
Processing Image Pixels, Creating Visible Watermarks in

Java

Learn how to write a Java program that can be used to add five different types of visible

watermarks to an image.

Published: December 19, 2006

By Richard G. Baldwin

Java Programming Notes # 418

 Preface

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 What's Next?

 References

 Complete Program Listing

Preface

Digital watermarking

Paraphrasing Wikipedia, digital watermarking is a technique that allows an individual to add

copyright notices or other verification messages to digital audio, video, or image signals and

documents. Digital watermarks may be visible, hidden, or a combination of the two.

Visible watermarks

This lesson will deal with visible watermarks, as shown in the bottom image of Figure 1.

mailto:Baldwin@DickBaldwin.com
http://en.wikipedia.org/wiki/Digital_watermarking

Figure 1 Visible

Watermarks.

The bottom image in Figure 1 is a modified version of the original image shown at the top. The

bottom image was modified to contain five different kinds of visible watermarks in the four

corners and at the center of the image.

A program to add visible watermarks

In this lesson, I will present and explain a program named ImgMod36, which was used to

produce the images shown in Figure 1. You will learn how to write a Java program that can be

used to add five different types of visible watermarks to an image.

Hidden watermarks

A future lesson will deal with hidden watermarks similar to those shown in the center image of

the right panel of Figure 2.

Figure 2 Hidden Watermarks.

Briefly, the images in the left panel of Figure 2 show an original image at the top and a replica of

the original image at the bottom with no hidden watermarks having been added. The images in

the right panel of Figure 2 also show the original image at the top and a replica of the original

image at the bottom. However, in this case, three watermarks been hidden in the frequency-

domain representation of the image shown by the middle image.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

I also recommend that you pay particular attention to the lessons listed in the References section

of this document.

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/
../Java416.htm#References

Preview

The program named ImgMod36

There are many different ways to add watermarks to an image. The purpose of this program is to

illustrate the creation of five different types of visible watermarks as shown in the bottom image

of Figure 1:

1. A high intensity watermark in a single color plane (red, top left corner).

2. A watermark that is the same color as the original image pixels but with twice the

intensity (top right corner).

3. A watermark that is the same color as the original image pixels but with only half the

intensity (center).

4. A watermark for which the alpha (transparency) values of the pixels are half of the

original values (bottom left corner).

5. A high intensity white watermark (bottom right corner).

Driven by ImgMod04a

This program is designed to be driven by the image processing framework program named

ImgMod04a. The framework program was developed and explained in the earlier lesson

entitled Processing Image Pixels, An Improved Image-Processing Framework in Java.

Operation

To run this program, enter the following at the command line.

java ImgMod04a ImgMod36 ImageFileName

where ImageFileName is the name of a .gif or .jpg file, including the extension.

A single display frame

The program displays a single frame on the screen as shown

in Figure 1. The frame contains the original image at the top

and a replica of the original image with five watermarks

added at the bottom.

An output JPEG file

Each time the program is run, or the Replot button is clicked,

the bottom image containing the watermarks is written into a

JPEG file named junk.jpg. For example, Figure 3 shows a

screen capture of the contents of the output JPEG file produced for Figure 1.

Replot button
The frame also contains a

Replot button. However,

because this program does not

allow the user to enter

parameters to modify the

behavior of the program at

runtime, clicking the Replot

button has little or no effect.

http://www.developer.com/java/other/article.php/3640776

Figure 3 Output

JPEG File.

If a file having name junk.jpg already exists in the current directory, it is overwritten.

The processImg method

In order for a class to be compatible with the framework program named ImgMod04a, the class

must implement the interface named ImgIntfc04a. The interface named ImgIntfc04a declares a

method named processImg. Therefore, the class named ImgMod36 must define an image

processing method named processImg.

The image processing method named processImg is executed by the program named

ImgMod04a upon startup, and each time thereafter that the user clicks the Replot button at the

top of Figure 1.

