
3D Displays, Color Distance, and Edge Detection

Learn about color distance, projecting 3D coordinates onto a 2D display plane, and
edge detection. Understanding these concepts will help you to better understand
modern image processing.

Published: January 27, 2009
By Richard G. Baldwin

Java Programming Notes # 350

 Preface
o General
o Let's have some fun
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
o Edge detection
o Color distance and 3D projections
o Color distance results for a very simple case
o Color distance results for an image of a butterfly

 Discussion and sample code
o The program named Java350a
o The program named Java 350b
o The program named Java 350c
o The program named Java 350d

 Run the programs
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

Preface

General

mailto:Baldwin@DickBaldwin.com

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters into videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

Let's have some fun

You've been working very hard if you have studied all of the earlier lessons in this series
(see Resources). You have learned all about the Turtle class, its superclass named
SimpleTurtle, and the classes from which a turtle's contained objects are instantiated
(Pen and PathSegment).

You have learned how to instantiate new Turtle objects, placing them in either a World
object or a Picture object. You have learned how to manipulate the Turtle objects once
you place them in their environment.

It's time to take a break and have some fun by writing non-trivial programs that make
use of what you have learned so far. That's what we are going to do in this lesson.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Raw image from the program named Java350d.
 Figure 2. Final output from the program named Java350d.
 Figure 3. Screen output from the program named Java350a.
 Figure 4. Screen output from the program named Java350b.
 Figure 5. Screen output from the program named Java350c.
 Figure 6. Numeric color distance values.
 Figure 7. Another variation on edge detection.
 Figure 8. Butterfly with red outline and color inversion.
 Figure 9. Butterfly with cyan outline and color inversion.

Listings

 Listing 1. Beginning of the program named Java350a.

 Listing 2. Beginning of the class named Runner.
 Listing 3. Methods to project 3D coordinate value onto 2D plane.
 Listing 4. Beginning of the run method.
 Listing 5. Beginning of the drawLines method.
 Listing 6. Draw black lines that outline the cube.
 Listing 7. Paint the top surface of the cube.
 Listing 8. Paint the front and right surfaces of the cube.
 Listing 9. Beginning of the program named Java350b
 Listing 10. Beginning of the Runner class and the run method.
 Listing 11. The getColorDistance method.
 Listing 12. Source code for the Pixel's colorDistance method.
 Listing 13. Plot the red wiggly line.
 Listing 14. Beginning of the Runner class and run method for Java350d.
 Listing 15. Perform edge detection on the image.
 Listing 16. The edge detector method.
 Listing 17. Source code for the program named Java350a.
 Listing 18. Source code for the program named Java350b.
 Listing 19. Source code for the program named Java350c.
 Listing 20. Source code for the program named Java350d.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

Edge detection

http://www.dickbaldwin.com/toc.htm

I will present and explain four different programs in this lesson. The last program will
teach you one of several ways to do edge detection on an image. By edge detection, I
mean the ability to convert the image shown in Figure 1 into the image shown in Figure
2.

Figure 1. Raw image from the program named Java350d.

Figure 2. Final output from the program named Java350d.

A black and white pencil drawing

As you can see, this form of edge detection converts a full-colored photographic image
into something that resembles a black and white pencil drawing. While you may not be
anxious to convert your digital images of friends and family to pencil drawings,
understanding how this is done will help you to understand a great deal about image
manipulation in general as well as image manipulation using Ericson's multimedia Java
library.

Color distance and 3D projections

Before you can understand how to do edge detection using this approach, you must first
understand the concept of color distance.

I will begin by explaining the concept of color distance using a 3D color cube as a
model. Therefore, in addition to learning how to do edge detection, you will also learn
how to project 3D coordinate values onto a 2D display and how to color the surfaces of
a 3D color cube as shown in Figure 3.

Figure 3. Screen output from the program named Java350a.

Color distance results for a very simple case

It will be much easier to understand the concept of color distance by beginning with
some very simple synthetic images. Therefore, the second program that I will explain
creates an image containing several groups of adjacent black pixels on a white
background. Then the program computes and plots the color distance between each
pair of adjacent pixels moving from left to right across the image along a row of pixels.

The interesting results occur where there is a white pixel adjacent to a black pixel at
each end of each group of black pixels. The results are shown in Figure 4.

Figure 4. Screen output from the program named Java350b.

Look very closely

If you look very closely, you will see a single black pixel immediately below the center of
the red line near the top of Figure 4. Similarly, if you look closely, you will also see a
row of four black pixels below the center of the bottom red line. There are also rows of
two and three black pixels immediately below the center of the second and third red
lines respectively.

The red lines in Figure 4 plot the value of the color distance between pairs of adjacent
pixels. The color distance between two white pixels is zero, and the color distance
between two black pixels is zero. However, the value of the color distance between a
white pixel and a black pixel is large as Figure 4 indicates. (I will tell you how large later
in this lesson.)

Color distance results for an image of a butterfly

Figure 5 shows the same color-distance computation applied to an image of a butterfly
instead of being applied to a simple synthetic image as was the case in Figure 4.

Figure 5. Screen output from the program named Java350c.

Plots of the color-distance values

Each of the red lines in Figure 5 plots the color distance values between each
successive pair of pixels, moving from left to right across a row of pixels. As you can
see, there are strong peaks at each point where there is an abrupt change in color, (as
when the color changes from dark gray to almost white for example). Less abrupt
changes in color result in lower peaks. There are few, if any peaks in those areas
where the color is generally the same.

Once you understand how the results shown in Figure 5 were obtained, you will also be
in a position to understand how the results shown in Figure 2 were obtained.

Discussion and sample code

The program named Java350a

Before you can understand how to do edge detection using color distance as the
determining factor, you must first understand the concept of color distance.

Color distance and a 3D cube

I will begin by explaining the concept of color distance using a 3D cube as a model. (In
addition to learning how to do edge detection in this lesson, you will also learn how to
project 3D coordinate values onto a 2D display.) You will also learn how to color the
visible surfaces of a 3D cube as shown in Figure 3.

You can think of the red, green, and blue color-component values in a Color object as
representing a single point in 3D space, where the three axes are red, green, and
blue. Given that each color-component value ranges between 0 and 255, the set of all
possible combinations of the three colors fall within a 3D cube with dimensions of 256
along each edge as shown in Figure 3.

The color black is at the origin

The color black with RGB values of 0,0,0 is a point at the origin of the 3D color
space. (The color black is not visible in Figure 3 because the origin is on the back face
of the cube. Only the front, top, and right side faces of the cube are visible in Figure 3.)

Yellow and white

The color yellow, represented by the RGB value 255,255,0 appears at the top back
right-hand corner of Figure 3. Similarly, the color white, represented by the RGB value
255,255,255 appears at the top front right-hand corner in Figure 3.

