listing
10.

Listing 10. The method named setAllPixelsToAColor.

 /**

 * Method to set the color in the picture to

the passed

 * color

 * @param color the color to set to

 */

 public void setAllPixelsToAColor(Color

color){

 // loop through all x

 for (int x = 0; x < this.getWidth(); x++){

 // loop through all y

 for (int y = 0; y < this.getHeight();

y++){

 getPixel(x,y).setColor(color);

 }//end inner loop

 }//end outer loop

 }//end method named setAllPixelsToAColor

With the exception of the call to the getPixel method, there should be nothing in Listing
10 that causes you any difficulty.

Gain access to each pixel and color it white

Listing 10 uses a pair of nested for loops and a call to the getPixel method to gain
access to every pixel in the image. I will explain the getPixel method in detail later in
this lesson. For now suffice it to say that the getPixel method encapsulates a pixel
whose location in the image is specified by a pair of horizontal and vertical coordinates
into an object of the class Pixel. Then the method returns a reference to the Pixel
object.

Set the color of the pixel to white

The Pixel class provides many methods that can be used to manipulate the pixel. The
code in Listing 10 calls the setColor method on the Pixel object to set the color of each
pixel to white.

Load an image from a jpg file and set the title.

Having created the small (1x1) Picture object, Listing 11 calls the load method of the
SimplePicture class to load the image from an image file into the BufferedImage
object that belongs to the Picture object. Note that this is the same overloaded load
method that I explained in conjunction with Listing 6 earlier in this lesson.

Listing 11. Load an image from a jpg file and set the title.

 pix2.load("ScaledBeach.jpg");

 //Set the title of the picture.

 pix2.setTitle("pix2: " +

pix2.getFileName());

(Note that the size of the Picture object increases or decreases automatically to
accommodate the size of the image.)

Listing 11 also calls the getFileName method and the setTitle method to set the title of
the Picture object to that shown in the top banner in Figure 2.

The getFileName method

As you can see in Listing 12, the getFileName method simply returns the current value
of the fileName property stored in an instance variable having the same name.

Listing 12. The getFileName method.

 /**

 * Method to get the file name associated

with the

 * picture

 * @return the file name associated with the

picture

 */

 public String getFileName() { return

fileName; }

The setTitle method

The setTitle method, which is shown in its entirety in Listing 13, is only slightly more
complicated.

Listing 13. The setTitle method.

 /**

 * Method to set the title for the picture

 * @param title the title to use for the

picture

 */

 public void setTitle(String title)

 {

 this.title = title;

 if (pictureFrame != null)

 pictureFrame.setTitle(title);

 }

The setTitle method begins by storing the incoming String parameter in an instance
variable named title.

A PictureFrame object

The SimplePicture class has a private instance variable of type PictureFrame named
pictureFrame. I don't want to dwell on this topic in this lesson, because I will explain
the PictureFrame class in some detail in a future lesson. For now, suffice it to say that
an object of the PictureFrame class holds a reference to an object of the JFrame
class. It is the JFrame object that provides the visual manifestation of a Picture object
as shown in Figure 1.

The code in Listing 13 checks to confirm that such a PictureFrame object exists, and if
so it calls the setTitle method on the reference to the PictureFrame object. That call,
in turn, calls the setTitle method on the JFrame object, producing the visual
manifestation of a title that you see in the banner at the top of Figure 1.

Display the Picture object in the explore format

Listing 14 calls the explore method to display the Picture object in the format shown in
Figure 2.

Listing 14. Display the Picture object in the explore format.

 pix2.explore();

The SimplePicture class provides two different methods that can be used to display a
Picture object:

 show - produces the output format shown in Figure 1.

 explore - produces the output format shown in Figure 2.

I will explain both of these methods in detail in a future lesson. For now, just observe
the differences between the format of Figure 1 and the format of Figure 2.

Copy the right half of pix1 to the left half of pix2

Listing 15 uses a pair of nested for loops along with calls to the getHeight, getWidth,
getBasicPixel, and setBasicPixel methods to copy the right half of the image from
pix1 into the left half of pix2, leaving the right half of pix2 undisturbed.

Listing 15. Copy the right half of pix1 to the left half of pix2.

 for(int row = 0;row <

pix1.getHeight();row++){

 for(int col = 0;col <

pix2.getWidth()/2;col++){

pix2.setBasicPixel(col,row,pix1.getBasicPixel(

 col +

pix1.getWidth()/2,row));

 }//end inner for loop

 }//end outer for loop

 //Display the final result.

 pix2.show();

Final Picture output from program Java354a

Then Listing 15 calls the show method on pix2 producing the screen output shown in
Figure 6.

Figure 6. Final Picture output from the program named Java354a.

As you can see in Figure 6, the right half of the aquarium image has been copied into
the left half of the beach image.

The getBasicPixel method

The getBasicPixel method is shown in its entirety in Listing 16. This method receives a
pair of x,y coordinate values and returns the color contents of the pixel at that location
packed in a single value of type int.

Listing 16. The getBasicPixel method.

 /**

 * Method to return the pixel value as an int

for the

 * given x and y location

 * @param x the x coordinate of the pixel

 * @param y the y coordinate of the pixel

 * @return the pixel value as an integer

(alpha, red,

 * green, blue)

 */

 public int getBasicPixel(int x, int y)

 {

 return bufferedImage.getRGB(x,y);

 }

The hard work is done by getRGB

The code in Listing 16 is straightforward due to the fact that all of the hard work is
handled by a call to the getRGB method of the BufferedImage class. Sun's description
of the getRGB method is provided in Figure 7.

Figure 7. Sun's description of the getRGB method.

Returns an integer pixel in the default RGB color model

(TYPE_INT_ARGB) and default sRGB colorspace. Color

conversion takes place if this default model does not

match the image ColorModel. There are only 8-bits of

precision for each color component in the returned data

when using this method.

I will leave it as an exercise for the student to study up on the color model and the color
space aspects of a BufferedImage object in order to fully understand the description in
Figure 7.

The setBasicPixel method

The setBasicPixel method is shown in Listing 17.

Listing 17. The setBasicPixel method.

 /**

 * Method to set the value of a pixel in the

picture

 * from an int

 * @param x the x coordinate of the pixel

 * @param y the y coordinate of the pixel

 * @param rgb the new rgb value of the pixel

(alpha, red,

 * green, blue)

 */

 public void setBasicPixel(int x, int y, int

rgb)

 {

 bufferedImage.setRGB(x,y,rgb);

 }

Once again, the setBasicPixel method delegates the hard work to the setRGB method
of the BufferedImage class. Sun's description of the setRGB method is provided in
Figure 8.

Figure 8. Sun's description of the setRGB method.

Sets a pixel in this BufferedImage to the specified RGB

value. The pixel is assumed to be in the default RGB

color model, TYPE_INT_ARGB, and default sRGB color

space. For images with an IndexColorModel, the index

with the nearest color is chosen.

The getWidth and getHeight methods of the SimplePicture class

Listing 15 also calls the getWidth and getHeight methods of the SimplePicture class
to control the for loops. The getWidth and getHeight methods of the SimplePicture
class are shown in Listing 18.

Listing 18. The getWidth and getHeight methods.

