
The Pen and PathSegment Classes: Multimedia
Programming with Java

Learn about the Pen and PathSegment classes in Ericson's multimedia library, which
are critical to maintaining a complete history of the turtle's movements.

Published: January 13, 2009
By Richard G. Baldwin

Java Programming Notes # 348

 Preface
o General
o Comments regarding turtle graphics

 Illustration of OOP concepts
 Vector graphics

o Viewing tip
 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
 Discussion and sample code

o The Pen class
o The PathSegment class
o Back to the Pen class
o The program named TurtleGoRound

 Run the programs
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

Preface

General

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

mailto:Baldwin@DickBaldwin.com

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters in videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

Comments regarding turtle graphics

By now, you may be wondering why I am spending so much time and expending so
much effort explaining those parts of Ericson's multimedia library that have to do with
turtle graphics (see Resources). "After all," you may ask, "wasn't turtle graphics
something that was invented by Seymour Papert in the late 60s primarily to teach
computer programming to children?"

Maybe so, but in my opinion Ericson's turtle graphics are still relevant in today's object-
oriented world. There are two main reasons for my concentration on turtle graphics in
the early part of this series:

 Illustration of OOP concepts
 Illustration of vector graphics

Illustration of OOP concepts

Modern turtle graphics provide an excellent illustration of Object-Oriented Programming
concepts.

What is OOP?

Someone once said that an object-oriented program consists of a bunch of objects,
hanging around and exchanging messages for the purpose of solving a specific
programming problem. Modern object-oriented turtle graphics programs are no
exception to that description.

Inheritance

A turtle is an object of the Turtle class, which is a subclass of the SimpleTurtle class,
which in turn is a subclass of the Object class. Therefore, a Turtle object IsA (see
Resources) SimpleTurtle object, and also IsA Object object. In that sense, a turtle
illustrates inheritance.

Containment or composition

http://en.wikipedia.org/wiki/Seymour_Papert

In addition, a Turtle object HasA (see Resources) Pen object, which in turn HasA
ArrayList object. The ArrayList object HasA list of PathSegment objects. Therefore,
a turtle also illustrates containment or composition.

A world is an object

As you will see in the next lesson, a world is an object of the World class, which IsA
JComponent, Container, Component, and Object. Also, through interface
inheritance, a world IsA ImageObserver, MenuContainer, Serializable, and
ModelDisplay.

A World object HasA ArrayList object, which in turn HasA list of none, one, or more
Turtle objects.

Exchanging messages

A Turtle object has state and behavior. Whenever certain aspects of the turtle's state
change, the turtle sends a message to the containing world notifying the world that its
state has changed. The world may elect to repaint itself and its contents at that point in
time, or may defer the repaint to sometime later.

When the world does decide to repaint, it sends a message to each turtle telling the
turtles to repaint themselves on the graphics context belonging to the world.

After repainting its own image as indicated by its current state, the turtle sends a
message to its Pen object telling the pen to repaint its historical path on the graphics
context belonging to the world. This is an example of a model-view-control (MVC)
programming paradigm.

I could go on and on, but hopefully this gives you an idea why I consider modern turtle
graphics to be important in terms of illustrating OOP concepts.

Vector graphics

According to Wikipedia (see Resources):

"Turtle graphics is a term in computer graphics for a method of
programming vector graphics using a relative cursor (the "turtle") upon a
Cartesian plane."

Wikipedia goes on to tell us:

"The turtle has three attributes:

1. a position
2. an orientation

http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Cartesian_plane

3. a pen, itself having attributes such as color, width, and up versus
down.

The turtle moves with commands that are relative to its own position, such
as "move forward 10 spaces" and "turn left 90 degrees". The pen carried
by the turtle can also be controlled, by enabling it, setting its color, or
setting its width. A student could understand (and predict and reason
about) the turtle's motion by imagining what they would do if they were the
turtle. Seymour Papert called this "body syntonic" reasoning.

From these building blocks one can build more complex shapes like
squares, triangles, circles and other composite figures. Combined with
control flow, procedures, and recursion, the idea of turtle graphics is also
useful in a Lindenmayer system for generating fractals."