Colors of the eight vertices

The eight vertices of the cube in Figure 3 represent the following color values:

1. 0,0,0 (black - bottom back left corner)
2. 0,255,0 (green - top back left corner)
3. 0,255,255 (cyan - top front left corner)
4. 0,255,0 (blue - bottom front left corner)
5. 255,0,255 (magenta - bottom front right corner)
6. 255,255,255 (white - top front right corner)
7. 255,255,0 (yellow - top back right corner)
8. 255,0,0 (red - bottom back right corner)

More than 16-million colors

Every one of more than 16-million possible colors is represented by a point that is either
inside the cube or on one of the faces of the cube in Figure 3.

The color distance

The color distance between two pixels is the positive length of a line segment that
connects two points in Figure 3, where each point represents the color of a pixel. (I will
explain later how you can compute the length of that line segment.) It should be clear,

however, that the largest possible color distance is represented by a line segment that
extends diagonally through the cube from one vertex to another. One such diagonal
line extends from the origin (black) to the upper-right corner (white). Another extends
from the blue vertex to the yellow vertex, and a third extends from the magenta vertex to
the green vertex. The length of each such diagonal line segment is approximately 441
units.

Behavior and purpose of the program

This program creates and displays the 3D color cube shown in Figure 3. The cube
displays shows various combinations of red, green, and blue on the top face, the front
face, and the right-most face of the cube.

The purpose of the program is to provide a springboard for discussing the concept of
the distance between two colors as points in 3D space.

The 3D space and cube parameters

The positive red axis is toward the right as shown by the tiny stub protruding from the
cube on the right side of Figure 3. The positive green axis is up, and the positive blue
axis protrudes toward the left side of the viewer.

The type of projection that was used to project the 3D coordinate data onto the 2D
display is a Cavalier projection with the angle phi equal to 45 degrees. (See
Classification of 3D to 2D projections in Resources, for more information on projection
types.)

Will discuss in fragments

A complete listing of this program is provided in Listing 17 near the end of the
lesson. As is my practice, I will discuss and explain the program in fragments,
beginning with the fragment in Listing 1.

Listing 1. Beginning of the program named Java350a.

import java.awt.*;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main

}//end class Main

The code in Listing 1 is straightforward and shouldn't require an explanation.

Beginning of the class named Runner

Listing 1 instantiates a new object of the class named Runner and calls a method
named run on that object. The class named Runner begins in Listing 2.

Listing 2. Beginning of the class named Runner.

class Runner{

 final double sin45 = 0.7071067811865476;

 final double cos45 = 0.7071067811865476;

 final int width = 460;

 final int height = 460;

 final int originX = (int)(0.42*width);

 final int originY = (int)(0.59*height);

 World mars = null;

Listing 2 declares and initializes several constants along with one instance
variable. These constants and the variable are used later in the program.

Projecting 3D coordinate values onto a 2D display plane

Listing 3 shows two methods that are used to project a 3D coordinate value onto a 2D
display plane. The method named p3dX receives the 3D coordinates of a point in the
RGB color space and returns the x-axis coordinate at which the point should be located
on the 2D display plane.

Listing 3. Methods to project 3D coordinate value onto 2D plane.

 int p3dX(int red,int green,int blue){

 return (int)(red-blue*sin45);

 }//end p3Dx

 //--

----------//

 int p3dY(int red,int green,int blue){

 //Reverse the sign to account for the fact

that

 // positive y-coordinates go down the

screen

 return -(int)(green-blue*cos45);

 }//end p3dY

Similarly, the method named p3dY receives the 3D coordinates of a point in RGB color
space, and returns the y-axis coordinate at which the point should be located on the 2D
display plane.

Both methods must be called with the coordinates of the point in 3D color space to
determine the x and y coordinates at which the point should be located on the 2D
display plane.

An exercise for the student

As you can see, each of the methods in Listing 3 consists of a single statement. I'm not
going to try to explain why these mathematical expressions succeed in projecting a 3D
coordinate value onto a 2D display plane. I'll leave that as an exercise for the
student. Just be aware that there are several different ways to project a 3D coordinate
value onto a 2D display plane and this is only one of those ways. (See Classification of
3D to 2D projections in Resources, for example.)

Beginning of the run method

As you saw in Listing 1, the main method in this program instantiates a new object of
the Runner class and calls the run method on that object. The beginning of the run
method is shown in Listing 4.

Listing 4. Beginning of the run method.

 void run(){

 //Create a new World object.

 mars = new World(width,height);

 //Place a new turtle on the right edge of

the World

 // and make it invisible.

 Turtle joe = new

Turtle(width,originY,mars);

 joe.setVisible(false);

 //Draw colored axes and black lines that

outline the

 // cube.

 drawLines(joe);

Everything in Listing 4 down to the call to the method named drawLines should be
familiar to you by now, so I won't discuss it further. However, the drawLines method is
new, so I will put the explanation of the run method on hold temporarily and explain the
drawLines method.

The drawLines method

The drawLines method, which begins in Listing 5, is rather long and boring, so I broke
it out into a separate method simply to improve the
organization of the program.

The origin of the 3D

projection
The purpose of the constants

named originX and originY,

defined in Listing 2, is to

Note that the drawLines method receives a reference to
the Turtle object that was instantiated in Listing 4 and
which was placed at the right edge of the World object
immediately to the right of the origin of the 3D projection
shown in Figure 3.

Listing 5. Beginning of the drawLines method.

 void drawLines(Turtle joe){

 //Draw red x-axis by moving the turtle from the

right

 // edge to the origin of the 3D world.

 joe.setPenWidth(2);//Draw the colored axes wide.

 joe.setPenColor(Color.RED);

joe.moveTo(p3dX(0,0,0)+originX,p3dY(0,0,0)+originY);

 //Draw green y-axis by moving the turtle to near

the

 // top edge of the 3D world and then return to

the

 // origin.

 joe.setPenColor(Color.GREEN);

 joe.moveTo(p3dX(0,265,0)+originX,

 p3dY(0,265,0)+originY);

 joe.moveTo(p3dX(0,0,0)+originX,

 p3dY(0,0,0)+originY);

 //Draw blue z-axis and return turtle to the

origin of

 // the 3D world.

 joe.setPenColor(Color.BLUE);

 joe.moveTo(p3dX(0,0,265)+originX,

 p3dY(0,0,265)+originY);

 joe.moveTo(p3dX(0,0,0)+originX,

 p3dY(0,0,0)+originY);

Draw the colored 3D axes lines

The purpose of the code in Listing 5 is to draw colored lines that represent the axes in
3D space. (The ends of those axes can be seen protruding from the right, front, and top
of the cube in Figure 3.)

The lines are drawn by causing the turtle to move from one location to another and
causing the turtle tracks to be visible. The colors of the turtle tracks are controlled by
calls to the turtle's setPenColor method. The width of the lines is set to two pixels by a
call to the turtle's setPenWidth method. I explained both of these methods in the
previous lesson. (See The Pen and PathSegment Classes in Resources.)

An illusion of transparency

establish the location of the

origin of the 3D projection on

the 2D display plane.

Note that because of the sequence in which the world repaints itself, with the historical
turtle tracks being drawn last, these lines are drawn on top of the colored pixels that
color the sides of the cube in Figure 3. (I also explained the sequence in which the
world repaints itself in an earlier lesson.) This makes it look as though the faces of the
cube in Figure 3 are transparent, allowing the lines to show through the faces of the
cube.