 /**

 * Method to get the width of the picture in

pixels

 * @return the width of the picture in pixels

 */

 public int getWidth(){ return

bufferedImage.getWidth(); }

 /**

 * Method to get the height of the picture in

pixels

 * @return the height of the picture in

pixels

 */

 public int getHeight(){

 return bufferedImage.getHeight();

 }

Call corresponding methods on the BufferedImage object

The getWidth and getHeight methods call methods having the same names on the
BufferedImage object to get and return the width and the height of the BufferedImage
object.

Width and height of the image, not the JFrame

It is important to note that the width and height values for a Picture object obtained in
this manner correspond to the dimensions of the image inside the JFrame shown in
Figure 1. They do not correspond to the outer dimensions of the JFrame object.

The outer dimensions of the JFrame object shown in Figure 1 are 350x285 pixels
whereas the dimensions of the image are 341x256 pixels. The extra space is
consumed by the borders and the banner at the top of the JFrame object.

Display some text on the system console

The code in Listing 19 calls the getFileName method and the getTitle method on the
Picture objects to print the text shown in Figure 5.

Listing 19. Display some text on the system console.

 System.out.println(pix1);

 System.out.println("pix1 Filename: "

 +

pix1.getFileName());

 System.out.println(pix2);

 System.out.println("pix2 FileName: "

 +

pix2.getFileName());

 System.out.println("pix1 Title: " +

pix1.getTitle());

 System.out.println("pix2 Title: " +

pix2.getTitle());

 }//end run

}//end class Runner

I explained the getFileName method in conjunction with Listing 12 earlier in this lesson.

Although I haven't shown you the code for the getTitle method of the SimplePicture
class, suffice it to say that this method simply returns the value stored in the private
instance variable named title.

Overridden toString method of the Picture class

When you pass a Java object's reference to the println method, (as in the first
statement in Listing 19), code in the printing method calls the toString method on the
incoming object reference to get a String object for printing. As I mentioned earlier, the
Picture class overrides the toString method. The overridden version of the toString
method for the Picture class is shown in Listing 20.

Listing 20. Overridden toString method of the Picture class.

 /**

 * Method to return a string with

information about this

 * picture.

 * @return a string with information about

the picture

 * such as fileName, height and width.

 */

 public String toString()

 {

 String output =

 "Picture, filename " + getFileName() +

 " height " + getHeight()

 + " width " + getWidth();

 return output;

 }

Given what you have already learned, you should have no difficulty understanding how
the code in Listing 20 produces the string shown as the first line of text output in Figure
4.

The end of the program named Java354a

Listing 19 signals the end of the run method, the end of the Runner class, and the end
of the program named Java354a.

The program named Java354b

A complete listing of this program is provided in Listing 34 near the end of the lesson.

The purpose of this program is to illustrate and explain most of the remaining methods
that are declared in the DigitalPicture interface as implemented in the Picture and
SimplePicture classes, along with methods called by those methods.

The earlier program named Java354a illustrated the use of all but the following four
methods that are declared in the DigitalPicture interface

 Image getImage()
 BufferedImage getBufferedImage()
 void load(Image image)
 Pixel getPixel(int x, int y)

This program creates and displays four Picture objects illustrating the first three
methods in the above list. This leaves only the getPixel method to be illustrated later in
this lesson to satisfy the initial contract of the lesson.

This program begins just like the previous program with code that is identical to that
shown in Listing 3.

Beginning of the Runner class and the run method

The Runner class and the run method begin in Listing 21.

Listing 21. Beginning of the Runner class and the run method.

class Runner{

 void run(){

 //Construct a new 341x256 Picture object

by providing

 // the name of an image file as a

parameter to the

 // Picture constructor.

 Picture pix1 = new

Picture("ScaledAquarium.gif");

 pix1.setTitle("pix1");

 pix1.show();

 //Construct another new 341x256 Picture

object by

 // providing the name of an image file as

a parameter

 // to the Picture constructor.

 Picture pix2 = new

Picture("ScaledBeach.jpg");

 pix2.setTitle("pix2");

 pix2.show();

Listing 21 creates and displays two different Picture objects using code that you have
seen before. The screen output produced by the code in Listing 21 is shown in Figure
9.

Figure 9. First two screen displays from the program named Java354b.

These are the same images that you saw before. Only the title in the JFrame object is
different.

Instantiate a Picture object using a different constructor

Listing 22 constructs a third new 341x256 Picture object by extracting the
BufferedImage object reference from pix1 and passing it as a parameter to a different
overloaded constructor for the Picture class.

Listing 22. Instantiate a Picture object using a different overloaded constructor.

 Picture pix3 = new

Picture(pix1.getBufferedImage());

 pix3.setTitle("pix3");

 pix3.show();

The call to the getBufferedImage method returns the reference to the BufferedImage
object stored in the instance variable named bufferedImage. You can view the code
for that method in Listing 31 near the end of the lesson.

Listing 22 also sets the title for the new Picture object and calls the show method to
display it.

Source code for the overloaded constructor

Listing 23 shows the source code for the overloaded Picture constructor that is called to
create the new Picture object in Listing 22.

Listing 23. Source code for the overloaded constructor.

 /**

 * A constructor that takes a buffered image

 * @param image the buffered image

 */

 public SimplePicture(BufferedImage image)

 {

 this.bufferedImage = image;

 title = "None";

 fileName = "None";

 extension = "jpg";

 }

This constructor receives an incoming parameter that is a reference to a
BufferedImage object. It stores that reference in its own instance variable named
bufferedImage, thereby causing the referenced image to become the image for the
new Picture object being constructed.

Two references to the same BufferedImage object

At this point, we have two Picture objects, pix1 and pix3 sharing a common
BufferedImage object. They each contain a reference to the same BufferedImage
object. This is probably not a good idea, because any changes made to the pixels in
the BufferedImage object by way of either Picture object will show up in both
pictures. (See Listing 24 for a better approach.)

Screen output produced by Listing 22

The screen output produced by Listing 22 is shown in Figure 10.

Figure 10. Screen output produced by Listing 22.

Identical except for the title

If you compare Figure 10 with the top image in Figure 9, you will see that they are
identical except for the title. As described above, the image showing in both figures is a
common BufferedImage object. Therefore, the two onscreen images are identical.

However, the JFrame objects that provide the onscreen visual manifestations of the two
Picture objects are different, and each JFrame object has its own title. Therefore, the
titles in the two figures are different.

Call the other overloaded load method

The SimplePicture class provides two overloaded
methods named load. One of them, which was shown
and discussed in Listing 6, requires a file name as an
incoming parameter. The other overloaded load
method, which is shown in Listing 25, requires a reference to an object of type Image as
an incoming parameter.

Construct and display one more Picture object

Listing 24 calls this version of the load method to construct and display a fourth new
341x256 Picture object. Instead of constructing a new Picture object by passing an
image reference to an overloaded constructor (as in Listing 22), this code starts with an
all-white Picture object and then loads an image extracted from pix2.

Listing 24. Use the other overloaded load method.

 Image image = pix2.getImage();

 //Get the size of the image and pass those

dimensions

Image versus BufferedImage
Image is the superclass of

BufferedImage. Therefore, a

BufferedImage object is also

an Image object.

 // to the constructor for the Picture

object.

 Picture pix4 = new

Picture(image.getWidth(null),

image.getHeight(null));

 //Now load the image into the Picture

object and

 // display the picture.

 pix4.load(image);

 pix4.setTitle("pix4");

 pix4.show();

 }//end run

}//end class Runner

Size is not set automatically

Note that unlike the load method that takes a file name as a parameter (shown in Listing
6), this version of the load method does not automatically set the size of the Picture
object to match the size of the image.