Almost a lost technology

Although vector graphics was one of the mainstays of computer graphic output during
my early days in the computer industry, it is doubtful that many current students know
much about the topic or appreciate its benefits (Adobe postscript and CAD/CAM use
vector graphics for example).

Bitmapped graphics tend to rule

Those students who do know something about computer graphics are mostly familiar
with bitmapped graphics. Therefore, I see turtle graphics as one way to expand the
horizons of those students, allowing them to learn about and to appreciate the pros and
cons of both vector graphics and bitmapped graphics.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Screen output from the program named Java346a.
 Figure 2. Screen output from the program named TurtleGoRound.

Listings

 Listing 1. Instance variables of the Pen class.
 Listing 2. Instance variables for the PathSegment class.
 Listing 3. Constructor for the PathSegment class.
 Listing 4. The paintComponent method for the PathSegment class.

http://en.wikipedia.org/wiki/Seymour_Papert
http://en.wikipedia.org/wiki/Lindenmayer_system
http://en.wikipedia.org/wiki/Fractal

 Listing 5. Constructors for the Pen class.
 Listing 6. Property methods for the pen's penDown property.
 Listing 7. Property methods for the pen's color property.
 Listing 8. Property methods for the pen's width property.
 Listing 9. The addMove method of the Pen class.
 Listing 10. The clearPath method of the Pen class.
 Listing 11. The pen's paintComponent method.
 Listing 12. Beginning of the Main class and the main method.
 Listing 13. Declare and initialize working variables.
 Listing 14. Move the turtle in a circle.
 Listing 15. Source code for the Pen class.
 Listing 16. Source code for the PathSegment class.
 Listing 17. Source code for the program named Java346a.
 Listing 18. Source code for the program named TurtleGoRound.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

In the previous lesson titled Wrapping Up the SimpleTurtle Class: Multimedia
Programming with Java, (see Resources), I explained that after adjusting the turtle's
position coordinates, code in the various turtle movement methods calls the addMove
method on the turtle's Pen object to add the move information to the turtle's history of
movements. I further explained that the history information is used under certain
circumstances to recreate the turtle's historical movement path when the display is
updated.

http://www.dickbaldwin.com/toc.htm

I will explain the Pen class in this lesson. I will also explain a class named
PathSegment that is used by the Pen class to construct and maintain historical turtle
movement data. Along the way, I will also explain some of the capabilities of the
Graphics2D class and other classes in the Java 2D API.

Program from the previous lesson

Listing 17 provides the source code for a program named Java346a that I explained in
the previous lesson. Figure 1 shows the screen output produced by that program.

Figure 1. Screen output from the program named Java346a.

Turtle tracks are important

In this lesson, we are primarily interested in the tracks produced by the movement of
turtles. The tracks are produced through the use of Pen objects, and the entire
historical track of each turtle is redrawn each time the screen display is updated to show
a different state of a turtle.

The program named TurtleGoRound

In this lesson, I will also present and explain another program that uses a turtle's pen in
a slightly more significant way. In this program, an invisible turtle moves around a
circular path leaving a wide multi-colored track in its wake. The source code for the
program is provided in Listing 18 near the end of the lesson. The screen output is
shown in Figure 2.

Figure 2. Screen output from the program named TurtleGoRound.

Discussion and sample code

The Pen class

A complete listing of the Pen class, as defined by Barb Ericson at the Georgia Institute
of Technology, is shown in Listing 15. Only minor editing changes were made to force
the source code to fit into this narrow publication format.

As is my custom, I will explain the code in fragments, beginning with the instance
variables shown in Listing 1.

Listing 1. Instance variables of the Pen class.

 /** track if up or down */

 private boolean penDown = true;

 /** color of ink */

 private Color color = Color.green;

 /** width of stroke */

 private int width = 1;

 /** list of path segment objects to draw */

 private List<PathSegment> pathSegmentList =

 new ArrayList<PathSegment>();

Property names
See the lesson titled

The variable named penDown

This variable contains the value of a boolean property
named penDown that controls whether or not a track is
drawn when the turtle moves. The property value was
true for both of the turtles shown in Figure 1, which caused the lines describing the
tracks of both turtles to be drawn.