Projecting the line's coordinates onto the 2D display plane

The turtle's moveTo method, which is called several times in Listing 5, knows nothing
about 3D space. Rather, it requires a pair of x and y coordinate values on the 2D
display plane.

Each time the moveTo method is called in Listing 5, calls to the p3Dx and p3Dy
methods (see Listing 3) are made to project the 3D coordinate values that define the
end of the move to coordinates on the 2D display plane. Then the values of the
constants named originX and originY are added to the 2D coordinate values to
translate the origin in 3D space from the upper-left corner of the 2D display plane to the
location shown in Figure 3.

Draw black lines that outline the cube

The purpose of the code in Listing 6 is to draw the black lines that outline the cube
shown in Figure 3. If you understand the code in Listing 5, you should have no
problems with the code in Listing 6.

Listing 6. Draw black lines that outline the cube.

 joe.setPenWidth(1);//Draw narrow black

lines.

 joe.setPenColor(Color.BLACK);

 //Draw four lines that outline the base of

a cube. The

 // size of the cube is 256 pixels on each

side.

 joe.moveTo(p3dX(0,0,255)+originX,

 p3dY(0,0,255)+originY);

 joe.moveTo(p3dX(255,0,255)+originX,

 p3dY(255,0,255)+originY);

 joe.moveTo(p3dX(255,0,0)+originX,

 p3dY(255,0,0)+originY);

 joe.moveTo(p3dX(0,0,0)+originX,

 p3dY(0,0,0)+originY);

 //Move up and draw four lines that outline

the top of

 // the cube.

 joe.moveTo(p3dX(0,255,0)+originX,

 p3dY(0,255,0)+originY);

 joe.moveTo(p3dX(0,255,255)+originX,

 p3dY(0,255,255)+originY);

 joe.moveTo(p3dX(255,255,255)+originX,

 p3dY(255,255,255)+originY);

 joe.moveTo(p3dX(255,255,0)+originX,

 p3dY(255,255,0)+originY);

 joe.moveTo(p3dX(0,255,0)+originX,

 p3dY(0,255,0)+originY);

 //Draw three vertical lines at the

corners.

 joe.moveTo(p3dX(0,255,255)+originX,

 p3dY(0,255,255)+originY);

 joe.moveTo(p3dX(0,0,255)+originX,

 p3dY(0,0,255)+originY);

 joe.moveTo(p3dX(255,0,255)+originX,

 p3dY(255,0,255)+originY);

 joe.moveTo(p3dX(255,255,255)+originX,

 p3dY(255,255,255)+originY);

 joe.moveTo(p3dX(255,255,0)+originX,

 p3dY(255,255,0)+originY);

 joe.moveTo(p3dX(255,0,0)+originX,

 p3dY(255,0,0)+originY);

 }//end drawLines

Listing 6 also signals the end of the method named drawLines.

Return to the method named run

Now, returning to the method named run that began in Listing 4, Listing 7 paints the top
surface of the cube shown in Figure 3.

Listing 7. Paint the top surface of the cube.

 //Paint the top of the cube. Begin by

getting a

 // reference to the Picture object that

belongs to the

 // world by default.

 Picture picture = mars.getPicture();

 Pixel pixel = null;//a working variable

 for(int blu = 0;blu < 256;blu++){

 for(int rd = 0;rd < 256;rd++){

 //Hold the green coordinate constant.

 int grn = 255;

 pixel =

picture.getPixel(p3dX(rd,grn,blu)+originX,

p3dY(rd,grn,blu)+originY);

 pixel.setColor(new Color(rd,grn,blu));

 }//end for loop

 }//end outer loop

The background image of a World object

As you will learn when I explain the World class in a future lesson, every World object
contains a reference to an object of the class named Picture. (Picture is a large and
complex class that I will also explain in a future lesson.) As the name implies, the
Picture object provides a background image for the world.

By default, the background image is simply all white. However, as you can see in
Figure 5, the default all-white background image can be replaced by any image that we
want to place there.

In this program, we begin with an all-white default background image and change the
colors of selected pixels to produce the image shown in Figure 3. (Note however, that
as I explained in an earlier lesson, turtle tracks do not become a permanent part of the
background image of a World object.)

Paint the top surface of the cube

Listing 7 begins by getting a reference to the world's Picture object. Then Listing 7
uses a pair of nested for loops to change the color of every pixel on the top surface of
the cube. As before, calls to the methods named p3dX and p3dY are called to project
3D coordinate values on the top surface of the cube to x and y coordinate values on the
2D display plane.

The set of all possible 3D color coordinates for which...

The top plane of the cube in Figure 3 represents the set of all possible 3D color
coordinates for which the green or vertical coordinate value is held constant at a value
of 255.

Hence the code in Listing 7 iterates through all possible combinations of red, green, and
blue for a constant value of 255 for green. (There are 65,536 such coordinates.)

This process results in a color of pure green at the top back left corner of the cube in
Figure 3 and a color of white at the top front right corner of the cube. Similarly, it results
in a color of yellow at the top back right corner and a color of cyan at the top front left
corner.

Changing the color of a pixel

As mentioned earlier, the color of every pixel in the default background picture of a
World object is white. The picture's getPixel method is called repeatedly in Listing 7 to
get access to the individual pixels that make up the top surface of the cube. The pixel's
setColor method is called to set the color component values for each pixel to the
desired values.

Paint the front and right surfaces of the cube

Listing 8 uses code similar to the code in Listing 7 to paint the front and right surfaces of
the cube in Figure 3.

Listing 8. Paint the front and right surfaces of the cube.

 //Paint the front surface of the cube

 for(int grn = 0;grn < 256;grn++){

 for(int rd = 0;rd < 256;rd++){

 int blu = 255;//hold the blue

coordinate constant.

 pixel =

picture.getPixel(p3dX(rd,grn,blu)+originX,

p3dY(rd,grn,blu)+originY);

 pixel.setColor(new Color(rd,grn,blu));

 }//end for loop

 }//end outer loop

 //Paint the right-most surface of the cube

 for(int grn = 0;grn < 256;grn++){

 for(int blu = 0;blu < 256;blu++){

 int rd = 255;//hold the red coordinate

constant

 pixel =

picture.getPixel(p3dX(rd,grn,blu)+originX,

p3dY(rd,grn,blu)+originY);

 pixel.setColor(new Color(rd,grn,blu));

 }//end for loop

 }//end outer loop

 //Force the world to repaint itself.

 mars.setVisible(false);

 mars.setVisible(true);

 }//end run

 //--

----------//

}//end class Runner

If you understood the code in Listing 7, you should have no difficulty understanding the
code in Listing 8.

Listing 8 also signals the end of the class named Runner and the end of the program.

The program named Java 350b

The purpose of this program is to plot and display the values that result from computing
the color-distances between a white pixel and an adjacent black pixel. The program
also illustrates the usefulness of a Turtle object for plotting wiggly-line data, such as the
red plots shown in Figure 5.

