
Using the Java 2D BandCombineOp Filter Class to Process

Images

Learn how to write programs that extract Raster objects from an image and then use the

BandCombineOp image-filtering class of the Java 2D API for a variety of image-processing

purposes.

Published: July 3, 2007

By Richard G. Baldwin

Java Programming Notes # 458

 Preface

 General Background Information

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 What's Next?

 References

 Complete Program Listing

Preface

Part of a series

In an earlier lesson entitled "A Framework for Experimenting with Java 2D Image-Processing

Filters" (see References), I taught you how to write a framework program that makes it easy to

use the image-filtering classes of the Java 2D API to process the pixels in an image and to

display the processed image.

At the close of that lesson, I told you that future lessons would teach you how to use the

following image-filtering classes from the Java 2D API:

 LookupOp

 AffineTransformOp

 BandCombineOp

 ConvolveOp

 RescaleOp

 ColorConvertOp

In several previous lessons listed in the References section, I taught you how to use the

LookupOp and the AffineTransformOp image-filtering classes.

mailto:Baldwin@DickBaldwin.com

In this lesson, I will teach you how to use the BandCombineOp image-filtering class to perform

a variety of filtering operations on images. I will also teach you how to extract and filter Raster

objects from images. (The use of Raster objects is completely new to this lesson.)

I will teach you how to use the remaining classes from the above list in future lessons.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

I also recommend that you pay particular attention to the lessons listed in the References section

of this document.

General Background Information

Constructing images

Before getting into the programming details, it may be useful for you to review the concept of

how images are constructed, stored, transported, and rendered in Java (and in most modern

computer environments for that matter).

I provided a great deal of information on those topics in the earlier lesson entitled Processing

Image Pixels using Java, Getting Started. Therefore, I won't repeat that information

here. Rather, I will simply refer you back to the earlier lesson.

The framework program named ImgMod05

It will also be useful for you to understand the behavior of the framework program named

ImgMod05. Therefore, I strongly recommend that you study the earlier lesson entitled "A

Framework for Experimenting with Java 2D Image-Processing Filters" (see References).

However, if you don't have the time to do that, you should take a look at the earlier lesson

entitled "Using the Java 2D LookupOp Filter Class to Process Images" (see References), in

which I summarized the behavior of the framework program named ImgMod05.

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/
Java454.htm#References
http://www.developer.com/java/other/article.php/3403921#Background_Information
http://www.developer.com/java/other/article.php/3403921#Background_Information
http://www.developer.com/java/other/article.php/3403921#Background_Information

Preview

In this lesson, I will present and explain an image-processing program named ImgMod41 that is

compatible with the framework program named ImgMod05.

The program GUI

The program GUI is shown in Figure 1.

Figure 1

In addition to providing instructions to the user, this GUI allows the user to specify the location

and dimensions of a rectangular area within the original image, from which a Raster object will

be extracted. The GUI also allows the user to specify the values in a 3x4 image-processing

matrix having three rows and four columns that is used to process the raster using the

BandCombineOp image-filtering class.

Buffered v.s. Raster objects.
I have illustrated the filtering

BufferedImage objects versus Raster objects

As I mentioned earlier, the use of Raster objects is

completely new to this lesson.

Unlike some of the other image-filtering classes in the Java

2D API that can operate either on BufferedImage objects or

on Raster objects, the BandCombineOp filter can operate

only on Raster objects.

Image-filtering methodology

For the BandCombineOp class, the red, green, and blue

values of each pixel are treated as a column matrix. A 1 is

appended onto the end of each column matrix producing a set of four-element column matrices

that represents all of the pixels in the input Raster object. (Each pixel is represented by a four-

element column matrix.)

Each pixel in the output Raster is produced by multiplying a user-specified 3x4 image-

processing matrix by the 4x1 column matrix that represents the corresponding pixel in the input

Raster. The same 3x4 processing matrix is applied to every input pixel. (An example of the

values in such a 3x4 image-processing matrix is shown in the bottom of Figure 1.)

This makes it possible to cause the intensity or shade of each of the three colors (red, green, and

blue) in each pixel of the output Raster to be a function of the combined intensities of all three

colors of the corresponding pixel in the input Raster, (plus a constant that is equal to the

rightmost value in the corresponding row of the image-

processing matrix).

Potential arithmetic overflow

It is unclear in the documentation what happens to the output

color value if the value resulting from the matrix

multiplication and the addition of the constant falls outside the

range from 0 to 255. However, observation of the results

indicates that rather than clipping the value to force it to be within the range from 0 to 255, the

value is allowed to overflow and become corrupt. (See Figure 6.) Therefore, care must be

exercised to avoid such overflow when setting the

multiplicative values in the processing matrix.

A variety of interesting effects

This processing approach can lead to a variety of interesting

effects. One author says that this class can be used to create

cubist-style images (see Figure 10).

of BufferedImage objects in

several previous lessons listed

in the References section. I

will have more to say about

Raster objects later in this

lesson. For now, suffice it to

say that by converting the

BufferedImage object to a

Raster object, it is possible to

operate on smaller rectangular

areas of the image that are

extracted from within the body

of the entire image.

Interesting visual effects.
On the other hand, allowing

the overflow to occur can lead

to some interesting visual

effects, as illustrated in Figure

10.

