
Using the Java 2D LookupOp Filter Class to Process Images

Learn how to write programs that use the LookupOp image-filtering class of the Java 2D API

for a variety of image-processing purposes.

Published: January 16, 2007

By Richard G. Baldwin

Java Programming Notes # 452

 Preface

 General Background Information

 Preview

 Discussion and Sample Code

o The Program Named ImgMod38

o The Program Named ImgMod39

 The Color Inversion Page

 The Posterizing Page

 The Custom Transforms Page

 Run the Programs

 Summary

 What's Next?

 References

 Complete Program Listings

Preface

One lesson in a series

In the earlier lesson entitled A Framework for Experimenting with Java 2D Image-Processing

Filters, I taught you a little about the image-filtering classes of the Java 2D API. I also taught

you how to write a framework program that makes it easy to use those image-filtering classes to

modify the pixels in an image and to display the modified image.

I told you that future lessons would teach you how to use the following image-filtering classes

from the Java 2D API:

 LookupOp

 AffineTransformOp

 BandCombineOp

 ConvolveOp

 RescaleOp

 ColorConvertOp

mailto:Baldwin@DickBaldwin.com
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3645761

In this lesson, I will keep that promise and teach you how to use the LookupOp class for a

variety of purposes. I will teach you how to use the other classes from the above list in future

lessons.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

I also recommend that you pay particular attention to the lessons listed in the References section

of this document.

General Background Information

Constructing images

Before getting into the programming details, it may be useful for you to review the concept of

how images are constructed, stored, transported, and rendered in Java (and in most modern

computers for that matter).

I provided a great deal of information on those topics in the earlier lesson entitled Processing

Image Pixels using Java, Getting Started. Therefore, I won't repeat that information

here. Rather, I will simply refer you back to the earlier lesson.

The framework program named ImgMod05

It will also be useful for you to understand the behavior of the framework program named

ImgMod05. Therefore, I strongly recommend that you study the earlier lesson entitled A

Framework for Experimenting with Java 2D Image-Processing Filters.

However, if you don't have the time to do that, I can summarize that framework program as

follows:

Purpose of ImgMod05

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/
http://www.developer.com/java/other/article.php/3403921#Background_Information
http://www.developer.com/java/other/article.php/3403921#Background_Information
http://www.developer.com/java/other/article.php/3403921#Background_Information
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3645761

The purpose of ImgMod05 is to make it easy for you to experiment with the modification of

images using the image-filtering classes of the Java 2D API and to display the modified version

of the image along with the original image.

The Replot button

The ImgMod05 program GUI contains a Replot button (as shown in Figure 1). At the

beginning of the run, and each time thereafter that the Replot button is clicked:

 The image-processing method belonging to an object of specified image-processing class

is invoked.

 The original image is passed to the image-processing method, which returns a reference

to a modified image.

 The resulting modified image is displayed along with the original image.

 The modified image is written into an output JPEG file named junk.jpg.

Display of the images

When the ImgMod05 program is started, the original image and the processed version of the

image are displayed in a frame with the original image above the processed image (as shown in

Figure 1). The program attempts to set the size of the display so as to accommodate both

images. If both images are not totally visible, the user can manually resize the display frame.

Input and output file format

The ImgMod05 program will read gif and jpg input files and possibly some other input file types

as well. The output file is always a JPEG file.

Typical usage

Enter the following at the command-line to run the ImgMod05 program:

java ImgMod05 ProcessingProgramName ImageFileName

Preview

In this lesson, I will present and explain two different image-processing programs that are

compatible with the framework program named ImgMod05.

The program named ImgMod38

The first program, named ImgMod38, is designed to show the essential requirements of writing

a program that runs under control of the framework program named ImgMod05 and uses an

image-filtering class of the Java 2D API to modify an image.

The program named ImgMod39

The second program, named ImgMod39, is designed to show how you can expand on those

essential requirements to create a program that allows for user input and supports a great deal of

experimentation.

Discussion and Sample Code

I will discuss the two programs in this lesson in fragments. A complete listing of ImgMod38 is

provided in Listing 37 near the end of the lesson. A complete listing of ImgMod39 is provided

in Listing 38 near the end of the lesson.

Complete listings of the framework program named ImgMod05 and its required interface named

ImgIntfc05 were provided at the end of the earlier lesson entitled A Framework for

Experimenting with Java 2D Image-Processing Filters.

The Program Named ImgMod38

Purpose

The purpose of this program is to provide a simple example of

an image-processing class that is compatible with the use of

the framework program named ImgMod05, and which

illustrates a single usage of the LookupOp image-filtering

class from the Java 2D API.

Must implement the interface named ImgIntfc05

A class that is compatible with the framework program named ImgMod05 is required to

implement the interface named ImgIntfc05. This, in turn, requires the class to define the method

named processImg, which receives one parameter of type BufferedImage and returns a

reference of type BufferedImage.

The required signature for the processImg method is:

public BufferedImage processImg(BufferedImage input);

The processImg method receives a reference to a BufferedImage object containing the image

that is to be processed. The processImg method must return a reference to a BufferedImage

object containing the processed image.

A color-inverter method

In this example, the method named processImg is a color inverter method. Figure 1 shows a

sample of the output produced by this program when it is run under control of the framework

program named ImgMod05.

Secondary purpose
A secondary purpose of this

program is to provide program

comments that will be referred

to by future programs to avoid

repetition of those comments.

http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3645761

Figure 1

Inverting the colors

The method named processImg as defined in this class receives an incoming reference to an

image as a parameter of type BufferedImage. The method returns a reference to an image as

type BufferedImage where all of the color values in the pixels have been inverted by subtracting

the color values from 255.

The type of the image

The method has been demonstrated to work properly only for the case where the incoming

BufferedImage object was constructed for image type

BufferedImage.TYPE_INT_RGB. However, it may work properly for other image types as

well.

No constructor parameters are allowed

Note that this class does not define a constructor. However, if it did define a constructor, that

constructor would not be allowed to receive parameters. This is because the class named

ImgMod05 instantiates an object of this class by invoking the newInstance method of the class

named Class using the name of this class as a String. That process does not allow for

constructor parameters for the class being instantiated.

Program output

The framework program named ImgMod05 displays the original and the modified images in the

format shown in Figure 1, with the original image at the top and the modified image at the

bottom.

The program named ImgMod05 also writes the modified image into an output file in JPEG

format. The name of the output file is junk.jpg and it is written into the current directory.

The Replot button

As shown in Figure 1, the GUI for the framework program named ImgMod05 contains a Replot

button. At the beginning of the run, and each time thereafter that the Replot button is clicked:

 The image processing method belonging to an object of the specified image processing

class is invoked.

 The resulting modified image is displayed along with the original image.

 The modified image is written into the output JPEG file named junk.jpg.

An image-processing program GUI

Image processing programs such as this one may provide a

GUI for data input making it possible for the user to modify

the behavior of the image processing method each time the

Replot button is clicked. However, no such GUI is provided

by this program and clicking the Replot button is of no

consequence.

File formats

The framework program named ImgMod05 reads gif and jpg input files and possibly some other

input file types as well. The output file is always a JPEG file.

If the program is unable to load the image file within ten seconds, it will abort with an error

message.

Usage

Enter the following at the command line to run this program:

java ImgMod05 ImgMod38 ImageFileName

The image file must be provided by the user. However, it doesn't have to be in the current

directory if a path to the file is included along with the file name on the command line.

The size of the display frame

ImgMod39
The use of an image-

processing program GUI will

be illustrated by the program

named ImgMod39.

When the program is started, the original image and the processed version of the image are

displayed in a frame with the original image above the processed image as shown in Figure 1.

The framework program named ImgMod05 attempts to adjust the size of the display frame to

accommodate both images. However, if the processed image doesn't fit in the display, the user

can manually resize the display frame in order to view both images.

Program testing

This program was tested using J2SE5.0 under WinXP.

The class named ImgMod38

This program consists of the single class named ImgMod38. That class begins in Listing 1.

class ImgMod38 implements ImgIntfc05{

 public BufferedImage processImg(BufferedImage

theImage){

Listing 1

As shown in Listing 1, the class implements the required interface named ImgIntfc05. This in

turn requires the class to define the method named processImg.

The beginning of the required method definition also begins in Listing 1.

A lookup table is required

This class uses the LookupOp class from the Java 2D API to invert all of the color values in the

pixels. (The alpha value belonging to the pixel is not modified.)

The filter method that is later invoked on an object of the LookupOp class to modify the image

uses a color value from a pixel as an ordinal index into a lookup table. It replaces the color value

in the pixel with the value stored in the lookup table at that index. Thus, you can modify the

color values in the pixels using just about any substitution algorithm that you can devise.

Constructing the lookup table

The lookup table can be constructed as an object of either of the following classes, both of which

are subclasses of the abstract LookupTable class:

 ByteLookupTable

 ShortLookupTable

The examples in this lesson will use lookup tables constructed from the ShortLookupTable

class.