Black pixels on a white background

In this program, four groups of black pixels are placed in a white picture in a world. (If
you look very closely, you can see the black pixels immediately below the centers of the
red lines in Figure 4.)

The first group of black pixels actually isn't a group at all. Instead, it is a single black
pixel on a horizontal row of white pixels near the top of Figure 4. The second group
consists of two adjacent black pixels on a horizontal row of white pixels. The third group
consists of three adjacent black pixels on a row of white pixels, and the fourth group
consists of four adjacent black pixels on a row of white pixels at the bottom of Figure 4.

Compute and plot the color distances

The color-distance between adjacent pixels is computed and plotted as a red wiggly-line
plot for each of the four rows of pixels containing black pixels in Figure 4.

The value of the color distance between adjacent white pixels or between adjacent
black pixels is zero. The value of the color distance between a white pixel and a black
pixel (regardless of the order) is approximately 441.67. This results in the red peaks (at
the locations of the black pixels) in the wiggly-line plots shown in Figure 4 being quite
large.

A more detailed description of the procedure

More specifically, the program traverses four specific rows of pixels from left to right on
the image, computing the color distance between the color of the current pixel and the
color of the pixel immediately to its right.

The color distance values for each traversal are saved in an array of type double. Then
the program uses a turtle to plot the distance values as a red wiggly-line plot across the
image with the baseline of the plot being one pixel above the row of pixels for which the
distance values were computed.

As mentioned above, the peaks in the wiggly line correspond to locations on the row of
pixels where there are abrupt changes in the color values from white to black or black to
white.

The numeric results

I temporarily modified the program to print the numeric color-distance values as the
program was running. The numeric values produced by the computation (in the vicinity
of each group of black pixels) are shown in Figure 6.

Figure 6. Numeric color distance values.

Row Pix Color distance

123 208 0

123 209 441.6729559300637

123 210 441.6729559300637

123 211 0

246 208 0

246 209 441.6729559300637

246 210 0

246 211 441.6729559300637

246 212 0

369 208 0

369 209 441.6729559300637

369 210 0

369 211 0

369 212 441.6729559300637

369 213 0

492 208 0

492 209 441.6729559300637

492 210 0

492 211 0

492 212 0

492 213 441.6729559300637

492 214 0

And the numeric results were...

For the case of a single black pixel surrounded by white pixels in row 123, the color-
distance computation resulted in two peaks with values of approximately 441.67
surrounded by values of zero. (The two peaks run together and appear as a single
peak that is two pixels wide in Figure 4.)

For the case of two adjacent black pixels surrounded by white pixels in row 246, the
color distance computation again resulted in two peaks with values of 441.67
surrounded by values of zero. However, in this case, the two peak values were
separated by a value of zero and the two peaks are visually separable in Figure 4.

Finally, for the case of four adjacent black pixels surrounded by white pixels in row 492,
the color distance computation resulted in two peaks with values of 441.67 surrounded

by values of zero. In this case the two peak values were separated by three values of
zero and are clearly visually separable in the bottom red plot in Figure 4.

An interpretation of the results

The interpretation of these results is that as the computation of color distance moves
across a row of pixels from left to right, a strong peak is produced by the abrupt change
from white to black and again by the abrupt change from black to white. In those areas
where the color of two adjacent pixels is either white or black, the output of the color-
distance computation is zero.

This knowledge can be used to understand the results that you saw in Figure 5 where
you can see peaks on both sides of the nearly white spots on the nearly black butterfly
wings.

Will discuss in fragments

A complete listing of the program named Java350b is provided in Listing 18 near the
end of the lesson. As usual, I will explain the code in fragments.

The program begins in Listing 9 with code that is essentially the same as in the previous
program.

Listing 9. Beginning of the program named Java350b

import java.awt.*;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main

}//end class Main

Listing 9 instantiates a new object of the Runner class and calls the run method on that
object.

Beginning of the Runner class and the run method

Listing 10 shows the beginning of the Runner class and the run method.

Listing 10. Beginning of the Runner class and the run method.

class Runner{

 void run(){

 //Create a new World object containing a

default white

 // Picture object.

 int width = 420;

 int height = 493;

 World mars = new World(width,height);

 //Get a reference to the all-white picture

that is

 // contained in the World object by

default.

 Picture picture = mars.getPicture();

 //Create a new Turtle object and place it

in the

 // default location at the center of the

world. Make

 // the turtle invisible and set its pen

color to RED.

 Turtle joe = new Turtle(mars);

 joe.setVisible(false);

 joe.setPenColor(Color.RED);

 //Create an array for storage of the

color-distance

 // data.

 double[] distance = new double[width];

 //Loop and process four horizontal rows of

pixels.

 for(int row = height/4,num = 1;row <

height;

 row +=

height/4,num++){

 //Place adjacent black pixels at the

center of each

 // row with the number of pixels ranging

from 1 on

 // the first row to 4 on the last row.

 Pixel pix = null;

 for(int cntr = 0;cntr < num;cntr++){

 pix = picture.getPixel(cntr +

width/2,row);

 pix.setColor(Color.BLACK);

 }//end for loop

 //Populate the array with the color-

distances

 // between adjacent pixels for the

specified row.

 getColorDistance(picture,row,distance);

Nothing new here

With the exception of the call to the getColorDistance method, there is nothing in
Listing 10 that you haven't seen before. Therefore, this code shouldn't require much of
an explanation beyond the embedded comments.

As before, this program instantiates a new World object containing a default Picture
object producing an all white background. Then the code executes a for loop to
process the four rows of pixels indicated by the red horizontal lines in Figure 4.

Near the beginning of this for loop, the program uses another short for loop to place the
black pixels in the white background as explained earlier.

Then Listing 10 calls the getColorDistance method to compute the color-distance
values for a specific row of pixels and uses that data to populate an array object of type
double. At this point, I will put the run method on and explain the method named
getColorDistance, which is shown in its entirety in Listing 11.

The getColorDistance method

This method populates an array of type double with the color distances between
adjacent pixels on a specified row of a specified Picture object.

Listing 11. The getColorDistance method.

 void getColorDistance(

 Picture picture,int

row,double[] distance){

 Pixel pix1;

 Pixel pix2;

 for(int cnt = 0;cnt < distance.length-

1;cnt++){

 //Get two adjacent pixels in the

specified row.

 pix1 = picture.getPixel(cnt,row);

 pix2 = picture.getPixel(cnt + 1,row);

 //Get and save the color distance

between the two

 // pixels.

 distance[cnt] =

pix1.colorDistance(pix2.getColor());

 }//end for loop

 }//end getColorDistance

Once again, what is the color distance?

I told you earlier that the color distance between two pixels is the positive length of a
line segment that connects two points inside of or on the surface of the 3D color cube in
Figure 3, where each point represents the color of a pixel. However, I didn't tell you
how to compute that distance.