Listing 24 begins by calling the getImage method on pix2 to get a reference to the
Image object belonging to that picture. (The call actually gets a reference to a
BufferedImage object and saves it as the superclass type Image.)

Listing 24 calls the getWidth and getHeight methods on the Image object to get the
dimensions of the image. These values are passed to the Picture constructor to create
a new all-white Picture object having the same dimensions as the image.

Then Listing 24 calls the load method on the Picture object to load the image into the
picture.

Source code for the other overloaded load method

The source code for the version of the overloaded load method that is called in Listing
24 is shown in Listing 25.

Listing 25. Source code for the other overloaded load method.

 /**

 * Method to load the buffered image with the

passed

 * image

 * @param image the image to use

 */

 public void load(Image image)

 {

 // get a graphics context to use to draw on

the

 // buffered image

 Graphics2D graphics2d =

bufferedImage.createGraphics();

 // draw the image on the buffered image

starting

 // at 0,0

 graphics2d.drawImage(image,0,0,null);

 // show the new image

 show();

 }

Get a graphics context

Listing 25 begins by calling the createGraphics method
on the all-white BufferedImage object that belongs to
the Picture object to get a reference to the graphics
context belonging to that BufferedImage object.

Then Listing 25 calls the drawImage method on that graphics context to draw the
image received as an incoming parameter on that graphics context. This replaces the
all-white pixels with the colored pixels that describe the image.

Display the picture

Finally, Listing 25 calls the show method to automatically display the new picture. This
causes the call to the show method in Listing 24 to be redundant. (That call to the
show method could be eliminated and the image shown in Figure 11 would still appear
on the screen.)

Figure 11. Screen output produced by Listing 24.

Looks like the bottom image in Figure 9

A graphics context
I explained the concept of a

graphics context in the

previous lesson. (See

Resources.)

Note once again that the image in Figure 11 looks exactly like the bottom image in
Figure 9. Only the title is different. This is because the images in the pictures named
pix2 and pix4 were derived from the same image.

A better approach than before

However, unlike the earlier case, future changes made to the image in pix4 will not be
reflected in pix2 and vice versa. Although the image in pix4 (shown in Figure 11) is
derived from the image in pix2, the BufferedImage object referenced in pix4 is a
different object than the BufferedImage object referenced in pix2. (We do not have
two references to the same BufferedImage object in this case.)

The end of the program named Java354b

Listing 24 signals the end of the run method, the end of the Runner class, and the end
of the program named Java354b.

The program named Java354c

A complete listing of this program is provided in Listing 35 near the end of the lesson.

Only the getPixel method remains to be explained

The programs named Java354a and Java354b illustrated all of the methods declared in
the DigitalPicture interface other than the getPixel method.

The purpose of this program is to illustrate the use of the getPixel method as
implemented in the SimplePicture class, and to compare its use with the
getBasicPixel and setBasicPixel methods.

Create two Picture objects from the same image file

This program begins by creating two Picture objects containing the same image. (Note
however that each Picture object contains a reference to a different BufferedImage
object. The images are the same because both Picture objects are created from the
same image file.)

Modify the green color component for each row of pixels

Then the program modifies the green color component for each row of pixels in one
Picture object using the getBasicPixel and setBasicPixel methods. This approach
requires a programming knowledge of bit manipulations along with knowledge of how
the color components are stored in the integer that represents a pixel.

After that, the program makes the same modifications to the green color components in
each row of pixels in the other Picture object. In this case, the modifications are made
using the getPixel method and methods of the Pixel class.

Compare the two approaches

This makes it possible to compare the two approaches. The comparison illustrates the
reduction in complexity achieved by using the getPixel method in place of the
getBasicPixel and setBasicPixel methods.

Three statements are required

Both approaches require three statements inside a pair of nested for loops, but the
three statements involving bit manipulations are much more complex than the
statements that call methods on the Pixel object.

The same visual results

Each approach produces the same visual result. The two modified images are shown in
Figure 12. As you can see, the only differences between the two are the titles. (The
original images are the same as the beach image that I have been using throughout this
lesson, so I won't show those images again.)

Figure 12. Screen output from the program named Java354c.

Modifications to the green color component

The green color component for each image was scaled by zero for every pixel in the
first row and was scaled by 1.0 for every pixel in the last row. (Recall that the overall
size of this image was originally scaled so that it would have 256 rows of pixels.)

The scale factor that was applied to each row between the first and last rows was
proportional to the row number.

As you can see, this resulted in an image with a magenta tinge at the top and the
correct colors at the bottom. (Compare the colors in the last row of pixels in the images
in Figure 12 with the corresponding pixels in Figure 2.)

Beginning of the Runner class and the run method

This program begins just like the previous two programs with code that is identical to
that shown in Listing 3, so I won't show that code again.

Listing 26 shows the beginning of the Runner class and the run method.

Listing 26. Beginning of the Runner class and the run method.

class Runner{

 void run(){

 //Construct a new 341x256 Picture object

by providing

 // the name of an image file as a

parameter to the

 // Picture constructor.

 Picture pic1 = new

Picture("ScaledBeach.jpg");

 pic1.setTitle("pic1");

 pic1.explore();

 //Construct another new 341x256 Picture

object by

 // providing the name of an image file as

a parameter

 // to the Picture constructor.

 Picture pic2 = new

Picture("ScaledBeach.jpg");

 pic2.setTitle("pic2");

 pic2.explore();

Listing 26 instantiates two new Picture objects, having identical images, using code that
you have seen before. As you can see, both Picture object extract an image from the
same image file, so the BufferedImage objects in both Picture objects contain the
same combination of colored pixels.

Scale the green color component using bit manipulations

Listing 27 uses the getBasicPixel and setBasicPixel methods, in conjunction with a
pair of nested for loop to scale the green color component in each row as described
above.

Listing 27. Scale the green color component using bit manipulations.

 //Declare some working constants and

variables.

 final int maskA = 0x0000FF00;//green only

 final int maskB = 0xFFFF00FF;//all but

green

 int pixA = 0;

 int greenByte = 0;

 for(int row = 0;row <

pic1.getHeight();row++){

 for(int col = 0;col <

pic1.getWidth();col++){

 //Working at the bit level, scale the

green byte

 // by 0.0 in the first row and 1.0 in

the last row

 // with proportional scaling in

between.

 pixA = pic1.getBasicPixel(col,row);

 greenByte =

 (int)(((pixA & maskA) >> 8)*

row/255.0) << 8;

 pic1.setBasicPixel(

 col,row,(pixA & maskB) |

greenByte);

 }//end inner for loop

 }//end outer for loop

 pic1.show();

Won't explain the bit manipulation code

It is not my purpose in this lesson to teach you how to do bit manipulations in Java. If
you don't understand the code in Listing 27, you should review Java bit
manipulations. (See, for example, my earlier lesson titled The AWT Package, Graphics
- Overview of Advanced Image Processing Capabilities in Resources.)

For the purposes of this lesson, the important thing is to compare the complexity of the
code inside the nested for loops in Listing 27 with the code inside the nested for loops
in Listing 28.