In this program, the method named processImg modifies the image pixels in five selected

locations in the original image to add the watermarks described above and shown in Figure

1. Then it returns the modified image, which is displayed by the program named ImgMod04a.

Class files required

This program requires access to the following class files plus some inner classes that are defined

inside the following classes:

 ImgIntfc04a.class

 ImgMod04a.class

 ImgMod36.class

The source code for the first two classes was provided in the earlier lesson entitled Processing

Image Pixels, An Improved Image-Processing Framework in Java. The source code for the third

class is provided in Listing 13.

Program testing

The program was tested using J2SE 5.0 and WinXP.

Discussion and Sample Code

Will explain in fragments

http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3640776

As is my normal practice, I will explain this program in fragments. You can view a complete

listing of the class named ImgMod36 in Listing 13 near the end of the lesson.

Basically, this class consists of the method named processImg, a method named

addWatermark, and several utility methods that are used to perform common operations on the

color planes that represent the image in a 3D array of type double.

The processImg method

The class named ImgMod36 and the method named processImg begin in Listing 1.

class ImgMod36 implements ImgIntfc04a{

 public double[][][] processImg(double[][][]

threeDPix){

 int imgRows = threeDPix.length;

 int imgCols = threeDPix[0].length;

 //Make a working copy of the 3D pixel array

to avoid

 // making permanent changes to the original

image data.

 double[][][] workingCopy =

copy3DArray(threeDPix);

 //Declare a working plane.

 double[][] workingPlane;

Listing 1

Understanding the ImgMod04a class

It will be very helpful if you understand the image processing framework program named

ImgMod04a before attempting to understand this program. You will find an explanation of

ImgMod04a in the earlier lesson entitled Processing Image Pixels, An Improved Image-

Processing Framework in Java.

Processing the image

Regardless of whether or not you already understand ImgMod04a, the method named

processImg receives an image formatted into a 3D array of type double and returns a modified

image in a 3D array of type double.

Four image planes

The 3D array describes four image planes consisting of an alpha or transparency plane, a red

plane, a green plane, and a blue plane in that order. All of the necessary conversions between

type unsigned byte, which is the standard format for image pixel data, and type double are

http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3640776

handled by the class named ImgMod04a. Thus, the method named processImg has only to

contend with data of type double.

The code in Listing 1 begins by finding the dimensions in

pixels of the image planes. Then it invokes the method

named copy3DArray to make a working copy of the 3D pixel

array to avoid making permanent changes to the original

image data.

A working 2D plane

Finally, the code in Listing 1 declares a 2D array of type double that will be used as a working

plane. This plane is used to avoid making individual working copies of each of the four image

planes and reduces the memory requirements for processing large images.

Extract and process the alpha plane

The code in Listing 2:

 Invokes the extractPlane method to extract the alpha plane from the 3D working array

into the 2D working plane.

 Invokes the addWatermark method to add watermarks to the working plane, passing the

working plane and the identification of the alpha plane, 0, to the addWatermark

method.

 Invokes the insertPlane method to insert the modified working plane back into the 3D

working array, replacing the alpha plane previously stored there.

 //Extract and process the alpha plane.

 workingPlane = extractPlane(workingCopy,0);

 //Add the watermarks.

 addWatermark(workingPlane,0);

 //Insert the alpha plane back into the

working array.

 insertPlane(workingCopy,workingPlane,0);

Listing 2

The extractPlane method and the insertPlane method are straightforward and shouldn't require

an explanation. You can view those methods in their entirety in Listing 13.

The addWatermark method

The addWatermark method is at the heart of this lesson. Therefore, I will set the discussion of

the processImg method aside long enough to explain the addWatermark method.

Straightforward code
The code in the method named

copy3DArray is

straightforward and shouldn't

require an explanation. You

can view the method in its

entirety in Listing 13.