Ericson's colorDistance method

The truth is that you really don't need to know how to compute the color distance to
program using Ericson's multimedia library. An object of Ericson's Pixel class provides
a method named colorDistance that can be called to return the color distance between
the current pixel and the color of another pixel. Listing 11 calls that method to compute
the color distance between each pixel on the row and its neighbor immediately to its
right.

Some insight might be helpful

However, I will provide some insight as to how the color distance is computed. You are
probably already aware that you can use the Pythagorean Theorem to compute the
distance between any two points in a 2D coordinate system. Using the x and y
coordinates of the two points, you can construct the base and the opposite side of a
right triangle where the hypotenuse of the triangle is the line segment that joins the two
points. Then you can apply the Pythagorean Theorem to compute the length of the
hypotenuse as the square root of the sum of the squares of the base and the opposite
side of the right triangle. This will give you the distance between the two points.

A very similar process

Computing the distance between two points in 3D space involves a very similar
process. Rather than to try to describe the process in words, I will simply show you
Ericson's source code for the colorDistance method of the Pixel class (see Listing 12).

Listing 12. Source code for the Pixel's colorDistance method.

public double colorDistance(Color testColor){

 double redDistance = this.getRed() -

testColor.getRed();

 double greenDistance =

 this.getGreen() -

testColor.getGreen();

 double blueDistance =

 this.getBlue() -

testColor.getBlue();

 double distance = Math.sqrt(

 redDistance *

redDistance +

 greenDistance *

greenDistance +

 blueDistance *

blueDistance);

 return distance;

}//end color distance method

If you examine the code in Listing 12, you should be able to see the similarity between
this code and code that you would write to compute the distance between two points in
2D space.

http://en.wikipedia.org/wiki/Pythagorean_theorem

Returning to the run method

Returning now to the run method, Listing 13 uses the turtle object in conjunction with
the color distance data in the array referred to by the variable named distance to draw
the red lines shown in Figure 4.

Listing 13. Plot the red wiggly line.

 //Baseline for wiggly line plot.

 int baseline = row-1;

 //Move the turtle to the right edge of

the World

 // one pixel above the value of the row.

Don't leave

 // a turtle track in the process.

 joe.setPenDown(false);

 joe.moveTo(width,baseline);

 joe.setPenDown(true);

 //Draw a baseline by moving turtle to

the left side

 // of the world.

 joe.moveTo(0,baseline);

 //Draw the wiggly line. Change the sign

of the

 // distance values to cause positive

values to

 // peak upward on the screen. Scale the

distance

 // values down by a factor of 4. This

should result

 // in a peak value of 110 pixels

 for(int cnt = 0;cnt <

distance.length;cnt++){

 joe.moveTo(cnt+1,baseline-

(int)(distance[cnt]/4));

 }//end inner for loop

 }//end outer for loop

 }//end run method

 //--

----------//

}//end class Runner

There is nothing in Listing 13 that you haven't seen before, so no explanation should be
required beyond the embedded comments.

Listing 13 also signals the end of the run method and the end of the program.

The program named Java 350c

The purpose of this program is to provide a springboard for explaining the behavior of
the edge-detection program that I will explain later.

This program displays an image of a butterfly on a World object as shown in Figure
5. Then it traverses four specific horizontal rows of pixels on the image, computing the
color distance between the current pixel and the pixel immediately to its right. As in the
previous program, the distance values are saved in an array of type double.

Plot color distance data as wiggly-line plots

Then the program uses a turtle to plot the distance values as a wiggly line across the
image with the baseline of the plot being one pixel above the row of pixels for which the
distance values were computed. The peaks in the wiggly line correspond to locations
on the row of pixels where there are abrupt changes in the color values.

The color-distance values in Figure 5 are plotted to the same scale as the color distance
values plotted by the program named Java350b in Figure 4. Therefore, those values,
which show the maximum distance between a white pixel and a black pixel in Figure 4,
can be used to visually calibrate the color distances associated with color changes in
the butterfly image. None of the peaks in Figure 5 are as tall as the peaks in Figure 4,
meaning that there are no cases in Figure 5 where the color changes from absolute
black to absolute white.

Useful for edge detection

As you will see later, this technique is very useful for doing edge detection in order to
produce results similar to those shown in Figure 2.

Very similar program code

As you may have guessed, this program is very similar to the program named
Java350b. About the only difference is that this program loads the image of the butterfly
into the world's Picture object instead of creating an image using program code by
placing groups of black pixels on the default world's picture having a white
background. Therefore, I won't bore you by explaining the code for this program. You
will find a complete listing of the code in Listing 19 near the end of the lesson.

The program named Java 350d

This is an edge-detection program. The program displays an image of a butterfly on a
World object as shown in Figure 1. Then it traverses each horizontal row of pixels on
the image, computing the color-distance between the color of the current pixel and the
color of the pixel immediately to its right.

White pixels and black pixels

If the color-distance value is greater than a specified threshold, the color of the left-most
pixel in the pair is changed to black. Otherwise, it is changed to white. The result is a
picture resembling a pencil drawing of the butterfly as shown in Figure 2. Increasing the
threshold value will decrease the number of black pixels in the output.

A relatively simple program

After having worked your way through the three earlier programs in this lesson, you may
be surprised to learn how simple this edge-detection program really is. I suppose that
means that it is much more difficult to explain how edge detection works than it is to
actually perform edge detection on an image once you understand the process.

Source code for the program named Java350d

A complete listing of this program is provided in Listing 20 near the end of the
lesson. This program begins just like the other programs in this lesson by instantiating
an object of the Runner class and calling the run method on that object. The source
code for the Runner method and the run class begins in Listing 14.

Listing 14. Beginning of the Runner class and run method for Java350d.

class Runner{

 void run(){

 //Clipping threshold for edge detection.

 int threshold = 18;

 //Create and display a Picture object

using an image

 // file in the current directory.

 Picture picture = new

Picture("butterfly1.jpg");

 picture.show();

 //Create a new World object and assign the

above

 // Picture object to the World picture.

Note that the

 // size of the world was set to be

slightly smaller

 // than the size of the image, which is

422x497.

 int width = 420;

 int height = 493;

 World mars = new World(width,height);

 mars.setPicture(picture);

The variable named threshold

With the exception of the declaration of the variable named threshold, there is nothing
new in Listing 14. As you will see later, the color distance values are compared to the
threshold value to determine whether to replace the current pixel with a black pixel or a
white pixel. Increasing the threshold value will typically decrease the number of black
pixels.

Perform edge detection on the image

The remainder of the run method is shown in Listing 15.

Listing 15. Perform edge detection on the image.

 //Loop and process each horizontal rows of

pixels

 // to produce the edge-detected output.

 for(int row = 0;row < height;row++){

edgeDetector(picture,row,width,threshold);

 }//end outer for loop

 //Force a repaint

 mars.setVisible(false);

 mars.setVisible(true);

 }//end run method

Listing 15 uses a for loop to call the method named edgeDetector once for each row of
pixels in the image. I'll explain that method shortly.