Scale the green color component using the getPixel method

Listing 28 scales the green color component in each pixel by repetitively calling the
getPixel method to get a reference to an object of the Pixel class representing each
pixel. Then the getGreen and setGreen methods are called on the Pixel object to
scale the green color component in the pixel.

Listing 28. Scale the green color component using the getPixel method and
methods of the Pixel class.

 //Do the same thing to the other picture

working at

 // the Pixel level.

 Pixel pixB = null;

 int greenValue = 0;

 for(int row = 0;row <

pic2.getHeight();row++){

 for(int col = 0;col <

pic2.getWidth();col++){

 pixB = pic2.getPixel(col,row);

 greenValue = (int)(pixB.getGreen() *

row/255.0);

 pixB.setGreen(greenValue);

 }//end inner for loop

 }//end outer for loop

 pic2.show();

 }//end run

}//end class Runner

Source code for the getPixel method

The source code for the getPixel method is shown in Listing 29.

Listing 29. Source code for the getPixel method.

 /**

 * Method to get a pixel object for the given

x and y

 * location

 * @param x the x location of the pixel in

the picture

 * @param y the y location of the pixel in

the picture

 * @return a Pixel object for this location

 */

 public Pixel getPixel(int x, int y)

 {

 // create the pixel object for this picture

and the

 // given x and y location

 Pixel pixel = new Pixel(this,x,y);

 return pixel;

 }

Listing 29 instantiates a new object of the Pixel class representing the physical pixel at
a specified coordinate position in the image and returns a reference to that Pixel object.

Get and set methods for color components are available

I will explain the Pixel class in detail in a future lesson. For now, suffice it to say that
the Pixel class defines get and set methods that make it possible to manipulate each of
the three color components in the manner shown in Listing 28. For example, the
getGreen method returns the value of the green color component as an eight-bit integer
value stored in the least significant eight bits of a value of type int.

The setGreen method requires an incoming parameter of type int that contains the
eight-bit value of the green color component as the least significant eight bits of the
incoming parameter. This method causes that value to be set into the appropriate
group of eight bits that represent the green color component in the int value that
represents the pixel.

Note that no bit shifting is required to use either of these methods. Note also that there
is no requirement for knowledge of how the color components are stored in the
integer that represents a pixel.

The end of the program named Java354c

Listing 28 signals the end of the run method, the end of the Runner class, and the end
of the program named Java354c.

Run the programs

I encourage you to copy the code from Listing 33 through Listing 35, compile the code,
and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

Summary

As my first attempt to explain the Picture class and the SimplePicture class, this
lesson has illustrated and explained the thirteen methods that are declared in the
DigitalPicture interface in terms of how those methods are defined in the
SimplePicture class. The lesson also explained methods that are called by those
thirteen methods.

What's next?

In the next lesson, you will learn how the show method of the Picture class causes the
image contained in a Picture object to be displayed on the screen in a JFrame
object. You will also learn about the the PictureFrame class, which serves as an
intermediary between the Picture object and the JFrame object.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA
 Vector Cad-Cam XI Lathe Tutorial
 Classification of 3D to 2D projections
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm

 324 Java 2D Graphics, The Color Constructors and Transparency
 400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight
404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
408 Processing Image Pixels, Performing Convolution on Images
410 Processing Image Pixels, Understanding Image Convolution in Java
412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
416 Processing Image Pixels, An Improved Image-Processing Framework in
Java
418 Processing Image Pixels, Creating Visible Watermarks in Java
450 A Framework for Experimenting with Java 2D Image-Processing Filters
452 Using the Java 2D LookupOp Filter Class to Process Images
454 Using the Java 2D AffineTransformOp Filter Class to Process Images
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble
Images
458 Using the Java 2D BandCombineOp Filter Class to Process Images
460 Using the Java 2D ConvolveOp Filter Class to Process Images
462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to
Process Images

 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java
 350 3D Displays, Color Distance, and Edge Detection
 351 A Slider-Controlled Softening Program for Digital Photos
 352 Adding Animated Movement to Your Java Application
 353 A Slider-Controlled Sharpening Program for Digital Photos

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 30
through Listing 35 below.

Listing 30. Source code for Ericson's Picture class.

import java.awt.*;

import java.awt.font.*;

import java.awt.geom.*;

import java.awt.image.BufferedImage;

http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm

import java.text.*;

/**

 * A class that represents a picture. This

class inherits

 * from SimplePicture and allows the student

to add

 * functionality to the Picture class.

 *

 * Copyright Georgia Institute of Technology

2004-2005

 * @author Barbara Ericson

ericson@cc.gatech.edu

 */

public class Picture extends SimplePicture

{

 ///////////////////// constructors

/////////////////////

 /**

 * Constructor that takes no arguments

 */

 public Picture ()

 {

 /* not needed but use it to show students

the implicit

 * call to super()

 * child constructors always call a parent

constructor

 */

 super();

 }

 /**

 * Constructor that takes a file name and

creates the

 * picture

 * @param fileName the name of the file to

create the

 * picture from

 */

 public Picture(String fileName)

 {

 // let the parent class handle this

fileName

 super(fileName);

 }

 /**

 * Constructor that takes the width and

height

 * @param width the width of the desired

picture

 * @param height the height of the desired

picture

 */

 public Picture(int width, int height)

 {

 // let the parent class handle this width

and height

 super(width,height);

 }

 /**

 * Constructor that takes a picture and

creates a

 * copy of that picture

 */

 public Picture(Picture copyPicture)

 {

 // let the parent class do the copy

 super(copyPicture);

 }

 /**

 * Constructor that takes a buffered image

 * @param image the buffered image to use

 */

 public Picture(BufferedImage image)

 {

 super(image);

 }

 ////////////////////// methods

/////////////////////////

 /**

 * Method to return a string with

information about this

 * picture.

 * @return a string with information about

the picture

 * such as fileName, height and width.

 */

 public String toString()

 {

 String output =

 "Picture, filename " + getFileName() +

 " height " + getHeight()

 + " width " + getWidth();

 return output;

 }

} // this } is the end of class Picture, put

all new

 // methods before this

Listing 31. Source code for Ericson's SimplePicture class.

import javax.imageio.ImageIO;

import java.awt.image.BufferedImage;

import javax.swing.ImageIcon;

import java.awt.*;

import java.io.*;

import java.awt.geom.*;

/**

 * A class that represents a simple picture. A

simple

 * picture may have an associated file name and a

title.

 * A simple picture has pixels, width, and height.

A

 * simple picture uses a BufferedImage to hold the

pixels.

 * You can show a simple picture in a PictureFrame

(a

 * JFrame).

 *

 * Copyright Georgia Institute of Technology 2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class SimplePicture implements

DigitalPicture

{

 /////////////////////// Fields

/////////////////////////

 /**

 * the file name associated with the simple

picture

 */

 private String fileName;

 /**

 * the title of the simple picture

 */

 private String title;

 /**

 * buffered image to hold pixels for the simple

picture

 */

 private BufferedImage bufferedImage;

 /**

 * frame used to display the simple picture

 */

 private PictureFrame pictureFrame;

 /**

 * extension for this file (jpg or bmp)

 */

 private String extension;

 /////////////////////// Constructors

////////////////////

 /**

 * A Constructor that takes no arguments. All

fields

 * will be null. A no-argument constructor must

be given

 * in order for a class to be able to be

subclassed. By

 * default all subclasses will implicitly call

this in

 * their parent's no argument constructor unless

a

 * different call to super() is explicitly made

as the

 * first line of code in a constructor.