The penDown property value was initially false for the program shown in Figure 2. In
this program, the turtle moved from its initial location at the center of the world to the
center-right edge of the world without leaving a track. Then the penDown property
value was set to true while the turtle traversed the circular path shown by the wide multi-
colored line.

By default, the penDown property value is set to true causing a track to be drawn. The
state of this property can be initialized through the use of an overloaded Pen
constructor and can be modified through the use of a property method named
setPenDown. The state can also be determined by calling a property method named
isPenDown on a turtle object.

The variable named color

This variable contains the value of a property named color that controls the color of a
track when it is drawn. By default, the pen color is green. However, we learned in an
earlier lesson that the color of the pen is set to the bodyColor of each turtle by default
when the SimpleTurtle object is constructed. Thus, the default pen color shown in
Listing 1 is modified by code in the constructor for the SimpleTurtle class.

Turtles of many colors

We also learned that as more and more turtle objects are constructed and added to
either a Picture object or a ModelDisplay (world) object, their default colors cycle
through the following colors in sequence:

 Color.green
 Color.cyan
 new Color(204,0,204)
 Color.gray

Controlling and getting the color property value

The value of the color property can be controlled either through the use of two different
overloaded constructors, or by calling a property method named setColor. This method
provides the mechanism by which the constructor for the SimpleTurtle class sets the
color of the pen to the bodyColor of the turtle by default. The SimpleTurtle constructor
calls a method named setPenColor, which in turn calls the pen's setColor method.

JavaBeans, Introspection in

Resources for an explanation

of the conventions regarding

Java property names.

After constructing the small turtle shown in Figure 1 and setting the color of the turtle's
shell to red, the code in Listing 17 calls the setPenColor method on the turtle object to
set the pen's color property value to blue. This causes the track for that turtle to be
blue.

On the other hand, the default pen color for the large turtle shown in Figure 1 was not
modified, causing the track for that turtle to be the same color as the color of the
turtle. Since this was the second turtle constructed and added to the world, the default
color of the turtle was cyan.

The pen's color property value was changed continuously as the turtle traversed the
circular path in Figure 2, causing the variation in the color of the turtle track.

The color of the pen can also be determined by calling a property method named
getColor.

The variable named width

The third instance variable shown in Listing 1 is width. The value stored in this variable
is a property named width that controls the width of the line that is drawn to represent
the turtle's track. By default, the line is one pixel wide.

The value of this property can be controlled through the use of either one of two
overloaded constructors, or by calling a property method named setWidth.

The value of width can also be determined by calling a property method named
getWidth.

In a manner similar to the color, the SimpleTurtle class provides a method named
setPenWidth that is used to set the width property for the Pen object belonging to each
individual turtle object. This method calls the setWidth method on the turtle's Pen
object to set the value of the pen's width property.

The code in Listing 17 calls the setPenWidth method on the turtle with the red shell to
set the pen width to two pixels. This results in the blue track in Figure 1 being twice the
default width of the cyan track.

The pen's width property was set to five pixels for the program output shown in Figure
2.

The variable named pathSegmentList

The last instance variable shown in Listing 1, named pathSegmentList, is a reference
to a new ArrayList object that uses generics (see the lesson titled Generics in J2SE,
Getting Started in Resources) to create a container for references to objects of the
PathSegment class.

At this point, I will temporarily put the explanation of the Pen class on the back burner
and explain the PathSegment class. Then I will return to the explanation of the Pen
class.

The PathSegment class

A complete listing of the PathSegment class is provided in Listing 16 near the end of
the lesson. As usual, I will explain the code in this class
in fragments.

The purpose of an object of the PathSegment class is
to represent a line segment in a series of one or more
line segments that track the movement of a turtle when
the pen for that turtle is down.

A PathSegment object has a color, a width, and a
reference to a Line2D object. (See the various
references to Java 2D Graphics in Resources for
examples of the use of Line2D objects.)

As I explained in earlier lessons, whenever a World
object containing turtles is repainted, it is necessary to completely redraw the entire
track for each turtle object that has been moving with its pen down. As you will see
later, this is accomplished by the turtle object's Pen object saving that track as a list of
PathSegment objects in the ArrayList object referred to by the pathSegmentList
variable shown in Listing 1.