Force a repaint

In the meantime, the last two statements in Listing 15 force the world to be repainted. I
found that without this code on my computer, the world is sometimes displayed in an
incomplete state with part of the image having been edge-detected and part of the
image still in its raw form. I also found that to be true for one of the earlier programs as
well, but I forgot to mention it when I was explaining that program.

The edge detector method

The edge detector method is shown in its entirety in Listing 16.

Listing 16. The edge detector method.

 void edgeDetector(

 Picture picture,int row,int width,int

threshold){

 Pixel pix1;

 Pixel pix2;

 for(int cnt = 0;cnt < width-1;cnt++){

 //Get two adjacent pixels in the

specified row.

 pix1 = picture.getPixel(cnt,row);

 pix2 = picture.getPixel(cnt + 1,row);

 //Get and save the color distance

between the two

 // pixels.

 double distance =

pix1.colorDistance(pix2.getColor());

 //Compare the color distance to the

threshold and

 // change pixel color accordingly.

 if(distance > threshold){

 pix1.setColor(Color.BLACK);

 }else{

 pix1.setColor(Color.WHITE);

 }//end else

 }//end for loop

 }//end edgeDetector

}//end class Runner

Change pixels to either black or white

This method computes the color-distances between each pair of adjacent pixels on a
specified row of a specified Picture object in a manner similar to the earlier
program. However, in this case, if the value of the color distance is greater than a
specified threshold, the color of the left-most pixel in the pair is changed to
black. Otherwise, it is changed to white. This converts the image shown in Figure 1
into the image shown in Figure 2.

Other interesting variations on the same theme

There are many interesting variations that you can apply to this process. For example,
if you increase the threshold value to 54, change the color from BLACK to RED in
Listing 16, and eliminate the else clause in Listing 16, you will produce the output image
shown in Figure 7.

Figure 7. Another variation on edge detection.

Butterfly with red outline and color inversion

If you increase the threshold value to 54, change the color from BLACK to RED in
Listing 16, and invert the color of all the pixels that fall below the threshold, you will
produce the output image shown in Figure 8. (I will explain how to invert pixel colors in
a future lesson.)

Figure 8. Butterfly with red outline and color inversion.

Butterfly with cyan outline and color inversion

If you increase the threshold value to 54, change the
color from BLACK to CYAN in Listing 16, and invert the
color of all the pixels that fall below the threshold, you
will produce the output image shown in Figure 9.

Figure 9. Butterfly with cyan outline and color
inversion.

Be adventuresome
For a little adventure, open this

HTML file in Microsoft Word

and select Figure 9. You

should see a very strong

resemblance between that

image and a raw version of

Figure 7. Alternately, select

Figure 7 in Word and compare

it with the raw version of

Figure 9.

And that's a wrap

That is the end of the program, and almost the end of the lesson.

Run the programs

I encourage you to copy the code from Listing 17 through Listing 20, compile the code,
and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

Summary

I presented and explained four different programs in this lesson. The last program
taught you how to do edge detection on an image. The first three programs were
designed to help you understand how edge detection works. Those programs also
taught you about color distance, and how to project 3D coordinates onto a 2D display
plane.

What's next?

In the next lesson, you will learn how to write a Java program to apply a blurring or
softening filter to your digital photos with the amount of softening being controlled by a
slider.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA
 Vector Cad-Cam XI Lathe Tutorial
 Classification of 3D to 2D projections
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 400 Processing Image Pixels using Java, Getting Started
 402 Processing Image Pixels using Java, Creating a Spotlight
 404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
 406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
 408 Processing Image Pixels, Performing Convolution on Images
 410 Processing Image Pixels, Understanding Image Convolution in Java
 412 Processing Image Pixels, Applying Image Convolution in Java, Part 1
 414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
 416 Processing Image Pixels, An Improved Image-Processing Framework in

Java
 418 Processing Image Pixels, Creating Visible Watermarks in Java

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011

 450 A Framework for Experimenting with Java 2D Image-Processing Filters
 452 Using the Java 2D LookupOp Filter Class to Process Images
 454 Using the Java 2D AffineTransformOp Filter Class to Process Images
 456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble

Images
 458 Using the Java 2D BandCombineOp Filter Class to Process Images
 460 Using the Java 2D ConvolveOp Filter Class to Process Images
 462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to

Process Images
 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 17
through Listing 20 below.

Listing 17. Source code for the program named Java350a.

/***

Program Java350a

Copyright R.G.Baldwin, 2009

This program creates and displays a 3D color cube that

displays various combinations of red, green, and blue on

the top, the front, and the right-most side of the cube.

The purpose of the program is to provide a platform for

discussing the concept of the distance between two colors

as points in 3D space. The positive red axis is toward

the right. The positive green axis is up, and the

positive blue axis is toward the viewer. The type of

projection that was used is a Cavalier projection with the

angle phi equal to 45 degrees.

See http://local.wasp.uwa.edu.au/~pbourke/geometry

/classification/ for more information on projection

types.

Tested under Win XP using the Ericson multimedia library.

***/

import java.awt.*;

public class Main{

http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761

 public static void main(String[] args){

 new Runner().run();

 }//end main

}//end class Main

//==//

class Runner{

 final double sin45 = 0.7071067811865476;

 final double cos45 = 0.7071067811865476;

 final int width = 460;

 final int height = 460;

 final int originX = (int)(0.42*width);

 final int originY = (int)(0.59*height);

 World mars = null;

 //--//

 //The purpose of each of the following two methods is to

 // project a point in 3D space onto a 2D surface for

 // display using a Cavalier projection with the angle

 // phi equal to 45 degrees. This method returns the

 // 2D x-coordinate where the point is to be plotted.

 int p3dX(int red,int green,int blue){

 return (int)(red-blue*sin45);

 }//end p3Dx

 //--//

 //This method returns the 2D y-coordinate where the

 // point is to be plotted.

 int p3dY(int red,int green,int blue){

 //Reverse the sign to account for the fact that

 // positive y-coordinates go down the screen

 return -(int)(green-blue*cos45);

 }//end p3dY

 //--//

 void run(){

 //Create a new World object.

 mars = new World(width,height);

 //Place a new turtle on the right edge of the World

 // and make it invisible.

 Turtle joe = new Turtle(width,originY,mars);

 joe.setVisible(false);

 //Draw colored axes and black lines that outline the

 // cube.

 drawLines(joe);

 //Paint the top of the cube. Begin by getting a

 // reference to the Picture object that belongs to the

 // world by default.