 */

 public SimplePicture()

 {this(200,100);}

 /**

 * A Constructor that takes a file name and uses

the

 * file to create a picture

 * @param fileName the file name to use in

creating the

 * picture

 */

 public SimplePicture(String fileName)

 {

 // load the picture into the buffered image

 load(fileName);

 }

 /**

 * A constructor that takes the width and height

desired

 * for a picture and creates a buffered image of

that

 * size. This constructor doesn't show the

picture.

 * @param width the desired width

 * @param height the desired height

 */

 public SimplePicture(int width, int height)

 {

 bufferedImage = new BufferedImage(

 width, height,

BufferedImage.TYPE_INT_RGB);

 title = "None";

 fileName = "None";

 extension = "jpg";

 setAllPixelsToAColor(Color.white);

 }

 /**

 * A constructor that takes the width and height

desired

 * for a picture and creates a buffered image of

that

 * size. It also takes the color to use for the

 * background of the picture.

 * @param width the desired width

 * @param height the desired height

 * @param theColor the background color for the

picture

 */

 public SimplePicture(

 int width, int height, Color

theColor)

 {

 this(width,height);

 setAllPixelsToAColor(theColor);

 }

 /**

 * A Constructor that takes a picture to copy

 * information from

 * @param copyPicture the picture to copy from

 */

 public SimplePicture(SimplePicture copyPicture)

 {

 if (copyPicture.fileName != null)

 {

 this.fileName = new

String(copyPicture.fileName);

 this.extension = copyPicture.extension;

 }

 if (copyPicture.title != null)

 this.title = new String(copyPicture.title);

 if (copyPicture.bufferedImage != null)

 {

 this.bufferedImage =

 new

BufferedImage(copyPicture.getWidth(),

copyPicture.getHeight(),

BufferedImage.TYPE_INT_RGB);

 this.copyPicture(copyPicture);

 }

 }

 /**

 * A constructor that takes a buffered image

 * @param image the buffered image

 */

 public SimplePicture(BufferedImage image)

 {

 this.bufferedImage = image;

 title = "None";

 fileName = "None";

 extension = "jpg";

 }

 ////////////////////////// Methods

//////////////////////

 /**

 * Method to get the extension for this picture

 * @return the extendsion (jpg or bmp)

 */

 public String getExtension() { return extension;

}

 /**

 * Method that will copy all of the passed source

 * picture into the current picture object

 * @param sourcePicture the picture object to

copy

 */

 public void copyPicture(SimplePicture

sourcePicture)

 {

 Pixel sourcePixel = null;

 Pixel targetPixel = null;

 // loop through the columns

 for (int sourceX = 0, targetX = 0;

 sourceX < sourcePicture.getWidth() &&

 targetX < this.getWidth();

 sourceX++, targetX++)

 {

 // loop through the rows

 for (int sourceY = 0, targetY = 0;

 sourceY < sourcePicture.getHeight() &&

 targetY < this.getHeight();

 sourceY++, targetY++)

 {

 sourcePixel =

sourcePicture.getPixel(sourceX,sourceY);

 targetPixel =

this.getPixel(targetX,targetY);

targetPixel.setColor(sourcePixel.getColor());

 }

 }

 }

 /**

 * Method to set the color in the picture to the

passed

 * color

 * @param color the color to set to

 */

 public void setAllPixelsToAColor(Color color)

 {

 // loop through all x

 for (int x = 0; x < this.getWidth(); x++)

 {

 // loop through all y

 for (int y = 0; y < this.getHeight(); y++)

 {

 getPixel(x,y).setColor(color);

 }

 }

 }

 /**

 * Method to get the buffered image

 * @return the buffered image

 */

 public BufferedImage getBufferedImage()

 {

 return bufferedImage;

 }

 /**

 * Method to get a graphics object for this

picture to

 * use to draw on

 * @return a graphics object to use for drawing

 */

 public Graphics getGraphics()

 {

 return bufferedImage.getGraphics();

 }

 /**

 * Method to get a Graphics2D object for this

picture

 * which can be used to do 2D drawing on the

picture

 */

 public Graphics2D createGraphics()

 {

 return bufferedImage.createGraphics();

 }

 /**

 * Method to get the file name associated with

the

 * picture

 * @return the file name associated with the

picture

 */

 public String getFileName() { return fileName; }

 /**

 * Method to set the file name

 * @param name the full pathname of the file

 */

 public void setFileName(String name)

 {

 fileName = name;

 }

 /**

 * Method to get the title of the picture

 * @return the title of the picture

 */

 public String getTitle()

 { return title; }

 /**

 * Method to set the title for the picture

 * @param title the title to use for the picture

 */

 public void setTitle(String title)

 {

 this.title = title;

 if (pictureFrame != null)

 pictureFrame.setTitle(title);

 }

 /**

 * Method to get the width of the picture in

pixels

 * @return the width of the picture in pixels

 */

 public int getWidth(){ return

bufferedImage.getWidth(); }

 /**

 * Method to get the height of the picture in

pixels

 * @return the height of the picture in pixels

 */

 public int getHeight(){

 return bufferedImage.getHeight();

 }

 /**

 * Method to get the picture frame for the

picture

 * @return the picture frame associated with this

 * picture (it may be null)

 */

 public PictureFrame getPictureFrame()

 { return

pictureFrame; }

 /**

 * Method to set the picture frame for this

picture

 * @param pictureFrame the picture frame to use

 */

 public void setPictureFrame(PictureFrame

pictureFrame)

 {

 // set this picture objects' picture frame to

the

 // passed one

 this.pictureFrame = pictureFrame;

 }

 /**

 * Method to get an image from the picture

 * @return the buffered image since it is an

image

 */

 public Image getImage()

 {

 return bufferedImage;

 }

 /**

 * Method to return the pixel value as an int for

the

 * given x and y location

 * @param x the x coordinate of the pixel

 * @param y the y coordinate of the pixel

 * @return the pixel value as an integer (alpha,

red,

 * green, blue)

 */

 public int getBasicPixel(int x, int y)

 {

 return bufferedImage.getRGB(x,y);

 }

 /**

 * Method to set the value of a pixel in the

picture

 * from an int

 * @param x the x coordinate of the pixel

 * @param y the y coordinate of the pixel

 * @param rgb the new rgb value of the pixel

(alpha, red,

 * green, blue)

 */

 public void setBasicPixel(int x, int y, int rgb)

 {

 bufferedImage.setRGB(x,y,rgb);

 }

 /**

 * Method to get a pixel object for the given x

and y

 * location

 * @param x the x location of the pixel in the

picture

 * @param y the y location of the pixel in the

picture

 * @return a Pixel object for this location

 */

 public Pixel getPixel(int x, int y)

 {

 // create the pixel object for this picture and

the

 // given x and y location

 Pixel pixel = new Pixel(this,x,y);

 return pixel;

 }

 /**

 * Method to get a one-dimensional array of

Pixels for

 * this simple picture

 * @return a one-dimensional array of Pixel

objects

 * starting with y=0

 * to y=height-1 and x=0 to x=width-1.