Limited knowledge of art.
Given my limited knowledge

of art, I will simply have to

take the author's word on this.

http://javaboutique.internet.com/tutorials/rasters2/listing6.html
http://www.angelfire.com/co/artgeometry/

Color inversion

As with some of the other image-filtering classes in the Java 2D API, the BandCombineOp

class can easily be used to invert any or all of the colors in an image, producing an output such as

that shown in the bottom panel of Figure 2.

Figure 2

All three colors were inverted in Figure 2. In addition, Figure 2 illustrates the extraction and

processing of a Raster object that is 300 pixels on each side. The raster was extracted from the

original image such that the upper-left corner of the raster matches a pixel at a horizontal

coordinate of 24 and a vertical coordinate of 30 in the original image.

The user input data

The user input data that was used to process this image is shown in Figure 3.

Figure 3

Figure 3 is a screen shot of the program GUI with the top portion cropped off to save space.

The RECTANGLE text fields

The values shown in the four RECTANGLE text fields in Figure 3 specify the location and size

of the extracted Raster object described above.

The MATRIX text fields

The values in the twelve MATRIX text fields cause the red, green, and blue color values for each

output pixel to be 255 minus the color value for the corresponding input pixel. You have learned

in earlier lessons that this is the arithmetic process that can be used to invert the colors in an

image.

Conversion to gray

Figure 4 shows the result of causing the red, green, and blue color values of each output pixel to

be the average of all three color values of the corresponding input pixel. When all three color

values for a pixel have the same value, the rendered color of the pixel is some shade of gray

ranging from black to white.

Figure 4

The user input data

The user input values used to produce the gray image in Figure 4 are shown in the screen shot of

the GUI in Figure 5.

Figure 5

In this case, each of the three color values in each output pixel is the sum of one third of the red,

green, and blue color values for the corresponding input pixel.

Arithmetic overflow

Figure 6 shows the same thing as Figure 4, except that each input color value in Figure 6 was

multiplied by 0.5 (instead of 0.33333) before adding them together to produce the color values

for the output pixel.

Figure 6

The user input data

The user input values that produced Figure 6 are shown in Figure 7.

Figure 7

As you can see, this image-processing matrix caused the overall output image in Figure 6 to be

somewhat brighter than the output image in Figure 4.

As you can also see, this resulted in arithmetic overflow for those output color values that

exceeded a value of 255. As a result, light gray areas in Figure 4 became black or dark gray

areas, often outlined with white, in Figure 6.

A gray negative

The image in Figure 4 is very similar to an old black and white photograph.

If you use an image-processing matrix that causes each output pixel color value to be the average

of the corresponding input pixel color values (as in Figure 4), and also invert the colors in the

output, the resulting image is very similar to the negative film from an old black and white

photograph. This is illustrated by the output image in Figure 8. Whereas Figure 4 is the positive,

Figure 8 is the negative.

Figure 8

The user input data

Figure 9 shows the image-processing matrix that was used to produce the output image in Figure

8.

Figure 9

If you compare Figure 8 with Figure 4, you should be able to easily see the difference between

the positive version in Figure 4 and the negative version in Figure 8.

Now for some computer-generated artwork

For whatever it is worth, if I interpreted the previously-referenced article correctly, the output

shown in Figure 10 is a cubist-style image. (At least, it was produced using the same processing

matrix as the one given in that article.)

http://javaboutique.internet.com/tutorials/rasters2/listing6.html
http://javaboutique.internet.com/tutorials/rasters2/listing6.html

Figure 10

The image-processing matrix

The image-processing matrix that produced the output image in Figure 10 is shown in Figure 11.

Figure 11

However, as I mentioned earlier, given my limited knowledge of art, I will simply have to take

the author's word that this is a cubist-style image. Whatever it is, it illustrates that it is possible

to use the BandCombineOp class to produce some weird and interesting effects.

Now let's see some code.

Discussion and Sample Code

The program named ImgMod41

In this program, I will explain the behavior of a program named ImgMod41. A complete listing

of the program is provided in Listing 14 near the end of the lesson.

Purpose

The purpose of this program is to illustrate the use of the BandCombineOp image-filtering class

of the Java 2D API. (See general comments in the class named ImgMod038 that I explained in

the earlier lesson entitled "Using the Java 2D LookupOp Filter Class to Process Images" (see

References). Those comments apply to this program also.)

Compatible with ImgMod05

The program named ImgMod41 is compatible with the use of the framework program named

ImgMod05. In other words, ImgMod41 can be run under the control of ImgMod05.

The framework program named ImgMod05 displays the original and the filtered images as

shown in the top and bottom panels of Figure 2. ImgMod05 also writes the filtered image into

an output file in JPEG format. The name of the output file is junk.jpg and it is written into the

current directory.

Running the program

Enter the following at the command line to run this program:

http://javaboutique.internet.com/tutorials/rasters2/listing6.html

java ImgMod05 ImgMod41 ImageFileName

If the program is unable to load the image file within ten seconds, it will abort with an error

message.

A user-input GUI

Image processing programs that run under the control of ImgMod05 may provide a GUI for user

data input. This makes it possible for the user to modify the behavior of the image-processing

method each time the Replot button is clicked.

The GUI that is provided by this program is shown in Figure 1. This program GUI provides:

 User instructions.

 Text fields used to specify the upper-left corner, the width, and the height of a rectangle

that is used to extract a Raster.

 Text fields used to specify the values in a 3x4 image-processing matrix having three rows

and four columns.