 Picture picture = mars.getPicture();

 Pixel pixel = null;//a working variable

 for(int blu = 0;blu < 256;blu++){

 for(int rd = 0;rd < 256;rd++){

 //Hold the green coordinate constant.

 int grn = 255;

 pixel = picture.getPixel(p3dX(rd,grn,blu)+originX,

 p3dY(rd,grn,blu)+originY);

 pixel.setColor(new Color(rd,grn,blu));

 }//end for loop

 }//end outer loop

 //Paint the front surface of the cube

 for(int grn = 0;grn < 256;grn++){

 for(int rd = 0;rd < 256;rd++){

 int blu = 255;//hold the blue coordinate constant.

 pixel = picture.getPixel(p3dX(rd,grn,blu)+originX,

 p3dY(rd,grn,blu)+originY);

 pixel.setColor(new Color(rd,grn,blu));

 }//end for loop

 }//end outer loop

 //Paint the right-most surface of the cube

 for(int grn = 0;grn < 256;grn++){

 for(int blu = 0;blu < 256;blu++){

 int rd = 255;//hold the red coordinate constant

 pixel = picture.getPixel(p3dX(rd,grn,blu)+originX,

 p3dY(rd,grn,blu)+originY);

 pixel.setColor(new Color(rd,grn,blu));

 }//end for loop

 }//end outer loop

 //Force the world to repaint itself.

 mars.setVisible(false);

 mars.setVisible(true);

 }//end run

 //--//

 //The purpose of this method is to draw colored axes

 // that represent the 3D space and black lines that

 // outline the cube. This is accomplished with turtle

 // tracks. Note that because of the sequence in which

 // the world repaints itself, with the historical turtle

 // tracks being drawn last, these lines will be drawn on

 // top of the colored pixels that color the sides of the

 // cube. This makes it look like the sides of the cube

 // are transparent. I put this code in a separate method

 // simply to provide better organization for the

 // program.

 void drawLines(Turtle joe){

 //Draw red x-axis by moving the turtle from the right

 // edge to the origin of the 3D world.

 joe.setPenWidth(2);//Draw the colored axes wide.

 joe.setPenColor(Color.RED);

 joe.moveTo(p3dX(0,0,0)+originX,p3dY(0,0,0)+originY);

 //Draw green y-axis by moving the turtle to near the

 // top edge of the 3D world and then return to the

 // origin.

 joe.setPenColor(Color.GREEN);

 joe.moveTo(p3dX(0,265,0)+originX,

 p3dY(0,265,0)+originY);

 joe.moveTo(p3dX(0,0,0)+originX,

 p3dY(0,0,0)+originY);

 //Draw blue axis and return turtle to the origin of

 // the 3D world.

 joe.setPenColor(Color.BLUE);

 joe.moveTo(p3dX(0,0,265)+originX,

 p3dY(0,0,265)+originY);

 joe.moveTo(p3dX(0,0,0)+originX,

 p3dY(0,0,0)+originY);

 joe.setPenWidth(1);//Draw narrow black lines.

 joe.setPenColor(Color.BLACK);

 //Draw four lines that outline the base of a cube. The

 // size of the cube is 256 pixels on each side.

 joe.moveTo(p3dX(0,0,255)+originX,

 p3dY(0,0,255)+originY);

 joe.moveTo(p3dX(255,0,255)+originX,

 p3dY(255,0,255)+originY);

 joe.moveTo(p3dX(255,0,0)+originX,

 p3dY(255,0,0)+originY);

 joe.moveTo(p3dX(0,0,0)+originX,

 p3dY(0,0,0)+originY);

 //Move up and draw four lines that outline the top of

 // the cube.

 joe.moveTo(p3dX(0,255,0)+originX,

 p3dY(0,255,0)+originY);

 joe.moveTo(p3dX(0,255,255)+originX,

 p3dY(0,255,255)+originY);

 joe.moveTo(p3dX(255,255,255)+originX,

 p3dY(255,255,255)+originY);

 joe.moveTo(p3dX(255,255,0)+originX,

 p3dY(255,255,0)+originY);

 joe.moveTo(p3dX(0,255,0)+originX,

 p3dY(0,255,0)+originY);

 //Draw three vertical lines at the corners.

 joe.moveTo(p3dX(0,255,255)+originX,

 p3dY(0,255,255)+originY);

 joe.moveTo(p3dX(0,0,255)+originX,

 p3dY(0,0,255)+originY);

 joe.moveTo(p3dX(255,0,255)+originX,

 p3dY(255,0,255)+originY);

 joe.moveTo(p3dX(255,255,255)+originX,

 p3dY(255,255,255)+originY);

 joe.moveTo(p3dX(255,255,0)+originX,

 p3dY(255,255,0)+originY);

 joe.moveTo(p3dX(255,0,0)+originX,

 p3dY(255,0,0)+originY);

 }//end drawLines

}//end class Runner

Listing 18. Source code for the program named Java350b.

/***

Program Java350b

Copyright R.G.Baldwin, 2009

The purpose of this program is to plot and display the

values resulting from computing the color-distances

between white pixels and black pixel.

The program also illustrates the usefulness of a Turtle

object for plotting wiggly-line data.

Four groups of black pixels are placed in a white picture.

The first group is a single black pixel on a horizontal

row of pixels. The second group consists of two adjacent

black pixels on a horizontal row of pixels. The third

group consists of three adjacent black pixels, and the

fourth group consists of four adjacent black pixels.

The color-distance between adjacent pixels is computed,

plotted, and displayed for each row of pixels containing

black pixels.

The color distance between a white pixel and a black pixel

is 441.67.

More specifically, the program traverses four specific

rows of pixels on the image, computing the color distance

between the color of the current pixel and the color of

the pixel immediately to its right. The distance values

are saved in an array of type double. Then the program

uses a turtle to plot the distance values as a wiggly

line across the image with the baseline of the plot being

one pixel above the row of pixels for which the distance

values were computed.

The peaks in the wiggly line correspond to locations on

the row of pixels where there are abrupt changes in the

color values.

Tested under Win XP using the Ericson multimedia library.

***/

import java.awt.*;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main

}//end class Main

//==//

class Runner{

 void run(){

 //Create a new World object containing a default white

 // Picture object.

 int width = 420;

 int height = 493;

 World mars = new World(width,height);

 //Get a reference to the all-white picture that is

 // contained in the World object by default.

 Picture picture = mars.getPicture();

 //Create a new Turtle object and place it in the

 // default location at the center of the world. Make

 // the turtle invisible and set its pen color to RED.

 Turtle joe = new Turtle(mars);

 joe.setVisible(false);

 joe.setPenColor(Color.RED);

 //Create an array for storage of the color-distance

 // data.

 double[] distance = new double[width];

 //Loop and process four horizontal rows of pixels.

 for(int row = height/4,num = 1;row < height;

 row += height/4,num++){

 //Place adjacent black pixels at the center of each

 // row with the number of pixels ranging from 1 on

 // the first row to 4 on the last row.