Instance variables for the PathSegment class

Listing 2 shows the instance variables belonging to an object of the PathSegment
class.

Listing 2. Instance variables for the PathSegment class.

 private Color color;

 private int width;

 private Line2D.Float line;

These three instance variables correspond to the three items mentioned earlier. Of the
three, only the third one merits an explanation.

The Line2D.Float class

As explained in the sidebar, the Line2D class is the abstract superclass for all objects
that store a 2D line segment. The actual storage representation of the coordinates is left

The Line2D class
According to the

documentation, "This Line2D

represents a line segment in

(x,y) coordinate space. ...This

class is only the abstract

superclass for all objects that

store a 2D line segment. The

actual storage representation

of the coordinates is left to the

subclass."

to the subclass. This concept is explained more fully in the lesson titled Java 2D
Graphics, Nested Top-Level Classes and Interfaces (see Resources). The
Line2D.Float class is a subclass of the Line2D class. An object of the Line2D.Float
class stores information pertaining to the line segment as type float.

The Constructor for the PathSegment class

The constructor is shown in its entirety in Listing 3.

Listing 3. Constructor for the PathSegment class.

 public PathSegment (Color theColor, int

theWidth,

 Line2D.Float theLine){

 this.color = theColor;

 this.width = theWidth;

 this.line = theLine;

 }

The constructor is straightforward. It simply receives values for the three instance
variables shown in Listing 2 and saves those values in the instance variables belonging
to the new PathSegment object.

The paintComponent method for the PathSegment class

The paintComponent method is shown in Listing 4.

Listing 4. The paintComponent method for the PathSegment class.

 public void paintComponent(Graphics g){

 Graphics2D g2 = (Graphics2D) g;

 BasicStroke penStroke = new

BasicStroke(this.width);

 g2.setStroke(penStroke););

 g2.setColor(this.color);

 g2.draw(this.line);

 }

A cast to type Graphics2D is required

The purpose of the paintComponent method is to draw the line segment on the
graphics context received as an incoming parameter. Because the method calls
methods of the Graphics2D class, the code in Listing 4 begins by casting the incoming
reference to type Graphics2D.

Draw the line segment

Then Listing 4 draws the line segment on the specified graphics context with the
required width and the required color. If you are unfamiliar with the code involving the
Stroke interface in Listing 4 to control the line width, see the lesson titled Java 2D
Graphics, The Stroke Interface in Resources.

Recap for the PathSegment class

To recap, as you will see later, the Pen object belonging to each turtle object saves
each of the turtle's movement in an ArrayList object as a list of references to objects of
the PathSegment class.

At the proper point in time, (when the screen display is being repainted), the
paintComponent method is called on each reference in the ArrayList to cause a
series of line segments that track the turtle's movements to be drawn as shown in
Figure 1 and Figure 2.

The tracks in Figure 1 consist of two blue line segments, each having a width of two
pixels for the turtle with the red shell, and a single cyan line segment with a width of one
pixel for the cyan turtle.

The track in Figure 2 consists of 360 line segments, each with a width of five pixels and
each having a different value for its color property.

Back to the Pen class

Constructors for the Pen class

Getting back to my explanation of the Pen class, Listing 5 shows three overloaded
constructors for the Pen class.

Listing 5. Constructors for the Pen class.

 /**

 * Constructor that takes no arguments

 */

 public Pen(){ }

 /**

 * Constructor that takes all the ink color,

and width

 * @param color the ink color

 * @param width the width in pixels

 */

 public Pen(Color color, int width){

 this.color = color;

 this.width = width;

 }//end constructor

 /**

 * Constructor that takes the ink color,

width, and

 * penDown flag

 * @param color the ink color

 * @param width the width in pixels

 * @param penDown the flag if the pen is

down

 */

 public Pen(Color color, int width, boolean

penDown){

 // use the other constructor to set these

 this(color,width);

 // set the pen down flag

 this.penDown = penDown;

 }//end constructor

Straightforward code

These constructors are straightforward and shouldn't require an explanation. Note
however, that the only constructor used by the SimpleTurtle class is the constructor
that takes no parameters. Therefore, Barb Ericson must have had some other purpose
involving a Pen object in mind when she defined the overloaded versions of the
constructors. Perhaps we will discover what that purpose is as we dig deeper into her
multimedia library in future lessons.