One or more substitution arrays can be used

The LookupTable object can be constructed from one or more data arrays containing

substitution values. If a single substitution array is used to construct the lookup table, that

substitution array is applied to each of the red, green, and blue color bands. If three different

substitution arrays are used to construct the lookup table, different substitution arrays are applied

to each of the three color bands. This makes it possible to process the three color bands in

different ways.

This program uses a single array to construct the lookup table. The use of three different arrays

to construct the lookup table will be illustrated later in the program named ImgMod39.

Prepare the data for the lookup table

Listing 2 creates a single data array of type short, containing 256 elements, where the value of

each element is equal to 255 minus the element index. This is the basis of the color inversion

algorithm illustrated by Figure 1.

 short[] lookupData = new short[256];

 for (int cnt = 0; cnt < 256; cnt++){

 lookupData[cnt] = (short)(255-cnt);

 }//end for loop

Listing 2

Create the lookup table

Listing 3 instantiates a new object of the ShortLookupTable class, passing a reference to the

substitution array object as the second parameter to the constructor for the class.

 ShortLookupTable lookupTable =

 new

ShortLookupTable(0,lookupData);

Listing 3

Two overloaded constructors available

As of the date of this writing, there are two overloaded

constructors for the ShortLookupTable class. The version

used in Listing 3 is the version that should be used when the

values in a single substitution array are to be applied to the

pixel color values in all three of the red, green, and blue color

bands.

The first parameter to the constructor

The other overloaded

constructor
The other overloaded version

of the constructor will be used

in the program named

ImgMod39 later in this lesson.

According to Sun, the first constructor parameter is an offset, the value of which is "subtracted

from the input values before indexing into the array." In other words, this makes it possible to

specify a set of 256 consecutive elements in the substitution array when the length of the array is

greater than 256. In this program, the length of the substitution array is 256 and the offset value

is 0.

Create the filter object

Listing 4 instantiates a new object of the LookupOp class and saves that object's reference in a

variable of type BufferedImageOp.

 BufferedImageOp thresholdOp =

 new

LookupOp(lookupTable,null);

Listing 4

The BufferedImageOp interface

BufferedImageOp is an interface that is implemented by the

LookupOp class, and by all of the image-filtering classes in

the earlier list except for the BandCombineOp class.

The LookupOp constructor

As of the date of this writing, there is only one constructor for

the LookupOp class. The first parameter to the constructor is

a reference to the lookup table object that was created in

Listing 3. The second parameter is an optional reference to a

RenderingHints object.

Note that I elected not use a RenderingHints object for the

programs in this lesson.

Apply the filter to the incoming image

Listing 5 invokes the filter method of the LookupOp class to filter the incoming image and to

return a reference to the filtered image object as type BufferedImage.

 return thresholdOp.filter(theImage, null);

 }//end processImg

}//end class ImgMod38

Listing 5

Two overloaded versions of the filter method

Some other differences
The BandCombineOp class

differs from the other image-

filtering classes in some other

ways as well, which I will

describe in a future lesson that

deals specifically with that

class.

A RenderingHints object
Briefly, a RenderingHints

object makes it possible for

you to have some control over

the quality of the final

rendering of the image by

controlling properties such as

dithering and anti-aliasing.

http://www.webstyleguide.com/graphics/dither.html
http://www.widearea.co.uk/designer/anti.html

As of the date of this writing, there are two overloaded versions of the filter method defined for

the LookupOp class.

The overloaded version used in Listing 5 accepts a reference to the incoming image as type

BufferedImage and returns a reference to the filtered image as type BufferedImage. The other

version accepts a reference to the incoming image as type Raster, and returns a reference to the

filtered image as type WritableRaster.

The second parameter

The second parameter to the filter method in Listing 5 can optionally specify an existing

BufferedImage object to serve as a destination for the processed image, in addition to returning

a reference to the processed image object.

Will defer explanation of the Raster class

With the exception of the BandCombineOp class, all of the classes in the earlier list can operate

on the image either as type BufferedImage or as type Raster. However, the BandCombineOp

class can only operate on images as type Raster. Therefore, I will defer a discussion of the use

of the Raster class until a future lesson in which I will explain the use of the BandCombineOp

class.

The end of the program named ImgMod38

Listing 5 signals the end of the processImg method as well as the end of the program named

ImgMod38. Hopefully, this simple program has taught you the essentials of using the

framework program named ImgMod05, along with the LookupOp image filtering class of the

Java 2D API for the filtering of images.

As you can see, when there is no need to provide for a variation in image-processing parameters,

it is a simple task to write an ImgMod05-compatible program to implement a color substitution

algorithm. As an upgrade, the program named ImgMod39 will provide for user-defined image-

processing parameters.

The Program Named ImgMod39

Image-processing programs such as this one may provide a GUI for user data input making it

possible for the user to modify the behavior of the image-processing method each time the

Replot button is clicked. Such a GUI is provided for this program.

Purpose of the program

The purpose of this program is to illustrate a variety of different uses for the LookupOp class of

the Java 2D API. Three such uses are illustrated by the three tabbed pages in the program GUI

shown in Figure 2, Figure 3, and Figure 4.

Color inversion

The GUI for this program is constructed using a JTabbedPane object. The page shown in

Figure 2 makes it possible for the user to invert the colors on none, or on any combination of the

red, green, and blue color bands of the input image.

Figure 2

Posterizing

The page shown in Figure 3 makes it possible for the user to apply a process to the image

commonly known as posterizing the image. I will explain what is meant by posterizing in

conjunction with the explanation of the program later in this lesson.

Figure 3

Custom transforms

The page shown in Figure 4 makes it possible for the user to apply either of two different custom

transforms to the image. I will explain the custom transforms in conjunction with the

explanation of the program later.

Figure 4

Three substitution arrays are used

In each of the three cases illustrated by Figure 2 through Figure 4, the program uses three

different substitution arrays to process the red, green, and blue color bands individually or in

combination (as opposed to the use of a single substitution array in the case of the earlier

program named ImgMod38).

The procedure for running the program

The general comments provided for the program named ImgMod38 apply to this program

also. Enter the following at the command line to run this program:

java ImgMod05 ImgMod39 ImageFileName

If the program is unable to load the image file within ten seconds, it will abort with an error

message.

A JTabbedPane object

As mentioned earlier, this program creates a GUI consisting of a JTabbedPane object

containing three pages. As shown in Figure 2, the tabs on the pages are labeled:

 Color Inversion

 Posterizing

 Custom Transforms

Each page in the tabbed pane contains a set of controls that make it possible to process an image

in a way that illustrates the image-processing concepts indicated by the labels on the

tabs. Processing details for each page will be provided in the discussion of the code later.

A complete program listing

A complete listing of the program is provided in Listing 38 near the end of the lesson. The

program was tested using J2SE 5.0 under WinXP.

The ImgMod39 class

The class definition for the ImgMod39 class begins in Listing 6. The class extends the Frame

class, making an object of the class eligible to serve as its own GUI. The class also implements

the ImgIntfc05 interface making it eligible for being executed under control of the program

named ImgMod05.

class ImgMod39 extends Frame implements

ImgIntfc05{

 JTabbedPane tabbedPane = new JTabbedPane();

Listing 6

Listing 6 also instantiates an object of the JTabbedPane class, which serves as the primary GUI

as shown in Figure 2.

Components for the Color Inversion page

Listing 7 declares and initializes some of the components required to construct the Color

Inversion page shown in Figure 2. Those components that require local access only are defined

locally where they are needed. The others are defined in Listing 7 as instance variables.

 Panel page00 = new Panel();

 Checkbox page00RedCkBx = new Checkbox("Red");

 Checkbox page00GreenCkBx = new

Checkbox("Green");

 Checkbox page00BlueCkBx = new

Checkbox("Blue");

Listing 7

Components for the Posterizing page

Listing 8 declares and initializes some of the components needed to construct the Posterizing

page shown in Figure 3. Once again, components that require local access only are defined

locally where they are needed. Others are defined in Listing 8 as instance variables.

 Panel page01 = new Panel();

 TextField page01TextField = new

TextField("128",6);

 Checkbox page01RedCkBx = new Checkbox("Red");

 Checkbox page01GreenCkBx = new

Checkbox("Green");

 Checkbox page01BlueCkBx = new

Checkbox("Blue");

Listing 8

Components for the Custom Transforms page

Finally, Listing 9 declares and initializes some of the components needed to construct the

Custom Transforms page shown in Figure 4. As before, components that require local access

only are defined locally close to where they are needed. Others are defined in Listing 9 as

instance variables.

 Panel page02 = new Panel();

 TextField page02TextField = new

TextField("1.0",6);

 Checkbox page02RedCkBx = new Checkbox("Red");

 Checkbox page02GreenCkBx = new

Checkbox("Green");

 Checkbox page02BlueCkBx = new

Checkbox("Blue");

 CheckboxGroup group = new CheckboxGroup();

 Checkbox page02LogRadioButton =

 new Checkbox("Log

Transform",group,true);

 Checkbox page02LinearRadioButton =

 new Checkbox("Linear

Transform",group,false);

Listing 9

The constructor

Listing 10 shows the constructor for the ImgMod39 class. Recall that this constructor is not

allowed to receive parameters because of the way that an object of the class is instantiated (using

the newInstance method of the class named Class).