 */

 public Pixel[] getPixels()

 {

 int width = getWidth();

 int height = getHeight();

 Pixel[] pixelArray = new Pixel[width * height];

 // loop through height rows from top to bottom

 for (int row = 0; row < height; row++)

 for (int col = 0; col < width; col++)

 pixelArray[row * width + col] =

 new

Pixel(this,col,row);

 return pixelArray;

 }

 /**

 * Method to load the buffered image with the

passed

 * image

 * @param image the image to use

 */

 public void load(Image image)

 {

 // get a graphics context to use to draw on the

 // buffered image

 Graphics2D graphics2d =

bufferedImage.createGraphics();

 // draw the image on the buffered image

starting

 // at 0,0

 graphics2d.drawImage(image,0,0,null);

 // show the new image

 show();

 }

 /**

 * Method to show the picture in a picture frame

 */

 public void show()

 {

 // if there is a current picture frame then

use it

 if (pictureFrame != null)

 pictureFrame.updateImageAndShowIt();

 // else create a new picture frame with this

picture

 else

 pictureFrame = new PictureFrame(this);

 }

 /**

 * Method to hide the picture

 */

 public void hide()

 {

 if (pictureFrame != null)

 pictureFrame.setVisible(false);

 }

 /**

 * Method to make this picture visible or not

 * @param flag true if you want it visible else

false

 */

 public void setVisible(boolean flag)

 {

 if (flag)

 this.show();

 else

 this.hide();

 }

 /**

 * Method to open a picture explorer on a copy of

this

 * simple picture

 */

 public void explore()

 {

 // create a copy of the current picture and

explore it

 new PictureExplorer(new SimplePicture(this));

 }

 /**

 * Method to force the picture to redraw itself.

This is

 * very useful after you have changed the pixels

in a

 * picture.

 */

 public void repaint()

 {

 // if there is a picture frame tell it to

repaint

 if (pictureFrame != null)

 pictureFrame.repaint();

 // else create a new picture frame

 else

 pictureFrame = new PictureFrame(this);

 }

 /**

 * Method to load the picture from the passed

file name

 * @param fileName the file name to use to load

the

 * picture from

 */

 public void loadOrFail(

 String fileName) throws

IOException

 {

 // set the current picture's file name

 this.fileName = fileName;

 // set the extension

 int posDot = fileName.indexOf('.');

 if (posDot >= 0)

 this.extension = fileName.substring(posDot +

1);

 // if the current title is null use the file

name

 if (title == null)

 title = fileName;

 File file = new File(this.fileName);

 if (!file.canRead())

 {

 // try adding the media path

 file = new File(

FileChooser.getMediaPath(this.fileName));

 if (!file.canRead())

 {

 throw new IOException(this.fileName + "

could not"

 + " be opened. Check that you specified the

path");

 }

 }

 bufferedImage = ImageIO.read(file);

 }

 /**

 * Method to write the contents of the picture to

a file

 * with the passed name without throwing errors

 * (THIS MAY NOT BE A VALID DESCRIPTION - RGB)

 * @param fileName the name of the file to write

the

 * picture to

 * @return true if success else false

 */

 public boolean load(String fileName)

 {

 try {

 this.loadOrFail(fileName);

 return true;

 } catch (Exception ex) {

 System.out.println("There was an error

trying"

 + " to open " +

fileName);

 bufferedImage = new

BufferedImage(600,200,

BufferedImage.TYPE_INT_RGB);

 addMessage("Couldn't load " +

fileName,5,100);

 return false;

 }

 }

 /**

 * Method to load the picture from the passed

file name

 * this just calls load(fileName) and is for name

 * compatibility

 * @param fileName the file name to use to load

the

 * picture from

 * @return true if success else false

 */

 public boolean loadImage(String fileName)

 {

 return load(fileName);

}

 /**

 * Method to draw a message as a string on the

buffered

 * image

 * @param message the message to draw on the

buffered

 * image

 * @param xPos the leftmost point of the string

in x

 * @param yPos the bottom of the string in y

 */

 public void addMessage(

 String message, int xPos,

int yPos)

 {

 // get a graphics context to use to draw on the

 // buffered image

 Graphics2D graphics2d =

bufferedImage.createGraphics();

 // set the color to white

 graphics2d.setPaint(Color.white);

 // set the font to Helvetica bold style and

size 16

 graphics2d.setFont(new

Font("Helvetica",Font.BOLD,16));

 // draw the message

 graphics2d.drawString(message,xPos,yPos);

 }

 /**

 * Method to draw a string at the given location

on the

 * picture

 * @param text the text to draw

 * @param xPos the left x for the text

 * @param yPos the top y for the text

 */

 public void drawString(String text, int xPos, int

yPos)

 {

 addMessage(text,xPos,yPos);

 }

 /**

 * Method to create a new picture by scaling the

 * current picture by the given x and y factors

 * @param xFactor the amount to scale in x

 * @param yFactor the amount to scale in y

 * @return the resulting picture

 */

 public Picture scale(double xFactor, double

yFactor)

 {

 // set up the scale tranform

 AffineTransform scaleTransform =

 new

AffineTransform();

 scaleTransform.scale(xFactor,yFactor);

 // create a new picture object that is the

right size

 Picture result = new Picture(

 (int) (getWidth() *

xFactor),

 (int) (getHeight() *

yFactor));

 // get the graphics 2d object to draw on the

result

 Graphics graphics = result.getGraphics();

 Graphics2D g2 = (Graphics2D) graphics;

 // draw the current image onto the result

image

 // scaled

g2.drawImage(this.getImage(),scaleTransform,null);

 return result;

 }

 /**

 * Method to create a new picture of the passed

width.

 * The aspect ratio of the width and height will

stay

 * the same.

 * @param width the desired width

 * @return the resulting picture

 */

 public Picture getPictureWithWidth(int width)

 {

 // set up the scale tranform

 double xFactor = (double) width /

this.getWidth();

 Picture result = scale(xFactor,xFactor);

 return result;

 }

 /**

 * Method to create a new picture of the passed

height.

 * The aspect ratio of the width and height will

stay

 * the same.

 * @param height the desired height

 * @return the resulting picture

 */

 public Picture getPictureWithHeight(int height)

 {

 // set up the scale tranform

 double yFactor = (double) height /

this.getHeight();

 Picture result = scale(yFactor,yFactor);

 return result;

 }

 /**

 * Method to load a picture from a file name and

show it

 * in a picture frame

 * @param fileName the file name to load the

picture

 * from

 * @return true if success else false

 */

 public boolean loadPictureAndShowIt(String

fileName)

 {

 boolean result = true;// the default is that it

worked

 // try to load the picture into the buffered

image from

 // the file name

 result = load(fileName);

 // show the picture in a picture frame

 show();

 return result;

 }

 /**

 * Method to write the contents of the picture to

a file

 * with the passed name

 * @param fileName the name of the file to write

the

 * picture to

 */

 public void writeOrFail(String fileName)

 throws

IOException

 {

 //the default is current

 String extension = this.extension;

 // create the file object

 File file = new File(fileName);

 File fileLoc = file.getParentFile();

 // canWrite is true only when the file exists

 // already! (alexr)

 if (!fileLoc.canWrite()) {

 // System.err.println(

 // "can't write the file but trying anyway?