Operates only on Raster objects

As explained earlier, the BandCombineOp filter can only operate on Raster objects. (It cannot

operate directly on BufferedImage objects.) The rectangle described above is used to extract a

rectangular Raster object from the original image.

Initialization

The rectangle values are initialized so that the rectangle is the same size as the image and

overlays the entire image. In other words, the initial rectangle contains the complete image.

The matrix values described above are initialized so as to simply pass the input image through to

the output without modification.

Image-filtering methodology

I explained the image-filtering methodology involving the multiplication of matrices earlier.

Program testing

This program was tested using J2SE 5.0 under WinXP.

Will explain in fragments

I will explain this program in fragments. A complete listing of the program is provided in

Listing 14.

The class definition

The class definition begins in Listing 1.

class ImgMod41 extends Frame implements

ImgIntfc05{

 //Components used to construct the main

panel.

 // Components that require local access only

are defined

 // locally. Others are defined here as

instance

 // variables.

 Panel mainPanel = new Panel();//main control

panel

 //Text fields for specifying the Rectangle

object values.

 TextField rectXcoorField = new

TextField("0");

 TextField rectYcoorField = new

TextField("0");

 TextField rectWidthField = new

TextField("0");

 TextField rectHeightField = new

TextField("0");

 //Text fields for specifying the matrix

values.

 //Top row

 TextField matrix00Field = new

TextField("1.0");

 TextField matrix01Field = new

TextField("0.0");

 TextField matrix02Field = new

TextField("0.0");

 TextField matrix03Field = new

TextField("0.0");

 //Middle row

 TextField matrix10Field = new

TextField("0.0");

 TextField matrix11Field = new

TextField("1.0");

 TextField matrix12Field = new

TextField("0.0");

 TextField matrix13Field = new

TextField("0.0");

 //Bottom row

 TextField matrix20Field = new

TextField("0.0");

 TextField matrix21Field = new

TextField("0.0");

 TextField matrix22Field = new

TextField("1.0");

 TextField matrix23Field = new

TextField("0.0");

 //The following Label is used to notify of

data entry

 // errors.

 String okMessage = "No data entry errors

detected.";

 Label errorMsg = new Label(okMessage);

Listing 1

The code in Listing 1 is straightforward and should not require further explanation beyond the

embedded comments.

The constructor

The constructor is shown in its entirety in Listing 2.

 ImgMod41(){//constructor

 constructMainPanel();

 add(mainPanel);

 setTitle("Copyright 2006, R.G.Baldwin");

 setBounds(555,0,470,600);

 setVisible(true);

 //Define a WindowListener to terminate the

program.

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent

e){

 System.exit(1);

 }//end windowClosing

 }//end windowAdapter

);//end addWindowListener

 }//end constructor

Listing 2

This is the primary constructor. It calls another method to actually construct the main panel so as

to separate the construction of the GUI into easily understandable units.

The method named constructMainPanel

The method named constructMainPanel is shown in its entirety in Listing 3. This method

constructs the main GUI panel (shown in Figure 1) containing all of the controls. This method is

called from the primary constructor in Listing 2.

 void constructMainPanel(){

 mainPanel.setLayout(new BorderLayout());

 //Create and add the instructional text to

the panel.

 // This text appears in a disabled text area

at the

 // top of the panel.

 String text ="COMBINING COLOR BAND DATA\n"

 + "This program illustrates the use of the

"

 + "BandCombineOp filter class of the Java

2D "

 + "API.\n\n"

 + "Specify the coordinates of the upper-

left corner "

 + "along with the width and the height of

a "

 + "rectangle that either exactly overlays

or fits "

 + "inside of the original image. This

rectangle is "

 + "used to extract a rectangular Raster

with a "

 + "corresponding location and size from

the "

 + "image.\n\n"

 + "Specify the twelve values in a 3x4

processing "

 + "matrix and then click the Replot button

to "

 + "process the image.\n\n"

 + "The initial width and height values

match the "

 + "size of the image. Set the width value

to 0 and "

 + "click the Replot button to recover the

width and "

 + "height of the image.\n\n"

 + "The red, green, and blue values from

each input "

 + "pixel plus a value of 1 is used to

construct a "

 + "1x4 column matrix that represents each

input "

 + "pixel.\n\n"

 + "Each output pixel is produced by

multiplying the "

 + "1x4 column matrix representing each

input pixel "

 + "by the 3x4 processing matrix.\n\n"

 + "Apparently output color values greater

than 255 "

 + "or less than 0 simply result in corrupt

values "

 + "in the output.";

 //Note: The number of columns specified for

the

 // following TextArea is immaterial because

the

 // TextArea object is placed in the NORTH

location of

 // a BorderLayout.

 TextArea textArea = new TextArea(text,22,1,

TextArea.SCROLLBARS_NONE);

 mainPanel.add(textArea,BorderLayout.NORTH);

 textArea.setEnabled(false);

 //Construct the control panel and add it to

the Center

 // of the main panel.