Sub-divide the construction process

Listing 10 contains the primary constructor. The code in Listing 10 calls other methods to

construct the individual GUI pages shown in Figure 2 through Figure 4. This serves to separate

the construction of the GUI into easily understandable units. Each method that it calls constructs

one page in the tabbed pane.

 ImgMod39(){//constructor

 constructPage00();

 tabbedPane.add(page00);//Add page to the

tabbedPane.

 constructPage01();

 tabbedPane.add(page01);//Add page to the

tabbedPane.

 constructPage02();

 tabbedPane.add(page02);//Add page to the

tabbedPane.

 add(tabbedPane);//Add tabbedPane to the

Frame.

 setTitle("Copyright 2006, R.G.Baldwin");

 setBounds(555,0,470,300);

 setVisible(true);

 //Define a WindowListener to terminate the

program.

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent

e){

 System.exit(1);

 }//end windowClosing

 }//end windowAdapter

);//end addWindowListener

 }//end constructor

Listing 10

The code in Listing 10 is straightforward and shouldn't require further explanation.

The Color Inversion Page

Construct the Color Inversion page

Listing 11 shows the beginning of the method named constructPage00, which is used to

construct the Color Inversion page shown in Figure 2. This method is called from the primary

constructor shown in Listing 10.

 void constructPage00(){

 page00.setName("Color Inversion");//Label

on the tab.

 page00.setLayout(new BorderLayout());

Listing 11

The label on the tab

Listing 11 sets the name property of the page (which is actually a Panel object) to the String

value Color Inversion. This property is used by the system to establish the label that appears on

the tab in Figure 2.

The layout manager

Listing 11 also sets the layout property for the page to BorderLayout. The TextArea object

shown in Figure 2 will be placed in the BorderLayout.NORTH location on the page. The three

Checkbox objects will be placed in another Panel object, which in turn will be placed in the

BorderLayout.CENTER location on the page.

Create and place the TextArea object

Listing 12 creates and populates a disabled TextArea object containing usage instructions and

adds it to the page. You can view this component in Figure 2.

 String text ="COLOR INVERSION USING

MULTIPLE ARRAYS\n"

 + "This page illustrates the use of the

LookupOp "

 + "filter class for multiple lookup

arrays. By "

 + "checking the appropriate checkboxes

below, you "

 + "can cause the program to invert the

colors on "

 + "none, or on any combination of color

bands.";

 //Note: The number of columns specified

for the

 // following TextArea is immaterial because

the

 // TextArea object is placed in the NORTH

location of

 // a BorderLayout.

 TextArea textArea = new TextArea(text,4,1,

TextArea.SCROLLBARS_NONE);

 page00.add(textArea,BorderLayout.NORTH);

 textArea.setEnabled(false);

Listing 12

The code in Listing 12 is straightforward and shouldn't require further explanation.

Construct the control panel

Listing 13 constructs a control panel containing the three Checkbox objects and adds it to the

page.

 Panel page00ControlPanel = new Panel();

 page00ControlPanel.add(page00RedCkBx);

 page00ControlPanel.add(page00GreenCkBx);

 page00ControlPanel.add(page00BlueCkBx);

page00.add(page00ControlPanel,BorderLayout.CENTER);

 }//end constructPage00

Listing 13

Listing 13 also signals the end of the method named constructPage00.

An aside - The processImg method

Lest we forget, in order to be compatible with the framework program named ImgMod05, this

class must define a method named processImg with a signature matching that given in the

interface named ImgIntfc05. This method is called by the framework program named

ImgMod05 in order to process the image.

The processImg method is shown in its entirety in Listing 14. It receives a reference to an input

image encapsulated in an object of type BufferedImage and returns a reference to a modified

version of the image encapsulated in another object of type BufferedImage.

 public BufferedImage processImg(BufferedImage

theImage){

 BufferedImage outputImage = null;

 //Process the page in the tabbed pane that

has been

 // selected by the user.

 switch(tabbedPane.getSelectedIndex()){

 case 0:outputImage =

processPage00(theImage);

 break;

 case 1:outputImage =

processPage01(theImage);

 break;

 case 2:outputImage =

processPage02(theImage);

 break;

 }//end switch

 return outputImage;

 }//end processImg

Listing 14

The switch statement

The most interesting thing about Listing 14 is the use of a switch statement, in conjunction with

the getSelectedIndex method of the JTabbedPane class, to determine which page in Figure 2

has been selected by the user.

The return value from the getSelectedIndex method is 0 if the user has selected the leftmost tab

(the Color Inversion page) in Figure 2. The return value increases by 1 to indicate the selection

of each successive tab going from left to right in Figure 2. Depending on the value of the

returned index value, the switch statement causes one of the following three methods to be

invoked to process the image:

 processPage00

 processPage01

 processPage02

Returning the processed image

In each case, the reference to the modified image that is returned by the image-processing

method is stored in the variable named outputImage. That reference is then returned to the

framework program named ImgMod05 as the return value from the method named processImg.

The processPage00 method

The method named processPage00 begins in Listing 15. This

method is called to process the image whenever the user

selects the Color Inversion page in Figure 2 and then clicks

the Replot button in Figure 1.

This method processes the image according to the check

boxes that have been checked by the user in Figure 2. The method uses the LookupOp image-

filtering class to process the image using lookup data from three separate arrays, one each for the

red, green, and blue color bands.

This method performs color inversion as illustrated in Figure 1. (The effect of color inversion is

to produce an output in which the image is similar to the negative of a color photograph.)

Why invert?

I explained in the earlier lesson entitled A Framework for Experimenting with Java 2D Image-

Processing Filters that color inversion has certain properties that make it useful for a variety of

purposes. One of those uses is changing the colors in an image that has been selected during an

editing process.

For example, Figure 5 below shows a cropped screen shot taken from the WYSIWYG HTML

editor that I am using to write this lesson with the image in Figure 1 above having been selected

in the editor. (Selection of the image for editing caused the colors in the image to change.)

The processPage00 method
The method named

processPage00 is also called

as the default image-

processing method at startup.

http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3645761

Figure 5

The colors are inverted

If you compare Figure 5 with Figure 1, you will see that selection of the image in Figure 1

caused all of the colors to be inverted. As a result, the top image in Figure 1 looks like the

bottom image in Figure 5, and the top image in Figure 5 looks like the bottom image in Figure 1.

Enough talk, let's see some code

The method named processPage00 begins in Listing 15. As you can see, the method receives an

incoming parameter referring to the input image object and returns a reference to the processed

image.

 BufferedImage processPage00(BufferedImage

theImage){

 short[] red = null;

 short[] green = null;

 short[] blue = null;

Listing 15

Listing 15 declares references to three one-dimensional array objects of type short[] that will be

populated with data that is used later to populate the lookup table.

Create a straight array object and an inverting array object

Listing 16 creates and populates two one-dimensional array objects of type short[]. One of the

array objects (noInvert) is populated with data values that will simply reproduce the colors in the

image being processed. The other array object (invert) is populated with data values that will

invert the colors in the image being processed.

 short[] noInvert = new short[256];

 short[] invert = new short[256];

 for(int cnt = 0;cnt < 256;cnt++){

 invert[cnt] = (short)(255 -

cnt);//inverted data

 noInvert[cnt] = (short)cnt;//straight

lookup data

 }//end for loop

 }//end processPage00

Listing 16

Establish the default case of no color inversion

Listing 17 points the three references declared in Listing 15 to the array object containing data

values that will simply reproduce the colors in the image being processed. This is the default

case if no checkboxes are checked.

 red = noInvert;

 green = noInvert;

 blue = noInvert;

Listing 17

Re-point array references based on selected check boxes

Listing 18 examines the Red, Green, and Blue check boxes in Figure 2. If any checkbox has

been checked, the code in Listing 18 modifies the reference to the substitution array for that

color. If the checkbox has been checked, the reference is caused to point to the array object

containing data values that will cause the colors in the image being processed to be inverted.

 if(page00RedCkBx.getState() == true){

 red = invert;

 }//end if

 if(page00GreenCkBx.getState() == true){

 green = invert;

 }//end if

 if(page00BlueCkBx.getState() == true){

 blue = invert;

 }//end if

Listing 18

Thus, any combination (including none) of the three color bands can be inverted by checking the

appropriate checkbox in Figure 2 and then clicking the Replot button in Figure 1.

Inverting individual color bands

For example, whereas the bottom image in Figure 1 shows the result of inverting all three color

bands in the color wheel in the top image, the bottom image in the left panel in Figure 6 shows

the result of inverting only the red color band, and the bottom image in the right panel in Figure

6 shows the result of inverting only the green color band.