 Pixel pix = null;

 for(int cntr = 0;cntr < num;cntr++){

 pix = picture.getPixel(cntr + width/2,row);

 pix.setColor(Color.BLACK);

 }//end for loop

 //Populate the array with the color-distances

 // between adjacent pixels for the specified row.

 getColorDistance(picture,row,distance);

 //Baseline for wiggly line plot.

 int baseline = row-1;

 //Move the turtle to the right edge of the World

 // one pixel above the value of the row. Don't leave

 // a turtle track in the process.

 joe.setPenDown(false);

 joe.moveTo(width,baseline);

 joe.setPenDown(true);

 //Draw a baseline by moving turtle to the left side

 // of the world.

 joe.moveTo(0,baseline);

 //Draw the wiggly line. Change the sign of the

 // distance values to cause positive values to

 // peak upward on the screen. Scale the distance

 // values down by a factor of 4. This should result

 // in a peak value of 110 pixels

 for(int cnt = 0;cnt < distance.length;cnt++){

 joe.moveTo(cnt+1,baseline-(int)(distance[cnt]/4));

 }//end inner for loop

 }//end outer for loop

 }//end run method

 //--//

 //This method populates an array of type double with the

 // color distances between adjacent pixels on a

 // specified row of a specified Picture object.

 void getColorDistance(

 Picture picture,int row,double[] distance){

 Pixel pix1;

 Pixel pix2;

 for(int cnt = 0;cnt < distance.length-1;cnt++){

 //Get two adjacent pixels in the specified row.

 pix1 = picture.getPixel(cnt,row);

 pix2 = picture.getPixel(cnt + 1,row);

 //Get and save the color distance between the two

 // pixels.

 distance[cnt] = pix1.colorDistance(pix2.getColor());

 }//end for loop

 }//end getColorDistance

}//end class Runner

Listing 19. Source code for the program named Java350c.

/***

Program Java350c

Copyright R.G.Baldwin, 2009

The purpose of this program is to provide a platform for

explaining the behavior of edge-detection programs.

The program displays an image of a butterfly on a World

object. Then it traverses four specific horizontal rows

of pixels on the image, computing the color distance

between the color of the current pixel and the color of

the pixel immediately to its right. The distance values

are saved in an array of type double. Then the program

uses a turtle to plot the distance values as a wiggly line

across the image with the baseline of the plot being one

pixel above the row of pixels for which the distance

values were computed.

The peaks in the wiggly line correspond to locations on

the row of pixels where there are abrupt changes in the

color values. The color-distance values are plotted to the

same scale as the values plotted in the program named

Java350b. Therefore, those values, which show the maximum

distance between a white pixel and a black pixel, can be

used to visually calibrate the color distances associated

with color changes in the butterfly image.

This technique is useful for doing edge detection.

Tested under Win XP using the Ericson multimedia library.

***/

import java.awt.*;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main

}//end class Main

//==//

class Runner{

 void run(){

 //Create a Picture object using an image file in the

 // current directory.

 Picture picture = new Picture("butterfly1.jpg");

 //Create a new World object and assign the above

 // Picture object to the World picture. Note that the

 // size of the world was matched to the size of the

 // image.

 int width = 420;

 int height = 493;

 World mars = new World(width,height);

 mars.setPicture(picture);

 //Create a new Turtle object and place it in the

 // default location at the center of the world. Make

 // the turtle invisible and set its pen color to

 // RED.

 Turtle joe = new Turtle(mars);

 joe.setVisible(false);

 joe.setPenColor(Color.RED);

 //Create an array for storage of the color-distance

 // data.

 double[] distance = new double[width];

 //Loop and process four horizontal rows of pixels.

 for(int row = height/4;row < height;row += height/4){

 //Populate the array with the color-distances

 // between adjacent pixels for the specified row.

 getColorDistance(picture,row,distance);

 //Baseline for wiggly line plot.

 int baseline = row-1;

 //Move the turtle to the right edge of the World

 // one pixel above the value of the row. Don't leave

 // a turtle track in the process.

 joe.setPenDown(false);

 joe.moveTo(width,baseline);

 joe.setPenDown(true);

 //Draw a baseline by moving the turtle to the left

 // side of the world.

 joe.moveTo(0,baseline);

 //Draw the wiggly line. Change the sign of the

 // distance values to cause positive values to

 // peak upward on the screen. Scale the distance

 // values down by a factor of 4.

 for(int cnt = 0;cnt < distance.length-1;cnt++){

 joe.moveTo(cnt+1,baseline-(int)(distance[cnt]/4));

 }//end inner for loop

 }//end outer for loop

 }//end run method

 //--//

 //This method populates an array of type double with the

 // color distances between adjacent pixels on a

 // specified row of a specified Picture object.

 void getColorDistance(

 Picture picture,int row,double[] distance){

 Pixel pix1;

 Pixel pix2;

 for(int cnt = 0;cnt < distance.length-1;cnt++){

 //Get two adjacent pixels in the specified row.

 pix1 = picture.getPixel(cnt,row);

 pix2 = picture.getPixel(cnt + 1,row);

 //Get and save the color distance between the two

 // pixels.

 distance[cnt] = pix1.colorDistance(pix2.getColor());

 }//end for loop

 }//end getColorDistance

}//end class Runner

Listing 20. Source code for the program named Java350d.

/***

Program Java350c

Copyright R.G.Baldwin, 2009

This is an edge-detection program.

The program displays an image of a butterfly on a World

object. Then it traverses each horizontal row of pixels

on the image, computing the color-distance between the

color of the current pixel and the color of the pixel

immediately to its right. If the color-distance value is

greater than a specified threshold, the color of the

left-most pixel in the pair is changed to black.

Otherwise, it is changed to white.

The result is a picture resembling a pencil drawing of the

butterfly. Increasing the threshold value decreases the

number of black pixels in the output.

Tested under Win XP using the Ericson multimedia library.

***/

import java.awt.*;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main

}//end class Main

//==//

class Runner{

 void run(){

 //Clipping threshold for edge detection.

 int threshold = 18;

 //Create and display a Picture object using an image

 // file in the current directory.

 Picture picture = new Picture("butterfly1.jpg");

 picture.show();

 //Create a new World object and assign the above

 // Picture object to the World picture. Note that the

 // size of the world was set to be slightly smaller

 // than the size of the image, which is 422x497.

 int width = 420;

 int height = 493;

 World mars = new World(width,height);

 mars.setPicture(picture);

 //Loop and process each horizontal rows of pixels

 // to produce the edge-detected output.

 for(int row = 0;row < height;row++){

 edgeDetector(picture,row,width,threshold);

 }//end outer for loop

 //Force a repaint

 mars.setVisible(false);

 mars.setVisible(true);

 }//end run method

 //--//

 //This method computes the color-distances between each

 // pair of adjacent pixels on a specified row of a

 // specified Picture object. If the value is greater

 // than a specified threshold, the color of the

 // left-most pixel in the pair is changed to black.

 // Otherwise, it is changed to white.

 void edgeDetector(

 Picture picture,int row,int width,int threshold){

 Pixel pix1;

 Pixel pix2;

 for(int cnt = 0;cnt < width-1;cnt++){

 //Get two adjacent pixels in the specified row.

 pix1 = picture.getPixel(cnt,row);

 pix2 = picture.getPixel(cnt + 1,row);

 //Get and save the color distance between the two

 // pixels.

 double distance =

 pix1.colorDistance(pix2.getColor());

 //Compare the color distance to the threshold and

 // change pixel color accordingly.

 if(distance > threshold){

 pix1.setColor(Color.BLACK);

 }else{

 pix1.setColor(Color.WHITE);

 }//end else

 }//end for loop

 }//end edgeDetector

}//end class Runner

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