 Panel controlPanel = new Panel();

 controlPanel.setLayout(new GridLayout(8,4));

 //Add a row of labels

 controlPanel.add(new Label("RECTANGLE"));

 controlPanel.add(new Label(""));

 controlPanel.add(new Label(""));

 controlPanel.add(new Label(""));

 //Add another row of labels

 controlPanel.add(new Label("X-Coordinate"));

 controlPanel.add(new Label("Y-Coordinate"));

 controlPanel.add(new Label("Width"));

 controlPanel.add(new Label("Height"));

 //Add the text fields for the rectangle

 controlPanel.add(rectXcoorField);

 controlPanel.add(rectYcoorField);

 controlPanel.add(rectWidthField);

 controlPanel.add(rectHeightField);

 //Add another row of labels

 controlPanel.add(new Label("MATRIX"));

 controlPanel.add(new Label(""));

 controlPanel.add(new Label(""));

 controlPanel.add(new Label(""));

 //Add another row of labels

 controlPanel.add(new Label("Red

multiplier"));

 controlPanel.add(new Label("Green

multiplier"));

 controlPanel.add(new Label("Blue

multiplier"));

 controlPanel.add(new Label("Additive

constant"));

 //Add top row of matix text fields

 controlPanel.add(matrix00Field);

 controlPanel.add(matrix01Field);

 controlPanel.add(matrix02Field);

 controlPanel.add(matrix03Field);

 //Add middle row of matrix text fields

 controlPanel.add(matrix10Field);

 controlPanel.add(matrix11Field);

 controlPanel.add(matrix12Field);

 controlPanel.add(matrix13Field);

 //Add bottom row of matrix text fields

 controlPanel.add(matrix20Field);

 controlPanel.add(matrix21Field);

 controlPanel.add(matrix22Field);

 controlPanel.add(matrix23Field);

mainPanel.add(controlPanel,BorderLayout.CENTER);

 //Add the errorMsg

 mainPanel.add(errorMsg,BorderLayout.SOUTH);

 errorMsg.setBackground(Color.GREEN);

 }//end constructMainPanel

Listing 3

Although somewhat long and tedious, the code in Listing 3 is straightforward. If you use Figure

1 as a guide, you should have no difficulty following the code in Listing 3.

The processImg method

The processImg method is shown in its entirety in Listing 4. This method must be defined to

implement the ImgIntfc05 interface, which is a requirement for compatibility with the

framework program named ImgMod05.

The processImg method is called by the framework program named ImgMod05. Note that this

method, in turn, calls the method named processMainPanel.

 public BufferedImage processImg(BufferedImage

theImage){

 BufferedImage outputImage =

processMainPanel(theImage);

 return outputImage;

 }//end processImg

Listing 4

The method named processMainPanel

This method is really the heart of the image-processing program named ImgMod41. The

method begins in Listing 5.

 BufferedImage processMainPanel(BufferedImage

theImage){

 //Reset the error message to the default.

 errorMsg.setText(okMessage);

 errorMsg.setBackground(Color.GREEN);

Listing 5

This method uses the BandCombineOp image-filtering class to process the image according to

the rectangle and matrix values provided by the user via the program GUI shown in Figure 1.

The method is called from within the method named processImg in Listing 4.

The code in Listing 5 initializes the error panel (shown in green in Figure 1) to its default

condition.

Initialize the rectangle location and size

Listing 6 initializes the contents of the text fields that specify the rectangle so as to include the

entire image within the rectangle.

 if((rectWidthField.getText().equals("0"))

 ||

(rectHeightField.getText().equals("0"))){

 rectWidthField.setText(""

+theImage.getWidth());

 rectHeightField.setText("" +

theImage.getHeight());

 }//end if

Listing 6

This initialization is performed only if either the width or height text fields contain a 0, which is

the case at startup. These values can later be modified by the user.

(Also, for convenience, the user can later enter a 0 for the x-coordinate, the y-

coordinate, and the width and then click the Replot to reset the rectangle values

to the original image size.)

Get the contents of the rectangle fields

Listing 7 gets the contents of the rectangle fields, performing some tests to confirm that the

values are valid.

 int

rectXcoor,rectYcoor,rectWidth,rectHeight;

 try{

 rectXcoor =

Integer.parseInt(rectXcoorField.getText());

 rectYcoor =

Integer.parseInt(rectYcoorField.getText());

 rectWidth =

Integer.parseInt(rectWidthField.getText());

 rectHeight =

Integer.parseInt(rectHeightField.getText());

 }catch(java.lang.NumberFormatException e){

 //Bad data in the rectangle fields.

Process a 1x1

 // rectangle so that it will be obvious

to the user

 // that there is a problem.

 rectXcoor = rectYcoor = rectWidth =

rectHeight = 1;

 errorMsg.setText(

 "Bad input data for the

rectangle.");

 errorMsg.setBackground(Color.RED);

 }//end catch

 int imageWidth = theImage.getWidth();

 int imageHeight = theImage.getHeight();

 //Code to confirm that the rectangle falls

inside the

 // image.

 if((rectXcoor < 0)||

 (rectYcoor < 0)||

 ((rectXcoor + rectWidth) > imageWidth)||

 ((rectYcoor + rectHeight) >

imageHeight))

 {

 //The rectangle falls outside the image.

Process a

 // 1x1 rectangle so that it will be

obvious to the

 // user that there is a problem.

 rectXcoor = rectYcoor = rectWidth =

rectHeight = 1;

 errorMsg.setText(

 "The rectangle falls outside

the image.");

 errorMsg.setBackground(Color.RED);

 }//end if

Listing 7

If the data entered into the rectangle text fields cannot be parsed to produce values of type int, or

the location and size of the rectangle is outside the bounds of the image, the green error panel at

the bottom of Figure 1 turns red and displays an error message. To correct the problem, simply

enter valid data and click the Replot button again.