Figure 6

Process the image and return the result

Listing 19 invokes the method named processImageForThePage to actually process the image,

passing a reference to the image along with the three substitution arrays to the method. (This is a

common method that will be used by all three image-processing schemes illustrated by this

program.)

 return

processImageForThePage(theImage,red,green,blue);

 }//end processPage00

Listing 19

Listing 19 signals the end of the method named processPage00.

The method named processImageForThePage

The common image-processing method named processImageForThePage begins in Listing 20.

This method uses the LookupOp class from the Java 2D API along with three separate data

substitution arrays to process the color values in the corresponding color bands. One substitution

array is applied to the red color band, one is applied to the green color band, and one is applied to

the blue color band.

Create and populate a 2D array of type short[][]

Listing 20 creates and populates a 2D array of type short[][] with data for the lookup

table. (Note that this is a 2D array, rather than a 1D array as was the case in Listing 2 where a

single substitution data array was used to process all three color bands.)

 BufferedImage processImageForThePage(

BufferedImage theImage,

 short[]

red,

 short[]

green,

 short[]

blue){

 short[][] lookupData = new

short[][]{red,green,blue};

Listing 20

Create the lookup table and the filter object

Listing 21 executes code that is essentially the same as the code that was explained in Listing 3

and Listing 4 to create the lookup table and the filter object.

 //Create the lookup table. The first

parameter is an

 // offset for extracting data from the

array object.

 //In this case, all of the data is

extracted from the

 // array object beginning at an index of 0.

 ShortLookupTable lookupTable =

 new

ShortLookupTable(0,lookupData);

 //Create the filter object. The second

parameter

 // provides the opportunity to use

RenderingHints.

 BufferedImageOp filterObject =

 new

LookupOp(lookupTable,null);

Listing 21

Display the lookup table

For illustration purposes only, the code in Listing 22 invokes a method named

displayTableData to work backwards from the filterObject to get and display some data from

the lookup table. Note that this is not an image-processing requirement.

 displayTableData(filterObject);

Listing 22

I will leave it up to you to examine and understand the code in the method named

displayTableData, which you will find in Listing 38.

Apply the filter and return the filtered image

Listing 23 applies the filter to the incoming image and returns a reference to the resulting

BufferedImage object.

 return filterObject.filter(theImage, null);

 }//end processImageForThePage

Listing 23

The code in Listing 23 is essentially the same as the code that I explained in Listing 5.

Listing 23 signals the end of the method named processImageForThePage.

Listing 23 also signals the end of the explanation for the Color Inversion page shown in Figure 2.

The Posterizing Page

Posterizing is a process of reducing the number of colors in an image to a relatively small

number. The effect is to cause the image to look similar to a painting that was painted using a

"paint by numbers" set where the smooth transitions from one color to the next have been

eliminated. This is accomplished by limiting the number of different colors that appear in the

image.

For example, Figure 7 shows an image that has been posterized to what I believe should be 27

colors.

Figure 7

Posterizing results with a color wheel

The left panel of Figure 8 shows the result of eliminating all the colors from the color wheel

except red and then posterizing the resulting image into only three shades of red.

Figure 8

The right panel of Figure 8 shows the result of eliminating all the colors from the color wheel

except green and then posterizing the resulting image into three shades of green.

Similarly, the left panel of Figure 9 shows the result of eliminating all the colors from the color

wheel except blue and then posterizing the resulting image into three shades of blue.

Figure 9

Finally, the right panel of Figure 9 shows the result of putting the posterized versions of red,

green, and blue back together to produce a posterized version of the original color wheel.

Should have 27 colors

According to my calculations, when each of the three colors is allowed to have three shades, then

the maximum number of possible colors in the posterized version of the color wheel should be

three cubed or 27. However, the differences between some of those colors must be very subtle

because I am only able to count about twenty different colors in the bottom image of Figure 9.

Now for some code

That is probably enough posterizing examples to give you an idea of the behavior of

posterizing. Now let's look at the code that accomplishes posterizing.

The method named constructPage01

The method named constructPage01 is shown in its entirety in Listing 24. This method

constructs the Posterizing page shown in Figure 3. The method is called from the primary

constructor in Listing 10.

 void constructPage01(){

 page01.setName("Posterizing");//Label on the

tab.

 page01.setLayout(new BorderLayout());

 //Create and add the instructional text to the

page.

 String text = "POSTERIZING\n"

 + "The effect of posterizing is to cause the

image "

 + "to look similar to a painting that was

painted "

 + "using a \"paint by numbers\" set where the

smooth"

 + "transitions from one color to the next

have been "

 + "eliminated. This is accomplished by

limiting "

 + "the number of different colors that appear

in "

 + "the image.\n\n"

 + "To posterize an image, decide how many

levels "

 + "you want to see for each of the three

colors, "

 + "red, green, and blue. Enter that number

in the "

 + "text field below. Select the colors that

you "

 + "want to mix by checking the matching check

boxes "

 + "and click the Replot button.";

 //Note: The number of columns specified for

the

 // following TextArea is immaterial because the

 // TextArea object is placed in the NORTH

location of

 // a BorderLayout.

 TextArea textArea = new TextArea(text,9,1,

TextArea.SCROLLBARS_NONE);

 page01.add(textArea,BorderLayout.NORTH);

 textArea.setEnabled(false);

 //Construct the control panel and add it to the

page.

 Panel page01ControlPanel = new Panel();

 page01ControlPanel.add(page01TextField);

 page01ControlPanel.add(page01RedCkBx);

 page01ControlPanel.add(page01GreenCkBx);

 page01ControlPanel.add(page01BlueCkBx);

page01.add(page01ControlPanel,BorderLayout.CENTER);

 }//end constructPage01

Listing 24

You should have no difficulty understanding the code in Listing 24 if you compare the code with

the image in Figure 3. Therefore, further explanation of the code in Listing 24 should not be

necessary.

The method named processPage01

The method named processPage01 begins in Listing 25. This method applies a posterizing

algorithm to the image using the controls located on the Posterizing page in Figure 3. The

method is called from within the switch statement in the method named processImg in Listing

14. Note that this method processes the image using three separate arrays.

 BufferedImage processPage01(BufferedImage

theImage){

 int numberLevels = 1;

 try{//Get input value from the text field.

 numberLevels =

Integer.parseInt(page01TextField.getText());

 }catch(java.lang.NumberFormatException e){

 page01TextField.setText("Bad Input");

 numberLevels = 1;//Override bad user

input.

 }//end catch

 //Guarantee that the number of levels falls

within the

 // allowable range. Don't allow divison by

0.

 if((numberLevels <= 0) || (numberLevels >'

256)){

 page01TextField.setText("Bad Input");

 numberLevels = 1;//Override bad user

input.

 }//end if

Listing 25

Get the number of levels

The processPage01 method in Listing 25 begins by getting user input specifying the number of

levels or shades that will be allowed for each of the primary colors, red, green, and blue. The

code in Listing 25 is straightforward.

Compute the bin size

Limiting the number of allowable shades for each primary color will cause the number of

different values contained in the substitution arrays to be less than 256. The values in the

substitution arrays will represent a stair-step arrangement of values with several adjacent

elements containing the same value at each level. Listing 26 computes the number of adjacent

elements that will contain the same value on the basis of the number of levels.

 int binSize = 256/numberLevels;

Listing 26

Create the substitution array objects

Listing 27 creates array objects that will be populated with substitution data that is used to

populate the lookup table. Note that by default these arrays are populated with all zero values.

 short[] red = new short[256];

 short[] green = new short[256];

 short[] blue = new short[256];

Listing 27

Populate a master substitution array

Listing 28 implements an algorithm that creates the substitution data in the stair-step fashion

described above. This code creates and populates an array object with master data that will be

used to populate the specific arrays for the colors that are to be posterized.

 short[] masterData = new short[256];

 for(int cnt = 0;cnt < 256;cnt++){

 short value =

 (short)((cnt/binSize)*binSize +

binSize - 1);

 //Clip the values at 0 and 255.

 if(value >'= 256) value = 255;

 if(value < 0) value = 0;//Probably not

possible.

 masterData[cnt] = value;

 }//end for loop

Listing 28

Set up the substitution arrays

Listing 29 examines the check boxes in Figure 3 to determine which colors are to be

posterized. If any checkbox has been checked, Listing 29 causes the corresponding array

reference to point to the array containing the stair-step data created in Listing 28. Otherwise, the

array reference will point to an array that contains all zero values by default.

 if(page01RedCkBx.getState() == true){

 red = masterData;

 }//end if

 if(page01GreenCkBx.getState() == true){

 green = masterData;

 }//end if

 if(page01BlueCkBx.getState() == true){

 blue = masterData;

 }//end if

Listing 29

Filter the image and return the resulting modified image

Listing 30 calls the method named processImageForThePage to filter the image and to return

the resulting modified image. This is the same method that was used to process the image for the

Color Inversion page that I explained earlier (see Listing 20).

 return

processImageForThePage(theImage,red,green,blue);

 }//end processPage01

Listing 30

Listing 30 also signals the end of the method named processPage01, and the end of the

discussion of the Posterizing page shown in Figure 3.