The property methods for the pen class

Listing 6, Listing 7, and Listing 8 show the property methods for the pen object's
penDown, color, and width properties. These methods are straightforward and no
explanation beyond the embedded comments should be required.

Listing 6. Property methods for the pen's penDown property.

 /**

 * Method to get pen down status

 * @return true if the pen is down else

false

 */

 public boolean isPenDown() { return penDown;

}

 /**

 * Method to set the pen down value

 * @param value the new value to use

 */

 public void setPenDown(boolean value){

 penDown = value;

 }

Listing 7. Property methods for the pen's color property.

 /**

 * Method to get the pen (ink) color

 * @return the ink color

 */

 public Color getColor() { return color; }

 /**

 * Method to set the pen (ink) color

 * @param color the color to use

 */

 public void setColor(Color color) {

this.color = color;}

Listing 8. Property methods for the pen's width property.

 /**

 * Method to get the width of the pen

 * @return the width in pixels

 */

 public int getWidth() { return width; }

 /**

 * Method to set the width of the pen

 * @param width the width to use in pixels

 */

 public void setWidth(int width) { this.width

= width; }

The addMove method

We learned in the previous lesson that each movement of the turtle results in a call to
the pen's addMove method with the old and new location coordinates of the turtle being
passed as parameters to the method. The addMove method is shown in its entirety in
Listing 9.

Listing 9. The addMove method of the Pen class.

 /**

 * Method to add a path segment if the pen

is down

 * @param x1 the first x

 * @param y1 the first y

 * @param x2 the second x

 * @param y2 the second y

 */

 public synchronized void addMove(

 int x1, int y1, int

x2, int y2)

 {

 if (penDown)

 {

 PathSegment pathSeg =

 new PathSegment(this.color,this.width,

 new

Line2D.Float(x1,y1,x2,y2));

 pathSegmentList.add(pathSeg);

 }

 }

Purpose of the pen's addMove method

The purpose of the addMove method is to add information to the pen's
pathSegmentList describing the movement of the turtle from one location to another
location when the pen is down.

If the pen is up

Listing 9 begins by testing to confirm that the pen is down. If the pen is not down, the
turtle-movement data is not added to the list of historical movement data.

If the pen is down

If the pen is down, Listing 9 constructs a new PathSegment object containing the
beginning and ending coordinates of the line segment, the pen color for the line
segment, and the pen width for the line segment. Then the code in Listing 9 adds the
new PathSegment object's reference to the list.

Therefore, the pathSegmentList contains references to PathSegment objects that
describe every turtle movement (with the pen down) since the beginning of the program,
or since the most recent call to the clearPath method. I will explain the clearPath
method below.

The clearPath method

At any point during the execution of the program, the clearPath method shown in
Listing 10 can be called to erase the historical movement data for a turtle.

Listing 10. The clearPath method of the Pen class.

 /**

 * Method to clear the path stored for this

pen

 */

 public void clearPath()

 {

 pathSegmentList.clear(); }

Recall that the container referred to by the reference variable named pathSegmentList
is an object of the class ArrayList. Calling the clear method on a reference to an
ArrayList object, as is done in Listing 10, removes all of the elements from the list
resulting in an empty list.

The pen's paintComponent method

We learned in earlier lessons that there are several different situations in which the
pen's paintComponent method may be called. In all cases, it is called to draw the line
segments that represent a turtle's historical track on a specific graphics context of the
type Graphics2D. When the pen's paintComponent method is called, it receives a
reference to the specified graphics context as an incoming parameter of type Graphics.

The pen's paintComponent method is shown in its entirety in Listing 11.

Listing 11. The pen's paintComponent method.