The addWatermark method begins in Listing 3. The purpose of this method is to add visible

watermarks to a 2D array of pixel data of type double. There are many ways to modify the pixel

data to add watermarks. This method illustrates five of those ways.

 void addWatermark(double[][] plane,int

color){

 int imgRows = plane.length;

 int imgCols = plane[0].length;

Listing 3

The incoming parameters

The addWatermark method receives two incoming parameters. One parameter is a reference to

the 2D array of pixel data that is to be modified to add the watermarks.

The other parameter is an int value that identifies the plane according to the following key:

 0 - alpha plane

 1 - red plane

 2 - green plane

 3 - blue plane

The dimensions of the 2D image plane

The addWatermark code in Listing 3 determines the dimensions of the image plane in pixels.

Create the watermark

Listing 4 creates an array object containing the watermark. The watermark consists of the

characters H2O described by int values of 1 and 0 arranged in a row-column format. Each int

value in the array will be used later to determine whether or not to modify a pixel in the

image. Thus, there is a one-to-one correspondence between the int values in the watermark

array and the pixels in the image.

 int[][] watermark = new int[][]{

 {1,1,0,0,0,1,1, 0, 0,1,1,1,1,1,0, 0,

0,0,1,1,1,0,0},

 {1,1,0,0,0,1,1, 0, 1,1,1,1,1,1,1, 0,

0,1,1,1,1,1,0},

 {1,1,1,1,1,1,1, 0, 1,0,0,0,0,1,1, 0,

1,1,0,0,0,1,1},

 {1,1,1,1,1,1,1, 0, 0,0,1,1,1,1,0, 0,

1,1,0,0,0,1,1},

 {1,1,0,0,0,1,1, 0, 0,1,1,1,1,0,0, 0,

1,1,0,0,0,1,1},

 {1,1,0,0,0,1,1, 0, 1,1,0,0,0,0,0, 0,

1,1,0,0,0,1,1},

 {1,1,0,0,0,1,1, 0, 1,1,1,1,1,1,1, 0,

0,1,1,1,1,1,0},

 {1,1,0,0,0,1,1, 0, 1,1,1,1,1,1,1, 0,

0,0,1,1,1,0,0},

 };//end array

 int wmRows = watermark.length;

 int wmCols = watermark[0].length;

Listing 4

Listing 4 also gets and saves the dimensions of the watermark array.

Iterate on watermark rows and columns

Listing 5 shows the opening statements of a pair of nested for loops that iterate on the rows and

columns of the watermark.

 for(int row = 0;row < wmRows;row++){

 for(int col = 0;col < wmCols;col++){

 if(watermark[row][col] == 1){//Ignore 0

values.

Listing 5

The pair of nested for loops that begin in Listing 5 encapsulate five sections of code that are used

to modify pixel values in order to produce the five different types of watermarks shown in Figure

1.

Selecting the pixels to be modified

The if statement in Listing 5 causes those five sections of code to be executed for every row-

column combination where the watermark value is 1 and causes the five sections of code to be

skipped for every row-column combination where the watermark value is 0.

High-intensity watermark on the red plane

Listing 6 tests the incoming parameter value named color (that specifies the plane) and ignores

all planes except the red plane that is identified by a value of 1. For that case, the current color

value of the specified pixel is replaced by the maximum possible color value of 255.

 if(color == 1){//Modify red plane

only.

 plane[row+10][col+10] = 255.0;

 }//end if

Listing 6

Do the arithmetic
I will let you do the arithmetic

This watermark is placed in the upper-left corner of the

bottom image as shown in Figure 1.