The Custom Transforms Page

The Custom Transforms page is shown in Figure 4. This page makes it possible for the user to

select either of two custom substitution arrays to transform the color values from the input image

into a different set of color values in the output image. The main purpose of this page is not to

provide color transformations that are particularly useful. Rather, the purpose is to illustrate that

you can easily implement any custom color substitution algorithm that you can devise that would

be useful for your purposes.

Linear Transform

The left panel in Figure 10 shows the result of filtering an image by checking all three

checkboxes, selecting the Linear Transform radio button, and setting the Slope to 0.9 in the

Custom Transforms page shown in Figure 4.

Figure 10

The output is lighter

As you can see, the output image in the left panel is somewhat lighter than the input

image. Setting the Slope to 1.0 would cause the output image to be an unmodified copy of the

input image. Setting the Slope to lower values would cause the output image to be progressively

lighter, with a value of 0.1 causing the output image to be almost completely white.

Log Transform

The right panel in Figure 10 shows the result of filtering an image by checking all three

checkboxes and selecting the Log Transform radio button in the Custom Transforms page shown

in Figure 4.

This option doesn't allow any user input parameters (such as

the Slope in the Linear Transform). As you can see, the

output image is very light in the bottom-right panel of Figure

10. Thus, the log transform is a rather severe lightening filter.

The method named constructPage02

The method named constructPage02 is shown in its entirety

in Listing 31. This method is used to construct the page

shown in Figure 4. The method is called from the primary

constructor in Listing 10.

 void constructPage02(){

 page02.setName("Custom Transforms");//Tab

label.

 page02.setLayout(new BorderLayout());

Similar to decibel conversion
For those who may be

interested, this is somewhat

analogous to converting a 3D

surface to decibels through a

log base 10 conversion of the

elevation values. See the

earlier lesson entitled Plotting

3D Surfaces using Java.

http://www.developer.com/java/other/article.php/3508706
http://www.developer.com/java/other/article.php/3508706

 //Create and add the instructional text to the

page.

 String text = "CUSTOM TRANSFORMS\n"

 + "This page illustrates the use of two

different "

 + "custom transforms, one based on the log to

the "

 + "base 10, and the other based on the

equation of "

 + "a straight line. Both transforms are

designed "

 + "to boost the intensity of pixels with low

color "

 + "values.\n\n"

 + "Specify the color bands that you want to

process "

 + "by checking the checkboxes.\n\n"

 + "Select a radio button to select a

transform. "

 + "For the linear transform, enter a positive

slope "

 + "that is <= 1.0. Try a slope of 0.85 for "

 + "example\n\n"

 + "Then click the Replot button.";

 //Note: The number of columns specified for

the

 // following TextArea is immaterial because the

 // TextArea object is placed in the NORTH

location of

 // a BorderLayout.

 TextArea textArea = new TextArea(text,9,1,

TextArea.SCROLLBARS_NONE);

 page02.add(textArea,BorderLayout.NORTH);

 textArea.setEnabled(false);

 //Construct the control panel and add it to the

page.

 Panel page02ControlPanel = new Panel();

 page02ControlPanel.setLayout(new

GridLayout(3,1));

 Panel subControlPanel00 = new Panel();

 subControlPanel00.add(page02RedCkBx);

 subControlPanel00.add(page02GreenCkBx);

 subControlPanel00.add(page02BlueCkBx);

 page02ControlPanel.add(subControlPanel00);

 Panel subControlPanel01 = new Panel();

 subControlPanel01.setLayout(

 new

FlowLayout(FlowLayout.LEFT));

 subControlPanel01.add(page02LogRa

 page02ControlPanel.add(subControlPanel01);

 Panel subControlPanel02 = new Panel();

 subControlPanel02.setLayout(

 new

FlowLayout(FlowLayout.LEFT));

 subControlPanel02.add(page02LinearRadioButton);

 subControlPanel02.add(new Label(" Slope ="));

 subControlPanel02.add(page02TextField);

 subControlPanel02.add(

 new Label("must be >'= 0.0 and

<= 1.0"));

 page02ControlPanel.add(subControlPanel02);

page02.add(page02ControlPanel,BorderLayout.CENTER);

 }//end constructPage02

Listing 31

Tedious but straightforward

Although somewhat tedious, the code in Listing 31 is straightforward. If you use Figure 4 as a

guide, you should have no trouble understanding the code in Listing 31.

The method named processPage02

The method named processPage02 begins in Listing 32. This method processes the image

according to the controls shown on the Custom Transforms page in Figure 4. This method is

called from within a switch statement in Listing 14. Note that as with the pages in Figure 2 and

Figure 3, this method processes the image using three different substitution arrays, one each for

red, green, and blue.

The method named processPage02 transforms the values in the color bands according to either a

log transform, or a linear transform. The choice of which transform algorithm to use is

determined by the radio button selected by the user in Figure 4.

The net effect of both transforms is to emphasize or boost the intensity of colors having low

values, thus causing the image to become brighter. However, the two transforms achieve this

effect in different ways.

Create substitution array objects

Listing 32 creates array objects that will be populated with data that is later used to populate the

lookup table. By default these arrays are populated with all zero values.

 BufferedImage processPage02(BufferedImage

theImage){

 short[] red = new short[256];

 short[] green = new short[256];

 short[] blue = new short[256];

Listing 32

Create and populate the master data array object

Listing 33 shows the beginning of the algorithm that will create and populate an array object

with master data that will be used to populate the specific arrays for the colors that are selected to

be processed.

 short[] masterData = new short[256];

 for(int cnt = 0;cnt < 256;cnt++){

 short value = 0;

Listing 33

Populate according to linear or log selection

Listing 34 shows the if portion of an if-else statement that is used to select between a log or

linear transform based on the state of the two radio buttons in Figure 4. The code in Listing 34

creates the substitution data values for a log conversion of the color values.

 if(page02LogRadioButton.getState() ==

true){

 //Perform a log conversion

 if(cnt == 0){

 //Avoid computing the log of 0.

Substitute the

 // log of 1 instead. (Note that with

J2SE 5.0,

 // I could have used a static import

directive

 // in order to eliminate the explicit

reference

 // to the Math class in the following

 // expressions.)

 value =

(short)(Math.log10(1.0)*255/Math.log10(255));

 }else{

 value =

(short)(Math.log10(cnt)*255/Math.log10(255));

 }//end else

Listing 34

Purpose is not to explain logarithms

Since my purpose here is not to teach you about logarithms, I won't attempt to explain the

rationale behind the code in Listing 34. If you already understand logarithms, you should have

no trouble understanding the code in Listing 34. If not, just accept the code in Listing 34 as one

of many possible transform algorithms that can be used to convert the color values in the input

image into a different set of color values in the output image through substitution.

The else clause

Listing 35 shows the else portion of the if-else statement that began in Listing 34.

 }else{//Linear conversion must have been

selected

 //Perform a linear conversion

 double slope = 0;

 try{//Get the slope from the text

field.

 slope =

Double.parseDouble(page02TextField.getText());

 }catch(java.lang.NumberFormatException

e){

 page02TextField.setText("Bad Input");

 slope = 0.0;//Override user input on

bad input.

 }//end catch

 //Guarantee that the slope is positive

and <= 1.0.

 if((slope < 0.0) || (slope >' 1.0)){

 page02TextField.setText("Bad Input");

 slope = 0.0;//Override user input on

bad input.

 }//end if

 //Compute the intercept of a straight

line with the

 // y-axis using the slope provided by

the user.

 // Cause the line to go through a y-

value of 255

 // at an x-value of 255.

 int yIntercept = (int)(255.0 -

255.0*slope);

 //Compute the value of y for each value

of x(cnt)

 // using the equation of a straight

line, which

 // is, y = slope*x + yIntercept

 value = (short)(slope*cnt +

yIntercept);

 //Guard against roundoff errors that

might cause

 // the color values to go slightly

outside their

 // allowed range of 0 through 255.

 if(value < 0) value = 0;

 if(value >' 255) value = 255;

 }//end else

 masterData[cnt] = value;

 }//end for loop

Listing 35

The code in Listing 35 creates a set of substitution values based on the slope and the y-intercept

using the equation for a straight line.

Purpose is not to explain analytical geometry

Once again, since my purpose here is not to teach you analytical geometry, I won't attempt to

explain the rationale behind the code in Listing 35. If you already understand such things as the

equation of a straight line, you should have no trouble understanding the code in Listing 35. If

not, just accept the code in Listing 35 as another one of many possible transform algorithms that

can be used to convert the color values in the input image into a different set of color values in

the output image through substitution.

Many different custom transforms are possible

There are many ways to come up with the substitution values for the custom transforms and the

purpose of this section of the lesson is simply to illustrate two of them. You may find other ways

to develop substitution values that better serve your image-processing needs.

Wrapping it up

The remainder of the processPage02 method is shown in Listing 36. This code is very similar to

the code in the previously-explained methods, and therefore shouldn't require further

explanation.