 /**

 * Method to paint the pen path

 * @param g the graphics context

 */

 public synchronized void

paintComponent(Graphics g)

 {

 Color oldcolor = g.getColor();

 // loop through path segment list and

 Iterator iterator =

pathSegmentList.iterator();

 PathSegment pathSeg = null;

 // loop through path segments

 while (iterator.hasNext())

 {

 pathSeg = (PathSegment) iterator.next();

 pathSeg.paintComponent(g);

 }

 g.setColor(oldcolor);

 }

} // end of class

Straightforward code

Once again, the code in Listing 11 is relatively straightforward. The method begins by
saving the value of the color property belonging to the incoming graphics context. (The
value of the color property is restored immediately
before the method terminates.)

Loop and draw segments

Then the code in Listing 11 uses an Iterator to loop
through the pathSegmentList calling the
paintComponent method on each element in the list,
passing the graphics context as a parameter to each call
to the PathSegment object's paintComponent method.

Call the paintComponent method on each PathSegment object

I explained the paintComponent method for the PathSegment class in conjunction
with Listing 4 earlier. To make a long story short, each time the paintComponent
method is called on a PathSegment object, the object displays itself by drawing a line
segment with the correct color, the correct width, and the correct length at the correct
location on the specified graphics context.

The program named TurtleGoRound

A complete listing of the program named TurtleGoRound is provided in Listing 18 near
the end of the lesson. The screen output from the program is shown in Figure 2.

The purpose of this program is to illustrate the use of the Turtle class to draw a circle
with a wide multi-colored pen.

Beginning of the Main class and the main method

As usual, I will explain this program in fragments. The fragment in Listing 12 shows the
beginning of the Main class and the main method.

Listing 12. Beginning of the Main class and the main method.

import java.awt.*;

public class Main{

 public static void main(String[] args){

 int width = 200;

 int height = 200;

 //Create a new World object

 World mars = new World(width,height);

 //Put a turtle in the center of the world

 Turtle joe = new Turtle(mars);

 //Place turtle in starting position and

An Iterator object
I have discussed the use of an

Iterator object in numerous

earlier lessons. To find them,

go to Google and search for

the keywords"

baldwin java iterator

set turtle

 // properties

 joe.setVisible(false);//make turtle

invisible

 joe.setPenDown(false);//pick up the pen

 joe.moveTo(width,height/2);//move turtle

to right edge

 joe.setPenDown(true);//drop the pen

 joe.setPenWidth(5);

The code in Listing 12 should be familiar to you by now. Note how the turtle's
penDown property is used to prevent the turtle from leaving a track as it moves from
the center of the world in Figure 2 to a location at the center of the right edge of the
world. Also note the use of the turtle's visible property to make the turtle
invisible. Finally, note the use of the turtle's penWidth property to cause the turtle to
leave a track that is five pixels wide.

Declare and initialize working variables

Listing 13 declares and initializes several working variables.

Listing 13. Declare and initialize working variables.

 //Declare and initialize working variables

 double angRad = 0;//angle in radians

 int x = 0;//current x-coordinate

 int y = 0;//current y-coordinate

 //Initial color component values for pen

color

 int red = 255;

 int green = 0;

 int blue = 255;

 //Set the initial pen color

 joe.setPenColor(new

Color(red,green,blue));

Listing 13 also sets the initial value for the turtle's penColor property to a color that is
commonly referred to as magenta.

Move the turtle in a circle

Listing 14 causes the turtle to move in a circle, changing the color of the pen during
each step along the way.

Listing 14. Move the turtle in a circle.

 //Make turtle move in a circle changing

the pen color

 // along the way.

 for(int ang = 0;ang < 361;ang += 1){

 angRad = Math.toRadians(ang);

 x = width/2 +

(int)(Math.cos(angRad)*width/2);

 y = height/2 +

(int)(Math.sin(angRad)*height/2);

 //Modify the green and blue color

components

 green = (int)(ang*255/360.0);//increase

 blue = 255 -

(int)(ang*255/360.0);//decrease

 joe.setPenColor(new

Color(red,green,blue));

 joe.moveTo(x,y);

 }//end for loop

 }//end main

}//end class Main

Move incrementally along a circular path

The invisible turtle is initially positioned at the center-right of the world shown in Figure
2. It moves clockwise in one-degree increments around a circular path centered on the
center of the world, making one round trip and then stopping.

Change pen color during each incremental step

Each time the turtle moves one increment, the value of the pen's green color
component, (which begins with a value of zero), is increased. The incremental
increases are such as to cause the value of the green color component to be at its
maximum (255) when the turtle has completed one round-trip around the circular path.