A watermark in the upper right corner

Listing 7 places a watermark in the upper right corner of the screen as shown in the bottom

image of Figure 1. The color of the watermark is basically the same as the color of the image at

that location but the intensity of each pixel in the watermark is twice the intensity of the original

pixel.

 if(color != 0){//Don't modify the

alpha plane.

 plane[row+10][imgCols-wmCols-

10+col] =

 plane[row+10][imgCols-wmCols-

10+col]*2.0;

 plane[row+10][imgCols-wmCols-

10+col] =

 clamp(plane[row+10][imgCols-

wmCols-10+col]);

 }//end if

Listing 7

Need to clamp the values

This procedure can lead to pixels having color values that are

greater than the maximum allowed value of 255. This is dealt

with by invoking the method named clamp to guarantee that

the value is within the range of 0 to 255 inclusive. The clamp

method is straightforward and shouldn't require an

explanation. It can be viewed in its entirety in Listing 13.

Doesn't modify the transparency

Note that this procedure doesn't change the pixels in the alpha plane identified by a color value

of 0.

A watermark in the center of the image

Listing 8 places a watermark in the center of the image as shown by the dark watermark in the

center of the bottom image in Figure 1. The color of the watermark is basically the same as the

color of the image at that location but the intensity of each pixel in the watermark is half the

intensity of the original pixel.

 if(color != 0){//Don't modify alpha

plane.

 plane[imgRows-(imgRows/2+wmRows/2)+

yourself to see how it ends up

in the upper-left corner.

Intensity
Note that the intensity of a red,

green, or blue pixel color can

range from 0 to 255 with 0

being black and 255 being full

intensity.

row]

 [imgCols-

(imgCols/2+wmCols/2)+col] =

 plane[imgRows-

(imgRows/2+wmRows/2)+row]

 [imgCols-

(imgCols/2+wmCols/2)+col]*0.5;

 }//end if

Listing 8

Note once again that the values of the pixels in the alpha plane are not modified.

A watermark that manipulates transparency values

The construction of the watermark in the lower left corner of Figure 1 is considerably different

from the others. This watermark, which is constructed by Listing 9, doesn't change the values of

the red, green, and blue pixels. Rather, it causes those pixels to be more transparent allowing the

background color of the frame to show through.

 if(color == 0){//Modify alpha plane

only.

 plane[imgRows-wmRows-

10+row][col+10] =

 plane[imgRows-wmRows-

10+row][col+10]/2.0;

 }//end if

Listing 9

The background color of the frame in Figure 1 is yellow. Therefore, this pixel appears to be

yellow in Figure 1.

A white watermark

Listing 10 places a white watermark in the lower right corner of the image as shown in Figure

1. Listing 10 doesn't modify the transparency value.

 if(color != 0){//Don't modify the

alpha plane.

 plane[imgRows-wmRows-10+row]

 [imgCols-wmCols-

10+col] = 255.0;

 }//end if

 }//end if on watermark pixel value

 }//end inner loop on wmCols

 }//end outer loop on wmRows

 }//end addWatermark

Listing 10

Listing 10 also signals the end of the method named addWatermark.

Process the remaining color planes

Returning now to the processImg method, the alpha plane has been processed. Listing 11

processes the red, green, blue color planes using exactly the same methodology as was used to

process the alpha plane.

 //Extract and process the red color plane.

 workingPlane = extractPlane(workingCopy,1);

 addWatermark(workingPlane,1);

 insertPlane(workingCopy,workingPlane,1);

 //Extract and process the green color

plane.

 workingPlane = extractPlane(workingCopy,2);

 addWatermark(workingPlane,2);

 insertPlane(workingCopy,workingPlane,2);

 //Extract and process the blue color plane.

 workingPlane = extractPlane(workingCopy,3);

 addWatermark(workingPlane,3);

 insertPlane(workingCopy,workingPlane,3);

Listing 11

Return the modified image array

The alpha plane and all three color planes have now been processed. The results are stored in the

working copy of the original pixel array. Listing 12 returns the array containing the modified

image to the calling method.

 return workingCopy;

 }//end processImg method

Listing 12

Listing 12 also completes the discussion of the program code.