 //Examine the check boxes. If any checkbox

has been

 // checked, reset the corresponding array to

point it

 // to the array containing the master data.

Otherwise,

 // it will contain all zero values by

default.

 if(page02RedCkBx.getState() == true){

 red = masterData;

 }//end if

 if(page02GreenCkBx.getState() == true){

 green = masterData;

 }//end if

 if(page02BlueCkBx.getState() == true){

 blue = masterData;

 }//end if

 //Process the image and return the processed

result.

 return

processImageForThePage(theImage,red,green,blue);

 }//end processPage02

Listing 36

Listing 36 signals the end of the explanation for the program named ImgMod39.

Run the Programs

I encourage you to copy the code from Listing 37 and Listing 38 into your text editor, compile it,

and execute it. Experiment with it, making changes, and observing the results of your changes.

Remember, you will also need to compile the code for the framework program named

ImgMod05 and the interface named ImgIntfc05. You will find that source code in the earlier

lesson entitled A Framework for Experimenting with Java 2D Image-Processing Filters.

You will also need one or more JPEG image files to experiment with. You should have no

difficulty finding such files at a variety of locations on the web. I recommend that you stick with

relatively small images so that both the original image and the processed image will fit in the

vertical space on your screen.

Summary

In this lesson, I provided and explained two different image-processing programs that are

compatible with the framework program named ImgMod05. The purpose of these two programs

is to show you how to write such programs, and also to illustrate a variety of different uses for

the LookupOp class of the Java 2D API. Three specific uses of the LookupOp class were

illustrated, and you should be able to devise many more.

Along the way, I also showed you how to construct and use a JTabbedPane object as a program

GUI. (If my memory serves me correctly, this is the first time that I have used a JTabbedPane in

a lesson that I have published.)

What's Next?

Future lessons in this series will teach you how to use the following image-filtering classes from

the Java 2D API:

http://www.developer.com/java/other/article.php/3645761

 AffineTransformOp

 BandCombineOp

 ConvolveOp

 RescaleOp

 ColorConvertOp

References

 400 Processing Image Pixels using Java, Getting Started

 402 Processing Image Pixels using Java, Creating a Spotlight

 404 Processing Image Pixels Using Java: Controlling Contrast and Brightness

 406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion

 408 Processing Image Pixels, Performing Convolution on Images

 410 Processing Image Pixels, Understanding Image Convolution in Java

 412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

 414 Processing Image Pixels, Applying Image Convolution in Java, Part 2

 416 Processing Image Pixels, An Improved Image-Processing Framework in Java

 450 A Framework for Experimenting with Java 2D Image-Processing Filters

Complete Program Listings

Complete listings of the programs discussed in this lesson are shown in Listing 37 and Listing 38

below.

/*File ImgMod38.java

Copyright 2006, R.G.Baldwin

The purpose of this class is to provide a simple example of

an image processing class that is compatible with the use

of the program named ImgMod05, and which illustrates a

single usage of the LookupOp class from the image

processing portion of the Java 2D API. (Future programs

will illustrate other uses of the LookupOp class.)

A class that is compatible with ImgMod05 is required to

implement the interface named ImgIntfc05. This, in turn,

requires the class to define the method named processImg,

which receives one parameter of type BufferedImage and

returns a reference of type BufferedImage.

The required signature for the processImg method is:

public BufferedImage processImg(BufferedImage input);

The processImg method receives a reference to a

BufferedImage object containing the image that is to be

processed

The processImg method must return a reference to a

BufferedImage object containing the processed image.

http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3645761

In this example, the method named processImg is a color

inverter method.

The method named processImg as defined in this class

receives an incoming reference to an image as a parameter

of type BufferedImage. The method returns a reference to

an image as type BufferedImage where all of the color

values in the pixels have been inverted by subtracting the

color values from 255.

The method has been demonstrated to work properly only for

the case where the incoming BufferedImage object was

constructed for image type BufferedImage.TYPE_INT_RGB.

However, it may work properly for other image types as

well.

Note that this class does not define a constructor.

However, if it did define a constructor, that constructor

would not be allowed to receive parameters. This is because

the class named ImgMod05 instantiates an object of this

class by invoking the newInstance method of the Class

class passing the name of this class to the newInstance

method as a String parameter. That process does not allow

for constructor parameters for the class being

instantiated.

The driver program named ImgMod05 displays the original and

the modified images. It also writes the modified image

into an output file in JPEG format. The name of the output

file is junk.jpg and it is written into the current

directory.

The output GUI for the driver program named ImgMod05

contains a Replot button. At the beginning of the run, and

each time thereafter that the Replot button is clicked:

-The image processing method belonging to the image

 processing object is invoked,

-The resulting modified image is displayed along with the

 original image.

Image processing programs such as this one may provide a

GUI for data input making it possible for the user to

modify the behavior of the image processing method each

time the Replot button is clicked. However, no such GUI

is provided by this program and clicking the Replot

button is of no consequence.

The driver program named ImgMod05 reads gif and jpg input

files and possibly some other input file types as well.

The output file is always a JPEG file.

Usage:

Enter the following at the command line to run this

program:

java ImgMod05 ImgMod38 ImageFileName

The image file must be provided by the user. However, it

doesn't have to be in the current directory if a path to

the file is included along with the file name on the

command line.

When the program is started, the original image and the

processed version of the image are displayed in a frame

with the original image above the processed image.

The driver program named ImgMod05 attempts to adjust the

size of the display frame to accommodate both images. If

the processed image doesn't fit in the display, the user

can manually resize the display frame in order to view both

images.

If the program is unable to load the image file within ten

seconds, it will abort with an error message.

Tested using J2SE5.0 under WinXP.

**/

import java.awt.image.*;

class ImgMod38 implements ImgIntfc05{

 //The following method must be defined to implement the

 // ImgIntfc05 interface.

 public BufferedImage processImg(BufferedImage theImage){

 //Use the LookupOp class from the Java 2D API to

 // invert all of the color values in the pixels. The

 // alpha value is not modified.

 //Create the data for the lookup table.

 short[] lookupData = new short[256];

 for (int cnt = 0; cnt < 256; cnt++){

 lookupData[cnt] = (short)(255-cnt);

 }//end for loop

 //Create the lookup table

 ShortLookupTable lookupTable =

 new ShortLookupTable(0,lookupData);

 //Create the filter object.

 BufferedImageOp thresholdOp =

 new LookupOp(lookupTable,null);

 //Apply the filter to the incoming image and return

 // a reference to the resulting BufferedImage object.

 return thresholdOp.filter(theImage, null);

 }//end processImg

}//end class ImgMod38

Listing 37

Listing 38

/*File ImgMod39.java

Copyright 2006, R.G.Baldwin

The purpose of this class is to illustrate a variety of

different uses for the LookupOp class of the Java 2D API.

In each case, the program uses three data arrays to

process the red, green, and blue color bands individually

or in combination.

See general comments in the class named ImgMod038.

This class is compatible with the use of the driver program

named ImgMod05.

The driver program named ImgMod05 displays the original and

the modified images. It also writes the modified image

into an output file in JPEG format. The name of the output

file is junk.jpg and it is written into the current

directory.

Image-processing programs such as this one may provide a

GUI for user data input making it possible for the user to

modify the behavior of the image-processing method each

time the Replot button is clicked. Such a GUI is provided

for this program.

Enter the following at the command line to run this

program:

java ImgMod05 ImgMod39 ImageFileName

If the program is unable to load the image file within ten

seconds, it will abort with an error message.

This program creates a GUI consisting of a tabbed pane

containing three pages. The tabs on the pages are labeled:

Color Inversion

Posterizing

Custom Transforms

Each page contains a set of controls that make it possible

to process the image in a way that illustrates the

processing concept indicated by the labels on the tabs.

Processing details for each page are provided in the

comments in the code used to construct and process the

individual pages.

Tested using J2SE 5.0 under WinXP.

**/

import java.awt.image.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class ImgMod39 extends Frame implements ImgIntfc05{

 //Primary container used to construct the GUI.

 JTabbedPane tabbedPane = new JTabbedPane();

 //Components used to construct the page in the

 // JTabbedPane that shows Color Inversion on the tab.

 // Components that require local access only are defined

 // locally. Others are defined here as instance

 // variables.

 Panel page00 = new Panel();

 Checkbox page00RedCkBx = new Checkbox("Red");

 Checkbox page00GreenCkBx = new Checkbox("Green");

 Checkbox page00BlueCkBx = new Checkbox("Blue");

 //Components used to construct the Posterizing page in

 // the JTabbedPane. Components that require local access

 // only are defined locally. Others are defined here as

 // instance variables.

 Panel page01 = new Panel();

 TextField page01TextField = new TextField("128",6);

 Checkbox page01RedCkBx = new Checkbox("Red");

 Checkbox page01GreenCkBx = new Checkbox("Green");

 Checkbox page01BlueCkBx = new Checkbox("Blue");

 //Components used to construct the Custom Transforms

 // page in the JTabbedPane. Components that require

 // local access only are defined locally. Others are

 // defined here as instance variables.