Similarly, value of the pen's blue color component is decreased by an incremental
amount each time the turtle moves one increment. The incremental decreases are such
as to cause the value of the blue component to be slowly reduced from the maximum
(255) at the start to zero when the turtle has completed one round-trip around the
circular path.

The value of the red color component remains at the maximum (255) throughout the
trip. The result is that the pen's color is magenta at the start of the trip and is yellow at
the end of the trip.

Listing 14 also signals the end of the Main class and the main method.

Run the programs

I encourage you to copy the code from Listing 17 and Listing 18, compile the code, and
execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

Summary

I explained the Pen class in this lesson. I also explained a class named PathSegment
that is used by the Pen class to construct and maintain historical turtle-movement
data. Along the way, I explained some of the capabilities of the Java 2D API. Finally, I
presented and explained a sample program that illustrates the use of the Turtle class to
draw a multi-colored circle using a stroke that is five pixels wide.

What's next?

In the next lesson, you will learn about color distance, projecting 3D coordinates onto a
2D display plane, and edge detection; all are concepts that will help you to better
understand modern image processing.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA
 Vector Cad-Cam XI Lathe Tutorial
 200000 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm

 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 15
through Listing 18 below.

Listing 15. Source code for the Pen class.

import java.awt.*;

import java.awt.geom.*;import javax.swing.*;

import java.util.List;

import java.util.ArrayList;

import java.util.Iterator;

/***

 * Class to represent a pen which has a color,

width,

 * and a list of path segments that it should

draw.

 * A pen also knows if it is up or down

 *

 * Copyright Georgia Institute of Technology

2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class Pen

{

 ////////////////// fields

//////////////////////

 /** track if up or down */

 private boolean penDown = true;

 /** color of ink */

 private Color color = Color.green;

 /** width of stroke */

 private int width = 1;

http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401

 /** list of path segment objects to draw */

 private List<PathSegment> pathSegmentList =

 new ArrayList<PathSegment>();

 //////////////// constructors

///////////////////

 /**

 * Constructor that takes no arguments

 */

 public Pen() { }

 /**

 * Constructor that takes all the ink color,

and width

 * @param color the ink color

 * @param width the width in pixels

 */

 public Pen(Color color, int width)

 {

 this.color = color;

 this.width = width;

 }

 /**

 * Constructor that takes the ink color,

width, and

 * penDown flag

 * @param color the ink color

 * @param width the width in pixels

 * @param penDown the flag if the pen is

down

 */

 public Pen(Color color, int width, boolean

penDown)

 {

 // use the other constructor to set these

 this(color,width);

 // set the pen down flag

 this.penDown = penDown;

 }

 ////////////////// methods

///////////////////////

 /**

 * Method to get pen down status

 * @return true if the pen is down else

false

 */

 public boolean isPenDown() { return penDown;

}

 /**

 * Method to set the pen down value

 * @param value the new value to use

 */

 public void setPenDown(boolean value){

 penDown = value;

 }

 /**

 * Method to get the pen (ink) color

 * @return the ink color

 */

 public Color getColor() { return color; }

 /**

 * Method to set the pen (ink) color

 * @param color the color to use

 */

 public void setColor(Color color) {

this.color = color;}

 /**

 * Method to get the width of the pen

 * @return the width in pixels

 */

 public int getWidth() { return width; }

 /**

 * Method to set the width of the pen

 * @param width the width to use in pixels

 */

 public void setWidth(int width) { this.width

= width; }

 /**

 * Method to add a path segment if the pen

is down

 * @param x1 the first x

 * @param y1 the first y

 * @param x2 the second x

 * @param y2 the second y

 */

 public synchronized void addMove(

 int x1, int y1, int

x2, int y2)

 {

 if (penDown)

 {

 PathSegment pathSeg =

 new PathSegment(this.color,this.width,

 new

Line2D.Float(x1,y1,x2,y2));

 pathSegmentList.add(pathSeg);

 }

 }

 /**

 * Method to clear the path stored for this

pen

 */

 public void clearPath()

 {

 pathSegmentList.clear();