Susceptibility to modifications

As you will learn in future lessons that deal with hidden watermarks, one of the big issues

involving watermarks has to do with the susceptibility of the watermark to modification of the

image. For example, if it is easy to cause a watermark to disappear by modifying the image, the

watermark may not be very useful in allowing an individual to add copyright notices or other

verification messages to digital images.

Example of a modified watermarked image

Figure 4 shows the result of rotating, flipping, and scaling the image stored in the JPEG output

file from Figure 1.

Figure 4

Modified JPEG

File.

As you can see from Figure 4, visible watermarks of the types employed by this program tend to

be very persistent, at least with respect to the kinds of modifications that were applied to this

image.

Not necessarily true for hidden watermarks

However, as you will learn in future lessons that discuss hidden watermarks, achieving such

persistence is much more difficult for hidden watermarks. In fact, sometimes the simple act of

storing a watermarked image in a JPEG file can cause the hidden watermark to be lost. Other

operations such as scaling the image can be even more detrimental to hidden watermarks.

Run the Program

I encourage you to copy the code from Listing 13 into your text editor, compile it, and execute

it. Experiment with it, making changes, and observing the results of your changes. See if you

can come up with some different and interesting ways to create visible watermarks by

manipulating the alpha value and the three color values of the pixels.

Summary

In this lesson, I presented and explained a program that can be used to add five different types of

visible watermarks to an image.

What's Next?

Future lessons will explain how to add hidden watermarks to an image. As you will see in those

lessons, that task is somewhat more difficult than adding visible watermarks.

http://en.wikipedia.org/wiki/Digital_watermarking

References

400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight

404 Processing Image Pixels Using Java: Controlling Contrast and Brightness

406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion

408 Processing Image Pixels, Performing Convolution on Images

410 Processing Image Pixels, Understanding Image Convolution in Java

412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2

416 Processing Image Pixels, An Improved Image-Processing Framework in Java

Complete Program Listing

A complete listing of the program discussed in this lesson is shown in Listing 13 below.

/*File ImgMod36.java

Copyright 2006, R.G.Baldwin

There are many different ways to add watermarks to an

image. The purpose of this program is to illustrate the

creation of five different types of visible watermarks:

1. A high intensity watermark in a single color

 plane (red).

2. A watermark that is the same color as the original image

 pixels but twice as intense.

3. A watermark that is the same color as the original image

 pixels but with only half the intensity.

4. A watermark for which the alpha (transparency) value of

 the pixels is half of the original values.

5. A high intensity white watermark.

This program is designed to be driven by the image

processing framework named ImgMod04a. To run this

program, enter the following at the command line.

java ImgMod04a ImgMod36 ImageFileName

where ImageFileName is the name of a .gif or .jpg file,

including the extension.

The program displays a single frame on the screen. The

frame contains the original image at the top and a replica

of the original image with the watermarks added at the

bottom. The frame also contains a Replot button.

However, because the program does not allow the user to

enter parameters to modify the behavior of the program at

runtime, clicking the Replot button has little or no

beneficial effect.

http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776

Each time that the program is run, or the Replot button

is clicked, the final image containing the watermarks is

written into a JPEG file named junk.jpg. If a file

having that name already exists in the current directory,

it is overwritten.

This program contains an image processing method named

processImg, which is executed by the program named

ImgMod04a. The method named processImg modifies the image

pixels in five selected locations to add the watermarks

described above. Then it returns the modified image, which

is displayed by the program named ImgMod04a.

This program requires access to the following class files

plus some inner classes that are defined inside the

following classes:

ImgIntfc04a.class

ImgMod04a.class

ImgMod36.class

Tested using J2SE 5.0 and WinXP.