Get the image-processing matrix values

Listing 8 gets the values for the image-processing matrix from the twelve text fields at the

bottom of Figure 1.

 float

matrix00,matrix01,matrix02,matrix03,matrix10,

matrix11,matrix12,matrix13,matrix20,matrix21,

 matrix22,matrix23;

 try{

 matrix00 =

Float.parseFloat(matrix00Field.getText());

 matrix01 =

Float.parseFloat(matrix01Field.getText());

 matrix02 =

Float.parseFloat(matrix02Field.getText());

 matrix03 =

Float.parseFloat(matrix03Field.getText());

 matrix10 =

Float.parseFloat(matrix10Field.getText());

 matrix11 =

Float.parseFloat(matrix11Field.getText());

 matrix12 =

Float.parseFloat(matrix12Field.getText());

 matrix13 =

Float.parseFloat(matrix13Field.getText());

 matrix20 =

Float.parseFloat(matrix20Field.getText());

 matrix21 =

Float.parseFloat(matrix21Field.getText());

 matrix22 =

Float.parseFloat(matrix22Field.getText());

 matrix23 =

Float.parseFloat(matrix23Field.getText());

 }catch(java.lang.NumberFormatException e){

 //Bad input data for the matrix. Cause

the output

 // image to be black so that it will be

obvious to

 // the user that there is a problem.

 matrix00 = matrix01 = matrix02 = matrix03

=

 matrix10 = matrix11 = matrix12 = matrix13

=

 matrix20 = matrix21 = matrix22 = matrix23

= 0.0f;

 errorMsg.setText("Bad input data for the

matrix.");

 errorMsg.setBackground(Color.RED);

 }//end catch

 //Now populate the matrix

 float[][] matrix =

{{matrix00,matrix01,matrix02,matrix03},

{matrix10,matrix11,matrix12,matrix13},

{matrix20,matrix21,matrix22,matrix23}

 };

Listing 8

If the values entered by the user into the text fields can't be parsed to produce valid values of

type float, the error panel in the bottom of Figure 1 turns red and displays an error message. To

correct the problem, simply correct the entry in the text field and click the Replot button.

Set up the matrix array

Once the values have been fetched from the text fields to produce values of type float, the code

in Listing 8 uses those values to create and populate a 2D array object, which will be used later

in Listing 10 to create the image-filtering object.

Get the image data in a Raster object

Listing 9 invokes the method named getData on the BufferedImage object containing the image

to extract and save a rectangular set of pixel data that matches the location and size of the

rectangle.

 Raster inputRaster = theImage.getData(new

Rectangle(

rectXcoor,rectYcoor,rectWidth,rectHeight));

Listing 9

According to Sun, the getData method "Returns the image as one large tile." This Raster object

will be used later in Listing 11 to create a destination raster for the filtered image.

Create the image-filtering object

Listing 10 instantiates a new image-filtering object of type BandCombineOp.

 BandCombineOp filterObj =

 new

BandCombineOp(matrix,null);

Listing 10

The first parameter to the constructor for the BandCombineOp class is the image-processing

matrix created in Listing 8.

The second parameter allows for the use of rendering hints, but that capability is not used in this

program.

Create a destination Raster object

Listing 11 invokes the createCompatibleDestRaster method on the filter object to create a

zeroed destination Raster with the correct size and number of color bands.

 WritableRaster destinationRaster =

filterObj.createCompatibleDestRaster(inputRaster);

Listing 11

The createCompatibleDestRaster method

This method returns a reference to an object of type WritableRaster, which is a subclass of

Raster. Part of what Sun has to say about the WritableRaster class is shown in Figure 12.

This class extends Raster to provide pixel writing

capabilities. Refer to the class comment for Raster for

descriptions of how a Raster stores pixels.

The constructors of this class are protected. To instantiate

a WritableRaster, use one of the createWritableRaster

factory methods in the Raster class.

Figure 12

Obviously, it is also possible to create a WritableRaster object by invoking the

createCompatibleDestRaster method of the BandCombineOp class as was done in Listing 11.

Apply the filter to the image

Listing 12 applies the filter to the raster that contains the image and deposits the filtered image in

the destination raster.

filterObj.filter(inputRaster,destinationRaster);

Listing 12

Return the filtered image

Listing 13 converts the destination raster to a BufferedImage object and returns a reference to

the BufferedImage object.

 return new

BufferedImage(theImage.getColorModel(),

 destinationRaster,

 false,

 null);

 }//end processMainPanel

}//end class ImgMod41

Listing 13

The first parameter causes the ColorModel for the output image to be the same as the

ColorModel for the input image. The second parameter is a reference to the WritableRaster

object that contains the filtered image.

The third parameter indicates that the color values have not been pre-multiplied by the alpha

values. The fourth parameter allows for the inclusion of some properties in a Hashtable

object. (I will leave it as an exercise for the reader to investigate and understand the meaning

and purpose of the third and fourth parameters.)

End of the method and end of the program

Listing 13 also signals the end of the processMainPanel method and the end of the program

named ImgMod41.

Run the Program

I encourage you to copy the code from Listing 14 into your text editor. Compile the code and

execute it. Experiment with it, making changes, and observing the results of your changes.

Remember, you will also need to compile the code for the framework program named

ImgMod05 and the interface named ImgIntfc05. You will find that source code in the earlier

lesson entitled "A Framework for Experimenting with Java 2D Image-Processing Filters" (see

References).