...");

 throw new IOException(fileName +

 " could not be opened. Check to see if you

can"

 + " write to the directory.");

 }

 // get the extension

 int posDot = fileName.indexOf('.');

 if (posDot >= 0)

 extension = fileName.substring(posDot + 1);

 //write the contents of the buffered image to

the file

 // as jpeg

 ImageIO.write(bufferedImage, extension, file);

 }

 /**

 * Method to write the contents of the picture to

a file

 * with the passed name without throwing errors

 * @param fileName the name of the file to write

the

 * picture to

 * @return true if success else false

 */

 public boolean write(String fileName)

 {

 try {

 this.writeOrFail(fileName);

 return true;

 } catch (Exception ex) {

 System.out.println(

 "There was an error trying to

write "

 + fileName);

 return false;

 }

 }

 /**

 * Method to set the media path by setting the

directory

 * to use

 * @param directory the directory to use for the

media

 * path

 */

 public static void setMediaPath(String directory)

{

 FileChooser.setMediaPath(directory);

 }

 /**

 * Method to get the directory for the media

 * @param fileName the base file name to use

 * @return the full path name by appending

 * the file name to the media directory

 */

 public static String getMediaPath(String

fileName) {

 return FileChooser.getMediaPath(fileName);

 }

 /**

 * Method to get the coordinates of the

enclosing

 * rectangle after this transformation is

applied to

 * the current picture

 * @return the enclosing rectangle

 */

 public Rectangle2D getTransformEnclosingRect(

AffineTransform trans)

 {

 int width = getWidth();

 int height = getHeight();

 double maxX = width - 1;

 double maxY = height - 1;

 double minX, minY;

 Point2D.Double p1 = new Point2D.Double(0,0);

 Point2D.Double p2 = new

Point2D.Double(maxX,0);

 Point2D.Double p3 = new

Point2D.Double(maxX,maxY);

 Point2D.Double p4 = new

Point2D.Double(0,maxY);

 Point2D.Double result = new

Point2D.Double(0,0);

 Rectangle2D.Double rect = null;

 // get the new points and min x and y and max

x and y

 trans.deltaTransform(p1,result);

 minX = result.getX();

 maxX = result.getX();

 minY = result.getY();

 maxY = result.getY();

 trans.deltaTransform(p2,result);

 minX = Math.min(minX,result.getX());

 maxX = Math.max(maxX,result.getX());

 minY = Math.min(minY,result.getY());

 maxY = Math.max(maxY,result.getY());

 trans.deltaTransform(p3,result);

 minX = Math.min(minX,result.getX());

 maxX = Math.max(maxX,result.getX());

 minY = Math.min(minY,result.getY());

 maxY = Math.max(maxY,result.getY());

 trans.deltaTransform(p4,result);

 minX = Math.min(minX,result.getX());

 maxX = Math.max(maxX,result.getX());

 minY = Math.min(minY,result.getY());

 maxY = Math.max(maxY,result.getY());

 // create the bounding rectangle to return

 rect = new Rectangle2D.Double(

 minX,minY,maxX - minX + 1, maxY -

minY + 1);

 return rect;

 }

 /**

 * Method to return a string with information

about this

 * picture

 * @return a string with information about the

picture

 */

 public String toString()

 {

 String output =

 "Simple Picture, filename " + fileName +

 " height " + getHeight() + " width " +

getWidth();

 return output;

 }

} // end of SimplePicture class

Listing 32. Source code for Ericson's DigitalPicture interface.

import java.awt.Image;

import java.awt.image.BufferedImage;

/**

 * Interface to describe a digital picture. A

digital

 * picture can have a associated file name.

It can have

 * a title. It has pixels associated with it

and you can

 * get and set the pixels. You can get an

Image from a

 * picture or a BufferedImage. You can load

it from a

 * file name or image. You can show a

picture. You can

 * create a new image for it.

 *

 * Copyright Georgia Institute of Technology

2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public interface DigitalPicture

{

 // get the file name that the picture came

from

 public String getFileName();

 // get the title of the picture

 public String getTitle();

 // set the title of the picture

 public void setTitle(String title);

 // get the width of the picture in pixels

 public int getWidth();

 // get the height of the picture in pixels

 public int getHeight();

 // get the image from the picture

 public Image getImage();

 // get the buffered image

 public BufferedImage getBufferedImage();

 // get the pixel information as an int

 public int getBasicPixel(int x, int y);

 // set the pixel information

 public void setBasicPixel(int x, int y, int

rgb);

 // get the pixel information as an object

 public Pixel getPixel(int x, int y);

 // load the image into the picture

 public void load(Image image);

 // load the picture from a file

 public boolean load(String fileName);

 // show the picture

 public void show();

}

Listing 33. Source code for the program named Java354a.

/*Program Java354a

Copyright R.G.Baldwin 2009

The purpose of this program is to illustrate the use of

several of the methods that are declared in the

DigitalPicture interface as implemented in the Picture

class.

One Picture object is constructed by using a Picture

constructor that accepts the name of an image file as a

parameter and uses the image from that file as the

image in the Picture object. The picture is displayed by

calling the show method on the Picture object.

In this case, the title is automatically set to the name

of the image file.

A second Picture object is constructed by using a Picture

constructor that accepts the dimensions of the Picture

object only and constructs a Picture object with a default

all-white image. The size of the Picture object that is

constructed is only 1x1.

Then the load method that takes the name of an image file

is called to load the image from an image file into the

small Picture object. The size of the picture object

changes to accommodate the size of the image.

In this case, the default title is "None". The setTitle

and getFileName methods are used to set the title for the

picture. Then the explore method is called to display the

Picture object with its new image and title.

Note that if you call the show method on a picture,

modify the picture, and call the show method on the

picture again, only one copy of the picture is displayed

and the results may not be what you expect to see.

However, displaying the picture in the explore format,

modifying it, and then displaying it again in the show

format seems to work OK.

A pair of nested for loops is used in conjunction with the

getBasicPixel and setBasicPixel methods to copy the right

half of the image in the first Picture object into the

left half of the second Picture object, leaving the right

half of the second Picture object undisturbed.

Then the show method is called on the modified second

picture object to display it.

Note that both image files are in the current directory.

Along the way, the program calls methods dealing with the

file name and the title and eventually prints that

information on the system console.

The following methods from the DigitalPicture interface

are used in this program.

* String getFileName()

* String getTitle()

* void setTitle(String title)

* int getWidth()

* int getHeight()

* int getBasicPixel(int x, int y)

* void setBasicPixel(int x, int y, int rgb)

* boolean load(String fileName)

* void show()

The following methods that are declared in the

DigitalPicture interface are not used in this program.

* Image getImage()

* BufferedImage getBufferedImage()

* Pixel getPixel(int x, int y)

* void load(Image image)

Tested using Windows Vista Premium Home edition and

Ericson's multimedia library.

***/

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main method

}//end class Main

//--//

class Runner{

 void run(){

 //Construct a new 341x256 Picture object providing the

 // name of an image file as a parameter.

 Picture pix1 = new Picture("ScaledAquarium.gif");

 pix1.show();//display the picture in the show format

 //Create a new small Picture object with a default

 // all-white image. It must be at least 1x1 or a

 // runtime error will occur.