 Panel page02 = new Panel();

 TextField page02TextField = new TextField("1.0",6);

 Checkbox page02RedCkBx = new Checkbox("Red");

 Checkbox page02GreenCkBx = new Checkbox("Green");

 Checkbox page02BlueCkBx = new Checkbox("Blue");

 CheckboxGroup group = new CheckboxGroup();

 Checkbox page02LogRadioButton =

 new Checkbox("Log Transform",group,true);

 Checkbox page02LinearRadioButton =

 new Checkbox("Linear Transform",group,false);

 //---//

 //This is the primary constructor. It calls other

 // methods to separate the construction of the GUI into

 // easily understandable units. Each method that it

 // calls constructs one page in the tabbed pane.

 ImgMod39(){//constructor

 constructPage00();

 tabbedPane.add(page00);//Add page to the tabbedPane.

 constructPage01();

 tabbedPane.add(page01);//Add page to the tabbedPane.

 constructPage02();

 tabbedPane.add(page02);//Add page to the tabbedPane.

 add(tabbedPane);//Add tabbedPane to the Frame.

 setTitle("Copyright 2006, R.G.Baldwin");

 setBounds(555,0,470,300);

 setVisible(true);

 //Define a WindowListener to terminate the program.

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(1);

 }//end windowClosing

 }//end windowAdapter

);//end addWindowListener

 }//end constructor

 //---//

 //This method constructs the page in the tabbed pane that

 // shows Color Inversion on the tab. This method is

 // called from the primary constructor. It illustrates

 // color inversion using three arrays, one for each of

 // the red, green, and blue color bands.

 void constructPage00(){

 page00.setName("Color Inversion");//Label on the tab.

 page00.setLayout(new BorderLayout());

 //Create and add the instructional text to the page.

 // This text appears in a disabled text area at the

 // top of the page in the tabbed pane.

 String text ="COLOR INVERSION USING MULTIPLE ARRAYS\n"

 + "This page illustrates the use of the LookupOp "

 + "filter class for multiple lookup arrays. By "

 + "checking the appropriate checkboxes below, you "

 + "can cause the program to invert the colors on "

 + "none, or on any combination of color bands.";

 //Note: The number of columns specified for the

 // following TextArea is immaterial because the

 // TextArea object is placed in the NORTH location of

 // a BorderLayout.

 TextArea textArea = new TextArea(text,4,1,

 TextArea.SCROLLBARS_NONE);

 page00.add(textArea,BorderLayout.NORTH);

 textArea.setEnabled(false);

 //Construct the control panel and add it to the page.

 Panel page00ControlPanel = new Panel();

 page00ControlPanel.add(page00RedCkBx);

 page00ControlPanel.add(page00GreenCkBx);

 page00ControlPanel.add(page00BlueCkBx);

 page00.add(page00ControlPanel,BorderLayout.CENTER);

 }//end constructPage00

 //---//

 //This method processes the image according to the

 // controls located on the page in the tabbed pane that

 // shows Color Inversion on the tab.

 //This method uses the LookupOp image-filtering class to

 // process the image using lookup data from three

 // separate arrays, one each for the red, green, and blue

 // color bands.

 //This method is called from within a switch statement in

 // the method named processImg, which is the primary

 // image-processing method in this program.

 //This method illustrates color inversion. The effect of

 // color inversion is to produce an output in which the

 // image is similar to the negative of a color

 // photograph.

 BufferedImage processPage00(BufferedImage theImage){

 //Create array objects that will be populated with data

 // that is used later to populate the lookup table.

 short[] red = null;

 short[] green = null;

 short[] blue = null;

 //Create and populate arrays for straight (noInvert)

 // lookup data and inverted lookup data.

 short[] noInvert = new short[256];

 short[] invert = new short[256];

 for(int cnt = 0;cnt < 256;cnt++){

 invert[cnt] = (short)(255 - cnt);//inverted data

 noInvert[cnt] = (short)cnt;//straight lookup data

 }//end for loop

 //Point the three color arrays to the array containing

 // the data that doesn't invert the colors. This is

 // the default case if no checkboxes are checked.

 red = noInvert;

 green = noInvert;

 blue = noInvert;

 //Examine the check boxes. If any checkbox has been

 // checked, point the corresponding color array to the

 // array containing the inversion data.

 if(page00RedCkBx.getState() == true){

 red = invert;

 }//end if

 if(page00GreenCkBx.getState() == true){

 green = invert;

 }//end if

 if(page00BlueCkBx.getState() == true){

 blue = invert;

 }//end if

 //Use the LookupOp class from the Java 2D API along

 // with three separate data arrays to process the

 // color values in the selected color bands. The

 // alpha value is not modified.

 return processImageForThePage(theImage,red,green,blue);

 }//end processPage00

 //---//

 //This method constructs the page in the tabbed pane that

 // shows Posterizing on the tab. This method is called

 // from the primary constructor. It illustrates

 // posterizing.

 //Posterizing is a process of reducing the number of

 // colors in an image to a relatively small number. The

 // effect is to cause the image to look similar to a

 // painting that was painted using a "paint by numbers"

 // set where the smooth transitions from one color to the

 // next have been eliminated. This is accomplished by

 // limiting the number of different colors that appear

 // in the image.

 void constructPage01(){

 page01.setName("Posterizing");//Label on the tab.

 page01.setLayout(new BorderLayout());

 //Create and add the instructional text to the page.

 String text = "POSTERIZING\n"

 + "The effect of posterizing is to cause the image "

 + "to look similar to a painting that was painted "

 + "using a \"paint by numbers\" set where the smooth"

 + "transitions from one color to the next have been "

 + "eliminated. This is accomplished by limiting "

 + "the number of different colors that appear in "

 + "the image.\n\n"

 + "To posterize an image, decide how many levels "

 + "you want to see for each of the three colors, "

 + "red, green, and blue. Enter that number in the "

 + "text field below. Select the colors that you "

 + "want to mix by checking the matching check boxes "

 + "and click the Replot button.";

 //Note: The number of columns specified for the

 // following TextArea is immaterial because the

 // TextArea object is placed in the NORTH location of

 // a BorderLayout.

 TextArea textArea = new TextArea(text,9,1,

 TextArea.SCROLLBARS_NONE);

 page01.add(textArea,BorderLayout.NORTH);

 textArea.setEnabled(false);

 //Construct the control panel and add it to the page.

 Panel page01ControlPanel = new Panel();

 page01ControlPanel.add(page01TextField);

 page01ControlPanel.add(page01RedCkBx);

 page01ControlPanel.add(page01GreenCkBx);

 page01ControlPanel.add(page01BlueCkBx);

 page01.add(page01ControlPanel,BorderLayout.CENTER);

 }//end constructPage01

 //---//

 //This method processes the image according to the

 // controls located on the page in the tabbed pane that

 // shows Posterizing on the tab. This method is called

 // from within a switch statement in the method named

 // processImg. Note that this method processes the image

 // using three arrays.

 BufferedImage processPage01(BufferedImage theImage){

 int numberLevels = 1;

 try{//Get input value from the text field.

 numberLevels =

 Integer.parseInt(page01TextField.getText());

 }catch(java.lang.NumberFormatException e){

 page01TextField.setText("Bad Input");

 numberLevels = 1;//Override bad user input.

 }//end catch

 //Guarantee that the number of levels falls within the

 // allowable range. Don't allow divison by 0.

 if((numberLevels <= 0) || (numberLevels > 256)){

 page01TextField.setText("Bad Input");

 numberLevels = 1;//Override bad user input.

 }//end if

 //Compute the number of adjacent elements that will

 // specify the same color value.

 int binSize = 256/numberLevels;

 //Create array objects that will be populated with

 // data that is used to populate the lookup table.

 //Note that by default these arrays are populated with

 // all zero values.

 short[] red = new short[256];

 short[] green = new short[256];

 short[] blue = new short[256];

 //Create and populate an array object with master data

 // that will be used to populate the specific arrays

 // for the colors that are to be processed.

 short[] masterData = new short[256];

 for(int cnt = 0;cnt < 256;cnt++){

 short value =

 (short)((cnt/binSize)*binSize + binSize - 1);

 //Clip the values at 0 and 255.

 if(value >= 256) value = 255;

 if(value < 0) value = 0;//Probably not possible.

 masterData[cnt] = value;

 }//end for loop

 //Examine the check boxes. If any checkbox has been

 // checked, reset the corresponding array to point it

 // to the array containing the master data. Otherwise,

 // it will contain all zero values by default.

 if(page01RedCkBx.getState() == true){

 red = masterData;

 }//end if

 if(page01GreenCkBx.getState() == true){

 green = masterData;

 }//end if

 if(page01BlueCkBx.getState() == true){

 blue = masterData;

 }//end if

 //Process the image and return the result.

 return processImageForThePage(theImage,red,green,blue);

 }//end processPage01

 //---//

 //This method constructs the page in the tabbed pane that

 // shows Custom Transforms on the tab. This method is

 // called from the primary constructor. This page

 // illustrates the use of custom transformations of the

 // values in the color bands.

 void constructPage02(){

 page02.setName("Custom Transforms");//Tab label.

 page02.setLayout(new BorderLayout());

 //Create and add the instructional text to the page.