You will also need one or more JPEG, GIF, PNG, or BMP image files to experiment with. You

should have no difficulty finding such files at a variety of locations on the web. I recommend

that you stick with relatively small images so that both the original image and the processed

image will fit in the vertical space on your screen in the format shown in Figure 2.

Summary

In this lesson, I provided and explained an image-processing program named ImgMod41 that is

compatible with the framework program named ImgMod05.

The purpose of this program is to show you how to write such programs, and also to illustrate a

variety of different uses for the BandCombineOp class of the Java 2D API.

I also showed you how to extract a Raster object from a BufferedImage, how to filter the raster,

and how to convert the filtered result back into a BufferedImage.

What's Next?

Future lessons in this series will teach you how to use the following image-filtering classes from

the Java 2D API:

 ConvolveOp

 RescaleOp

 ColorConvertOp

References

 400 Processing Image Pixels using Java, Getting Started

 402 Processing Image Pixels using Java, Creating a Spotlight

 404 Processing Image Pixels Using Java: Controlling Contrast and Brightness

 406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion

 408 Processing Image Pixels, Performing Convolution on Images

 410 Processing Image Pixels, Understanding Image Convolution in Java

 412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

 414 Processing Image Pixels, Applying Image Convolution in Java, Part 2

 416 Processing Image Pixels, An Improved Image-Processing Framework in Java

 450 A Framework for Experimenting with Java 2D Image-Processing Filters

 452 Using the Java 2D LookupOp Filter Class to Process Images

 454 Using the Java 2D AffineTransformOp Filter Class to Process Images

 456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble Images

Complete Program Listing

A complete listing of the program discussed in this lesson is shown in Listing 14.

/*File ImgMod41.java

Copyright 2006, R.G.Baldwin

The purpose of this class is to illustrate the use of the

BandCombineOp image-filtering class of the Java 2D API.

See general comments in the class named ImgMod038.

http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466

This class is compatible with the use of the framework

program named ImgMod05.

The framework program named ImgMod05 displays the original

and the modified images. It also writes the modified image

into an output file in JPEG format. The name of the output

file is junk.jpg and it is written into the current

directory.

Image processing programs such as this one may provide a

GUI for data input making it possible for the user to

modify the behavior of the image processing method each

time the Replot button is clicked. Such a GUI is provided

for this program.

Enter the following at the command line to run this

program:

java ImgMod05 ImgMod41 ImageFileName

If the program is unable to load the image file within ten

seconds, it will abort with an error message.

This program creates a GUI containing:

User instructions

Text fields used to specify the upper-left corner, the

 width, and the height of a rectangle.

Text fields used to specify the values in a 3x4 processing

 matrix having three rows and four columns.

Unlike some of the other image-filtering classes in the

Java 2D API that can operate either directly on

BufferedImage objects or on Raster objects, the

BandCombineOp filter can only operate on Raster objects.

The rectangle is used to extract a rectangular Raster

object from the original image.

The rectangle values are initialized so that the rectangle

is the same size as the image and overlays the entire

image. In other words, the rectangle contains the complete

image.

The matrix values are initialized so as to simply pass the

input image through to the output without modification..

The red, green, and blue values of each pixel are treated

as a column matrix. A 1 is appended onto the end of the

column matrix producing a set of four-element column

matrices that represents each pixel in the input Raster

object.

Each pixel in the output Raster is produced by multiplying

the 3x4 processing matrix by the 4x1 column matrix that

represents the corresponding pixel in the input Raster.

This makes it possible to cause the intensity of each color

in each pixel of the output Raster to be a function of the

intensities of all three colors of the corresponding pixel

in the input Raster, plus a constant that is equal to the

rightmost value in the corresponding row of the processing

matrix.

It is unclear in the documentation what happens to the

output color value if the value resulting from the matrix

multiplication falls outside the range from 0 to 255.

However, observation of the results suggests that rather

than clipping the value to be within the range from 0 to

255, the value is allowed to become corrupt.Therefore, care

must be exercised to avoid such overflow when setting the

multiplicative values in the processing matrix.

Tested using J2SE 5.0 under WinXP.

**/

import java.awt.image.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class ImgMod41 extends Frame implements ImgIntfc05{

 //Components used to construct the main panel.

 // Components that require local access only are defined

 // locally. Others are defined here as instance

 // variables.

 Panel mainPanel = new Panel();//main control panel

 //Text fields for specifying the Rectangle object values.

 TextField rectXcoorField = new TextField("0");

 TextField rectYcoorField = new TextField("0");

 TextField rectWidthField = new TextField("0");

 TextField rectHeightField = new TextField("0");

 //Text fields for specifying the matrix values.

 //Top row

 TextField matrix00Field = new TextField("1.0");

 TextField matrix01Field = new TextField("0.0");

 TextField matrix02Field = new TextField("0.0");

 TextField matrix03Field = new TextField("0.0");

 //Middle row

 TextField matrix10Field = new TextField("0.0");

 TextField matrix11Field = new TextField("1.0");

 TextField matrix12Field = new TextField("0.0");

 TextField matrix13Field = new TextField("0.0");

 //Bottom row

 TextField matrix20Field = new TextField("0.0");

 TextField matrix21Field = new TextField("0.0");

 TextField matrix22Field = new TextField("1.0");

 TextField matrix23Field = new TextField("0.0");

 //The following Label is used to notify of data entry

 // errors.