 }

 /**

 * Method to paint the pen path

 * @param g the graphics context

 */

 public synchronized void

paintComponent(Graphics g)

 {

 Color oldcolor = g.getColor();

 // loop through path segment list and

 Iterator iterator =

pathSegmentList.iterator();

 PathSegment pathSeg = null;

 // loop through path segments

 while (iterator.hasNext())

 {

 pathSeg = (PathSegment) iterator.next();

 pathSeg.paintComponent(g);

 }

 g.setColor(oldcolor);

 }

} // end of class

Listing 16. Source code for the PathSegment class.

import java.awt.*;

import java.awt.geom.*;

/**

 * This class represents a displayable path

segment

 * it has a color, width, and a Line2D object

 * Copyright Georgia Institute of Technology

2005

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class PathSegment

{

 //////////////// fields

/////////////////////

 private Color color;

 private int width;

 private Line2D.Float line;

 //////////////// constructors

///////////////

 /**

 * Constructor that takes the color, width,

 * and line

 */

 public PathSegment (Color theColor, int

theWidth,

 Line2D.Float theLine)

 {

 this.color = theColor;

 this.width = theWidth;

 this.line = theLine;

 }

 //////////////// methods

////////////////////

 /**

 * Method to paint this path segment

 * @param g the graphics context

 */

 public void paintComponent(Graphics g)

 {

 Graphics2D g2 = (Graphics2D) g;

 BasicStroke penStroke = new

BasicStroke(this.width);

 g2.setStroke(penStroke);

 g2.setColor(this.color);

 g2.draw(this.line);

 }

} // end of class

Listing 17. Source code for the program named Java346a.

/*Java346a

 * The purpose of this program is to

illustrate the use

 * of property setter and getter methods of

the

 * SimpleTurtle class.

 *

 * Draws two turtles in a World and sets

property values

 * on each of them.

 */

import java.awt.Color;

public class Main{

 public static void main(String[] args){

 World mars = new World(400,500);

 Turtle joe = new Turtle(mars);

 joe.setShellColor(Color.RED);

 joe.setPenColor(Color.BLUE);

 joe.setPenWidth(2);

 joe.forward(90);

 joe.turn(-30);

 joe.forward();

 Turtle bill = new Turtle(mars);

 bill.moveTo(bill.getXPos()-

100,bill.getYPos()+100);

 bill.setName("Bill");

 bill.setShowInfo(true);

 bill.setInfoColor(Color.RED);

 bill.setWidth(bill.getWidth() * 2);

 bill.setHeight(bill.getHeight() * 2);

 }//end main

}//end class

Listing 18. Source code for the program named TurtleGoRound.

/***

TurtleGoRound

 The purpose of this program is to illustrate the use

 of the Turtle class to draw a circle with a wide multi-

 colored pen.

 Copyright R.G.Baldwin 2009

***/

import java.awt.*;

public class Main{

 public static void main(String[] args){

 int width = 200;

 int height = 200;

 World mars = new World(width,height);

 //Put a turtle in the center of the world

 Turtle joe = new Turtle(mars);

 joe.setVisible(false);//make turtle invisible

 joe.setPenDown(false);//pick up the pen

 joe.moveTo(width,height/2);//move turtle to right edge

 joe.setPenDown(true);//drop the pen

 joe.setPenWidth(5);

 //Declare and initialize working variables

 double angRad = 0;

 int x = 0;

 int y = 0;

 int red = 255;

 int green = 0;

 int blue = 255;

 joe.setPenColor(new Color(red,green,blue));

 //Make turtle move in a circle changing the pen color

 // along the way.

 for(int ang = 0;ang < 361;ang += 1){

 angRad = Math.toRadians(ang);

 x = width/2 + (int)(Math.cos(angRad)*width/2);

 y = height/2 + (int)(Math.sin(angRad)*height/2);

 //Modify the green and blue color components

 green = (int)(ang*255/360.0);//increase

 blue = 255 - (int)(ang*255/360.0);//decrease

 joe.setPenColor(new Color(red,green,blue));

 joe.moveTo(x,y);

 }//end for loop

 }//end main

}//end class Main

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:baldwin@dickbaldwin.com