 String text = "CUSTOM TRANSFORMS\n"

 + "This page illustrates the use of two different "

 + "custom transforms, one based on the log to the "

 + "base 10, and the other based on the equation of "

 + "a straight line. Both transforms are designed "

 + "to boost the intensity of pixels with low color "

 + "values.\n\n"

 + "Specify the color bands that you want to process "

 + "by checking the checkboxes.\n\n"

 + "Select a radio button to select a transform. "

 + "For the linear transform, enter a positive slope "

 + "that is <= 1.0. Try a slope of 0.85 for "

 + "example\n\n"

 + "Then click the Replot button.";

 //Note: The number of columns specified for the

 // following TextArea is immaterial because the

 // TextArea object is placed in the NORTH location of

 // a BorderLayout.

 TextArea textArea = new TextArea(text,9,1,

 TextArea.SCROLLBARS_NONE);

 page02.add(textArea,BorderLayout.NORTH);

 textArea.setEnabled(false);

 //Construct the control panel and add it to the page.

 Panel page02ControlPanel = new Panel();

 page02ControlPanel.setLayout(new GridLayout(3,1));

 Panel subControlPanel00 = new Panel();

 subControlPanel00.add(page02RedCkBx);

 subControlPanel00.add(page02GreenCkBx);

 subControlPanel00.add(page02BlueCkBx);

 page02ControlPanel.add(subControlPanel00);

 Panel subControlPanel01 = new Panel();

 subControlPanel01.setLayout(

 new FlowLayout(FlowLayout.LEFT));

 subControlPanel01.add(page02LogRadioButton);

 page02ControlPanel.add(subControlPanel01);

 Panel subControlPanel02 = new Panel();

 subControlPanel02.setLayout(

 new FlowLayout(FlowLayout.LEFT));

 subControlPanel02.add(page02LinearRadioButton);

 subControlPanel02.add(new Label(" Slope ="));

 subControlPanel02.add(page02TextField);

 subControlPanel02.add(

 new Label("must be >= 0.0 and <= 1.0"));

 page02ControlPanel.add(subControlPanel02);

 page02.add(page02ControlPanel,BorderLayout.CENTER);

 }//end constructPage02

 //---//

 //This method processes the image according to the

 // controls located on the page in the tabbed pane that

 // shows Custom Transforms on the tab. This method is

 // called from within a switch statement in the method

 // named processImg. Note that this method processes the

 // image using three arrays. It transforms the values

 // in the color bands according to either a log

 // transform, or a linear transform, with the choice

 // being made by the user through the selection of a

 // radio button. The net effect of both transforms is to

 // emphasize or boost the intensity of colors having low

 // values, thus causing the image to become brighter.

 // The two transforms achieve this effect in different

 // ways, however.

 BufferedImage processPage02(BufferedImage theImage){

 //Create array objects that will be populated with

 // data that is used to populate the lookup table.

 // Note that by default these arrays are populated with

 // all zero values.

 short[] red = new short[256];

 short[] green = new short[256];

 short[] blue = new short[256];

 //Create and populate an array object with master data

 // that will be used to populate the specific arrays

 // for the colors that are selected to be processed.

 short[] masterData = new short[256];

 for(int cnt = 0;cnt < 256;cnt++){

 short value = 0;

 //Select between log or linear transformation based

 // on the state of two radio buttons.

 if(page02LogRadioButton.getState() == true){

 //Perform a log conversion

 if(cnt == 0){

 //Avoid computing the log of 0. Substitute the

 // log of 1 instead. (Note that with J2SE 5.0,

 // I could have used a static import directive

 // in order to eliminate the explicit reference

 // to the Math class in the following

 // expressions.)

 value =

 (short)(Math.log10(1.0)*255/Math.log10(255));

 }else{

 value =

 (short)(Math.log10(cnt)*255/Math.log10(255));

 }//end else

 }else{//Linear conversion must have been selected

 //Perform a linear conversion

 double slope = 0;

 try{//Get the slope from the text field.

 slope =

 Double.parseDouble(page02TextField.getText());

 }catch(java.lang.NumberFormatException e){

 page02TextField.setText("Bad Input");

 slope = 0.0;//Override user input on bad input.

 }//end catch

 //Guarantee that the slope is positive and <= 1.0.

 if((slope < 0.0) || (slope > 1.0)){

 page02TextField.setText("Bad Input");

 slope = 0.0;//Override user input on bad input.

 }//end if

 //Compute the intercept of a straight line with the

 // y-axis using the slope provided by the user.

 // Cause the line to go through a y-value of 255

 // at an x-value of 255.

 int yIntercept = (int)(255.0 - 255.0*slope);

 //Compute the value of y for each value of x(cnt)

 // using the equation of a straight line, which

 // is, y = slope*x + yIntercept

 value = (short)(slope*cnt + yIntercept);

 //Guard against roundoff errors that might cause

 // the color values to go slightly outside their

 // allowed range of 0 through 255.

 if(value < 0) value = 0;

 if(value > 255) value = 255;

 }//end else

 masterData[cnt] = value;

 }//end for loop

 //Examine the check boxes. If any checkbox has been

 // checked, reset the corresponding array to point it

 // to the array containing the master data. Otherwise,

 // it will contain all zero values by default.

 if(page02RedCkBx.getState() == true){

 red = masterData;

 }//end if

 if(page02GreenCkBx.getState() == true){

 green = masterData;

 }//end if

 if(page02BlueCkBx.getState() == true){

 blue = masterData;

 }//end if

 //Process the image and return the processed result.

 return processImageForThePage(theImage,red,green,blue);

 }//end processPage02

 //---//

 //Use the LookupOp class from the Java 2D API along

 // with three separate data arrays to process the

 // color values in the selected color bands. The

 // alpha value is not modified. This is a common method

 // that is called by the code that processes each

 // individual page in the tabbed pane.

 BufferedImage processImageForThePage(

 BufferedImage theImage,

 short[] red,

 short[] green,

 short[] blue){

 //Create and populate a 2D array with data for the

 // lookup table. Note that this is a 2D array, rather

 // than a 1D array, which is the case when a single

 // data array is used to process all three color bands.

 short[][] lookupData = new short[][]{red,green,blue};

 //Create the lookup table. The first parameter is an

 // offset for extracting data from the array object.

 //In this case, all of the data is extracted from the

 // array object beginning at an index of 0.

 ShortLookupTable lookupTable =

 new ShortLookupTable(0,lookupData);

 //Create the filter object. The second parameter

 // provides the opportunity to use RenderingHints.

 BufferedImageOp filterObject =

 new LookupOp(lookupTable,null);

 //For illustration purposes only, work backwards from

 // the filterObject to get and display some data

 // from the lookup table. Note that this is not an

 // image-processing requirement.

 displayTableData(filterObject);

 //Apply the filter to the incoming image and return

 // a reference to the resulting BufferedImage object.

 // The second parameter can optionally specify an

 // existing BufferedImage object to serve as a

 // destination for the processed image.

 return filterObject.filter(theImage, null);

 }//end processImageForThePage

 //---//

 //Print some column headers followed by data from the

 // lookup table. Print every 32nd row beginning with

 // row 0. Then print the data for row 255.

 void displayTableData(BufferedImageOp filterObject){

 //First, get a 2D array containing data from the lookup

 // table.

 ShortLookupTable theTable = ((ShortLookupTable)(

 (LookupOp)filterObject).getTable());

 short[][] tableData = theTable.getTable();

 System.out.println("Row\tRed\tGreen\tBlue");

 for(int row = 0;

 row<tableData[0].length;

 row += 32){

 System.out.print((row) + "\t");

 for(int col = 0;

 col<tableData.length;

 col++){

 System.out.print(tableData[col][row] + "\t");

 }//end inner loop

 System.out.println();

 }//end outer loop

 System.out.println(255 + "\t" + tableData[0][255]

 + "\t" + tableData[1][255] + "\t"

 + tableData[2][255]);

 }//end displayTableData

 //---//

 //The following method must be defined to implement the

 // ImgIntfc05 interface. It is called by the framework

 // program named ImgMod05.

 public BufferedImage processImg(BufferedImage theImage){

 BufferedImage outputImage = null;

 //Process the page in the tabbed pane that has been

 // selected by the user.

 switch(tabbedPane.getSelectedIndex()){

 case 0:outputImage = processPage00(theImage);

 break;

 case 1:outputImage = processPage01(theImage);

 break;

 case 2:outputImage = processPage02(theImage);

 break;

 }//end switch

 return outputImage;

 }//end processImg

}//end class ImgMod39

Listing 38

Copyright 2006, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which have gained a worldwide following among

experienced and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

Keywords
java 2D image pixel framework filter LookupOp

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