 String okMessage = "No data entry errors detected.";

 Label errorMsg = new Label(okMessage);

 //---//

 //This is the primary constructor. It calls another

 // method to construct the main panel so as to separate

 // the construction of the GUI into easily

 // understandable units.

 ImgMod41(){//constructor

 constructMainPanel();

 add(mainPanel);

 setTitle("Copyright 2006, R.G.Baldwin");

 setBounds(555,0,470,600);

 setVisible(true);

 //Define a WindowListener to terminate the program.

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(1);

 }//end windowClosing

 }//end windowAdapter

);//end addWindowListener

 }//end constructor

 //---//

 //This method constructs the main panel containing all of

 // the controls. This method is called from the primary

 // constructor.

 void constructMainPanel(){

 mainPanel.setLayout(new BorderLayout());

 //Create and add the instructional text to the panel.

 // This text appears in a disabled text area at the

 // top of the panel.

 String text ="COMBINING COLOR BAND DATA\n"

 + "This program illustrates the use of the "

 + "BandCombineOp filter class of the Java 2D "

 + "API.\n\n"

 + "Specify the coordinates of the upper-left corner "

 + "along with the width and the height of a "

 + "rectangle that either exactly overlays or fits "

 + "inside of the original image. This rectangle is "

 + "used to extract a rectangular Raster with a "

 + "corresponding location and size from the "

 + "image.\n\n"

 + "Specify the twelve values in a 3x4 processing "

 + "matrix and then click the Replot button to "

 + "process the image.\n\n"

 + "The initial width and height values match the "

 + "size of the image. Set the width value to 0 and "

 + "click the Replot button to recover the width and "

 + "height of the image.\n\n"

 + "The red, green, and blue values from each input "

 + "pixel plus a value of 1 is used to construct a "

 + "1x4 column matrix that represents each input "

 + "pixel.\n\n"

 + "Each output pixel is produced by multiplying the "

 + "1x4 column matrix representing each input pixel "

 + "by the 3x4 processing matrix.\n\n"

 + "Apparently output color values greater than 255 "

 + "or less than 0 simply result in corrupt values "

 + "in the output.";

 //Note: The number of columns specified for the

 // following TextArea is immaterial because the

 // TextArea object is placed in the NORTH location of

 // a BorderLayout.

 TextArea textArea = new TextArea(text,22,1,

 TextArea.SCROLLBARS_NONE);

 mainPanel.add(textArea,BorderLayout.NORTH);

 textArea.setEnabled(false);

 //Construct the control panel and add it to the Center

 // of the main panel.

 Panel controlPanel = new Panel();

 controlPanel.setLayout(new GridLayout(8,4));

 //Add a row of labels

 controlPanel.add(new Label("RECTANGLE"));

 controlPanel.add(new Label(""));

 controlPanel.add(new Label(""));

 controlPanel.add(new Label(""));

 //Add another row of labels

 controlPanel.add(new Label("X-Coordinate"));

 controlPanel.add(new Label("Y-Coordinate"));

 controlPanel.add(new Label("Width"));

 controlPanel.add(new Label("Height"));

 //Add the text fields for the rectangle

 controlPanel.add(rectXcoorField);

 controlPanel.add(rectYcoorField);

 controlPanel.add(rectWidthField);

 controlPanel.add(rectHeightField);

 //Add another row of labels

 controlPanel.add(new Label("MATRIX"));

 controlPanel.add(new Label(""));

 controlPanel.add(new Label(""));

 controlPanel.add(new Label(""));

 //Add another row of labels

 controlPanel.add(new Label("Red multiplier"));

 controlPanel.add(new Label("Green multiplier"));

 controlPanel.add(new Label("Blue multiplier"));

 controlPanel.add(new Label("Additive constant"));

 //Add top row of matix text fields

 controlPanel.add(matrix00Field);

 controlPanel.add(matrix01Field);

 controlPanel.add(matrix02Field);

 controlPanel.add(matrix03Field);

 //Add middle row of matrix text fields

 controlPanel.add(matrix10Field);

 controlPanel.add(matrix11Field);

 controlPanel.add(matrix12Field);

 controlPanel.add(matrix13Field);

 //Add bottom row of matrix text fields

 controlPanel.add(matrix20Field);

 controlPanel.add(matrix21Field);

 controlPanel.add(matrix22Field);

 controlPanel.add(matrix23Field);

 mainPanel.add(controlPanel,BorderLayout.CENTER);

 //Add the errorMsg

 mainPanel.add(errorMsg,BorderLayout.SOUTH);

 errorMsg.setBackground(Color.GREEN);

 }//end constructMainPanel

 //---//

 //This method processes the image according to the

 // rectangle and matrix values provided by the user.

 //This method uses the BandCombineOp image-filtering

 // class to process the image. The method is called from

 // within the method named processImg, which is the

 // primary image processing method in this program. The

 // method named processImg is called by the framework

 // program named ImgMod05.

 BufferedImage processMainPanel(BufferedImage theImage){

 //Reset the error message to the default.

 errorMsg.setText(okMessage);

 errorMsg.setBackground(Color.GREEN);

 //Initialize the contents of the text fields that

 // specify the rectangle so as to include the entire

 // image within the rectangle. This initialization is

 // performed only if either the width or height text

 // fields contain a 0, which is the case at startup.