 Picture pix2 = new Picture(1,1);

 //Load a 341x256 image from a jpg file into the small

 // Picture object. Note that the size of the Picture

 // object increases or decreases to accommodate the

 // size of the image.

 pix2.load("ScaledBeach.jpg");

 //Set the title of the picture.

 pix2.setTitle("pix2: " + pix2.getFileName());

 //Note that if you call the show method on a picture,

 // modify the picture, and call the show method on the

 // picture again, only one copy of the picture is

 // displayed and the results may not be what you

 // expect to see. However, displaying the picture in

 // the explore format, modifying it, and then

 // displaying it again in the show format seems to

 // work OK.

 pix2.explore();

 //Use the getBasicPixel and setBasicPixel methods to

 // copy the right half of the image from pix1 into the

 // left half of pix2, leaving the right half of pix2

 // undisturbed.

 for(int row = 0;row < pix1.getHeight();row++){

 for(int col = 0;col < pix2.getWidth()/2;col++){

 pix2.setBasicPixel(col,row,pix1.getBasicPixel(

 col + pix1.getWidth()/2,row));

 }//end inner for loop

 }//end outer for loop

 //Display the final result.

 pix2.show();

 //Display some text on the system console.

 System.out.println(pix1);

 System.out.println("pix1 Filename: "

 + pix1.getFileName());

 System.out.println(pix2);

 System.out.println("pix2 FileName: "

 + pix2.getFileName());

 System.out.println("pix1 Title: " + pix1.getTitle());

 System.out.println("pix2 Title: " + pix2.getTitle());

 }//end run

}//end class Runner

Listing 34. Source code for the program named Java354b.

/*Program Java354b

Copyright R.G.Baldwin 2009

The purpose of this program is to illustrate the use of

several of the methods that are declared in the

DigitalPicture interface as implemented in the Picture

class.

The earlier program named Java354a illustrated the use of

all but the following four methods that are declared in

the DigitalPicture interface

* Image getImage()

* BufferedImage getBufferedImage()

* void load(Image image)

* Pixel getPixel(int x, int y)

This program creates and displays four Picture objects

using the first three methods in the above list, leaving

only the following method to be illustrated in another

program.

* Pixel getPixel(int x, int y)

Tested using Windows Vista Premium Home edition and

Ericson's multimedia library.

***/

import java.awt.Image;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main method

}//end class Main

//--//

class Runner{

 void run(){

 //Construct a new 341x256 Picture object by providing

 // the name of an image file as a parameter to the

 // Picture constructor.

 Picture pix1 = new Picture("ScaledAquarium.gif");

 pix1.setTitle("pix1");

 pix1.show();

 //Construct another new 341x256 Picture object by

 // providing the name of an image file as a parameter

 // to the Picture constructor.

 Picture pix2 = new Picture("ScaledBeach.jpg");

 pix2.setTitle("pix2");

 pix2.show();

 //Construct a third new 341x256 Picture object by

 // extracting the BufferedImage object from pix1 and

 // passing it as a parameter to the constructor for

 // the Picture constructor.

 Picture pix3 = new Picture(pix1.getBufferedImage());

 pix3.setTitle("pix3");

 pix3.show();

 //Construct a fourth new 341x256 Picture object by

 // starting with an all-white Picture object and

 // loading an image extracted from pix2.

 Image image = pix2.getImage();

 //Note that unlike the load method that takes a file

 // name as a parameter, this version of the load

 // method does not automatically set the size of the

 // Picture object to match the size of the image.

 //Get the size of the image and pass those dimensions

 // to the constructor for the Picture object.

 Picture pix4 = new Picture(image.getWidth(null),

 image.getHeight(null));

 //Now load the image into the Picture object and

 // display the picture.

 pix4.load(image);

 pix4.setTitle("pix4");

 pix4.show();

 }//end run

}//end class Runner

Listing 35. Source code for the program named Java354c.

/*Program Java354c

Copyright R.G.Baldwin 2009

The programs named Java354a and Java354b illustrated all

of the methods declared in the DigitalPicture interface

other than the getPixel method.

The purpose of this program is to illustrate the use of

the getPixel method as implemented in the Picture class,

and to compare its use with the getBasicPixel and

setBasicPixel methods.

This program begins by creating two Picture objects

containing the same image. Then the program modifies the

green component for each row of one picture using the

getBasicPixel and setBasicPixel methods. This approach

requires a programming knowledge of bit manipulations.

Then the program does the same thing to the other picture

using the getPixel method and methods of the Pixel class.

This illustrates the reduction in complexity achieved

by using the getPixel method in place of the getBasicPixel

method.

Both approaches require three statements inside a pair of

nested for loops, but the three statements involving bit

manipulations are much more complex. Both processes

produce the same visual result.

With regard to the modification of the green color

component in the two pictures, the green color component

is scaled by zero for every pixel in the first row and is

scaled by 1.0 for every pixel in the bottom row with the

scale factors between the first and last row being

proportional to the row number. This results in an image

with a purple tinge at the top and the correct colors at

the bottom.

Tested using Windows Vista Premium Home edition and

Ericson's multimedia library.

***/

import java.awt.Image;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main method

}//end class Main

//--//

class Runner{

 void run(){

 //Construct a new 341x256 Picture object by providing

 // the name of an image file as a parameter to the

 // Picture constructor.

 Picture pic1 = new Picture("ScaledBeach.jpg");

 pic1.setTitle("pic1");

 pic1.explore();

 //Construct another new 341x256 Picture object by

 // providing the name of an image file as a parameter

 // to the Picture constructor.

 Picture pic2 = new Picture("ScaledBeach.jpg");

 pic2.setTitle("pic2");

 pic2.explore();

 //Modify the green component for each row separately

 // using the getBasicPixel and setBasicPixel methods.

 // This approach requires a programming knowledge of

 // bit manipulations.

 //Do the same thing using the getPixel method to

 // illustrate the reduction in complexity achieved

 // by using the getPixel method.

 //Both approaches require three statements inside a

 // pair of nested for loops, but the three statements

 // involving bit manipulations are much more complex.

 //Note that both Picture objects contain the same

 // image and both processes produce the same visual

 // output.

 //The green color component is scaled by zero for

 // every pixel in the first row and is scaled by

 // 1.0 for every pixel in the bottom row with the

 // scale factors between the first and last row being

 // proportional to the row number. This results in an

 // image with a purple tinge at the top and the

 // correct colors at the bottom.

 //Declare some working constants and variables.

 final int maskA = 0x0000FF00;//green only

 final int maskB = 0xFFFF00FF;//all but green

 int pixA = 0;

 int greenByte = 0;

 for(int row = 0;row < pic1.getHeight();row++){

 for(int col = 0;col < pic1.getWidth();col++){

 //Working at the bit level, scale the green byte

 // by 0.0 in the first row and 1.0 in the last row

 // with proportional scaling in between.

 pixA = pic1.getBasicPixel(col,row);

 greenByte =

 (int)(((pixA & maskA) >> 8)* row/255.0) << 8;

 pic1.setBasicPixel(

 col,row,(pixA & maskB) | greenByte);

 }//end inner for loop

 }//end outer for loop

 pic1.show();

 //Do the same thing to the other picture working at

 // the Pixel level.

 Pixel pixB = null;

 int greenValue = 0;

 for(int row = 0;row < pic2.getHeight();row++){

 for(int col = 0;col < pic2.getWidth();col++){

 //Working at the Pixel level, do the same thing.

 pixB = pic2.getPixel(col,row);

 greenValue = (int)(pixB.getGreen() * row/255.0);

 pixB.setGreen(greenValue);

 }//end inner for loop

 }//end outer for loop

 pic2.show();

 }//end run

}//end class Runner

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/

Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:baldwin@dickbaldwin.com