 // These values can later be modified by the user.

 // Also, the user can enter a 0 for the width and

 // click Replot to get back to the original image size.

 if((rectWidthField.getText().equals("0"))

 || (rectHeightField.getText().equals("0"))){

 rectWidthField.setText("" +theImage.getWidth());

 rectHeightField.setText("" + theImage.getHeight());

 }//end if

 //Get the contents of the rectangle fields.

 int rectXcoor,rectYcoor,rectWidth,rectHeight;

 try{

 rectXcoor =

 Integer.parseInt(rectXcoorField.getText());

 rectYcoor =

 Integer.parseInt(rectYcoorField.getText());

 rectWidth =

 Integer.parseInt(rectWidthField.getText());

 rectHeight =

 Integer.parseInt(rectHeightField.getText());

 }catch(java.lang.NumberFormatException e){

 //Bad data in the rectangle fields. Process a 1x1

 // rectangle so that it will be obvious to the user

 // that there is a problem.

 rectXcoor = rectYcoor = rectWidth = rectHeight = 1;

 errorMsg.setText(

 "Bad input data for the rectangle.");

 errorMsg.setBackground(Color.RED);

 }//end catch

 int imageWidth = theImage.getWidth();

 int imageHeight = theImage.getHeight();

 //Code to confirm that the rectangle falls inside the

 // image.

 if((rectXcoor < 0)||

 (rectYcoor < 0)||

 ((rectXcoor + rectWidth) > imageWidth)||

 ((rectYcoor + rectHeight) > imageHeight))

 {

 //The rectangle falls outside the image. Process a

 // 1x1 rectangle so that it will be obvious to the

 // user that there is a problem.

 rectXcoor = rectYcoor = rectWidth = rectHeight = 1;

 errorMsg.setText(

 "The rectangle falls outside the image.");

 errorMsg.setBackground(Color.RED);

 }//end if

 //Get the data from the text fields for the matrix.

 float matrix00,matrix01,matrix02,matrix03,matrix10,

 matrix11,matrix12,matrix13,matrix20,matrix21,

 matrix22,matrix23;

 try{

 matrix00 = Float.parseFloat(matrix00Field.getText());

 matrix01 = Float.parseFloat(matrix01Field.getText());

 matrix02 = Float.parseFloat(matrix02Field.getText());

 matrix03 = Float.parseFloat(matrix03Field.getText());

 matrix10 = Float.parseFloat(matrix10Field.getText());

 matrix11 = Float.parseFloat(matrix11Field.getText());

 matrix12 = Float.parseFloat(matrix12Field.getText());

 matrix13 = Float.parseFloat(matrix13Field.getText());

 matrix20 = Float.parseFloat(matrix20Field.getText());

 matrix21 = Float.parseFloat(matrix21Field.getText());

 matrix22 = Float.parseFloat(matrix22Field.getText());

 matrix23 = Float.parseFloat(matrix23Field.getText());

 }catch(java.lang.NumberFormatException e){

 //Bad input data for the matrix. Cause the output

 // image to be black so that it will be obvious to

 // the user that there is a problem.

 matrix00 = matrix01 = matrix02 = matrix03 =

 matrix10 = matrix11 = matrix12 = matrix13 =

 matrix20 = matrix21 = matrix22 = matrix23 = 0.0f;

 errorMsg.setText("Bad input data for the matrix.");

 errorMsg.setBackground(Color.RED);

 }//end catch

 //Now populate the matrix

 float[][] matrix =

 {{matrix00,matrix01,matrix02,matrix03},

 {matrix10,matrix11,matrix12,matrix13},

 {matrix20,matrix21,matrix22,matrix23}

 };

 //Note: Unlike some of the other filters in the Java

 // 2D API that can operate either directly on

 // BufferedImage objects or on Raster objects, the

 // BandCombineOp filter can only operate on Raster

 // objects.

 //Get the Raster object that contains the image data

 // inside the specified Rectangle object.

 Raster inputRaster = theImage.getData(new Rectangle(

 rectXcoor,rectYcoor,rectWidth,rectHeight));

 //Create the filter object. The second parameter

 // allows for specification of rendering hints.

 BandCombineOp filterObj =

 new BandCombineOp(matrix,null);

 //Create a zeroed destination Raster with the correct

 // size and number of bands.

 WritableRaster destinationRaster =

 filterObj.createCompatibleDestRaster(inputRaster);

 //Apply the filter

 filterObj.filter(inputRaster,destinationRaster);

 //Convert the destination raster to a BufferedImage and

 // return it. The first parameter causes the

 // ColorModel for the output image to be the same as

 // the ColorModel for the input image. The third

 // parameter indicates that the color values have not

 // been premultiplied by the alpha values. The fourth

 // parameter allows for the inclusion of some

 // properties in a Hashtable object.

 return new BufferedImage(theImage.getColorModel(),

 destinationRaster,

 false,

 null);

 }//end processMainPanel

 //---//

 //The following method must be defined to implement the

 // ImgIntfc05 interface. It is called by the framework

 // program named ImgMod05.

 public BufferedImage processImg(BufferedImage theImage){

 BufferedImage outputImage = processMainPanel(theImage);

 return outputImage;

 }//end processImg

}//end class ImgMod41

Listing 14

Copyright 2007, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which have gained a worldwide following among

experienced and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

Keywords
java 2D image pixel framework filter BandCombineOp

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