**/

class ImgMod36 implements ImgIntfc04a{

 //This method is required by ImgIntfc04a. It is called

 // at the beginning of the run and each time thereafter

 // that the user clicks the Replot button on the Frame

 // containing the images. However, because this program

 // doesn't provide for user input, pressing the Replot

 // button is of no value. It just displays the same

 // images again.

 public double[][][] processImg(double[][][] threeDPix){

 int imgRows = threeDPix.length;

 int imgCols = threeDPix[0].length;

 //Make a working copy of the 3D pixel array to avoid

 // making permanent changes to the original image data.

 double[][][] workingCopy = copy3DArray(threeDPix);

 //Declare a working plane.

 double[][] workingPlane;

 //Extract and process the alpha plane.

 workingPlane = extractPlane(workingCopy,0);

 addWatermark(workingPlane,0);

 //Insert the alpha plane back into the working array.

 insertPlane(workingCopy,workingPlane,0);

 //Extract and process the red color plane.

 workingPlane = extractPlane(workingCopy,1);

 addWatermark(workingPlane,1);

 insertPlane(workingCopy,workingPlane,1);

 //Extract and process the green color plane.

 workingPlane = extractPlane(workingCopy,2);

 addWatermark(workingPlane,2);

 insertPlane(workingCopy,workingPlane,2);

 //Extract and process the blue color plane.

 workingPlane = extractPlane(workingCopy,3);

 addWatermark(workingPlane,3);

 insertPlane(workingCopy,workingPlane,3);

 //The alpha plane and all three color planes have now

 // been processed. The results are stored in the

 // working copy of the original pixel array.

 return workingCopy;

 }//end processImg method

 //---//

 //The purpose of this method is to extract a color plane

 // from the double version of an image and to return it

 // as a 2D array of type double.

 public double[][] extractPlane(

 double[][][] threeDPixDouble,

 int plane){

 int numImgRows = threeDPixDouble.length;

 int numImgCols = threeDPixDouble[0].length;

 //Create an empty output array of the same

 // size as a single plane in the incoming array of

 // pixels.

 double[][] output =new double[numImgRows][numImgCols];

 //Copy the values from the specified plane to the

 // double array.

 for(int row = 0;row < numImgRows;row++){

 for(int col = 0;col < numImgCols;col++){

 output[row][col] =

 threeDPixDouble[row][col][plane];

 }//end loop on col

 }//end loop on row

 return output;

 }//end extractPlane

 //---//

 //The purpose of this method is to insert a double 2D

 // plane into the double 3D array that represents an

 // image.

 public void insertPlane(double[][][] threeDPixDouble,

 double[][] colorPlane,

 int plane){

 int numImgRows = threeDPixDouble.length;

 int numImgCols = threeDPixDouble[0].length;

 //Copy the values from the incoming color plane to the

 // specified plane in the 3D array.

 for(int row = 0;row < numImgRows;row++){

 for(int col = 0;col < numImgCols;col++){

 threeDPixDouble[row][col][plane] =

 colorPlane[row][col];

 }//end loop on col

 }//end loop on row

 }//end insertPlane

 //---//

 //This method copies a double version of a 3D pixel array

 // to an new pixel array of type double.

 double[][][] copy3DArray(double[][][] threeDPix){

 int imgRows = threeDPix.length;

 int imgCols = threeDPix[0].length;

 double[][][] new3D = new double[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 new3D[row][col][0] = threeDPix[row][col][0];

 new3D[row][col][1] = threeDPix[row][col][1];

 new3D[row][col][2] = threeDPix[row][col][2];

 new3D[row][col][3] = threeDPix[row][col][3];

 }//end inner loop

 }//end outer loop

 return new3D;

 }//end copy3DArray

 //---//

 //The purpose of this method is to add watermarks to

 // a 2D array of pixel data. There are many ways to

 // modify the pixel data to add watermarks. This

 // method illustrates five of those ways.

 void addWatermark(double[][] plane,int color){

 int imgRows = plane.length;

 int imgCols = plane[0].length;

 //Create an array containing the basic watermark. The

 // watermark consists of the characters H2O described

 // by values of 1 and 0.

 int[][] watermark = new int[][]{

 {1,1,0,0,0,1,1, 0, 0,1,1,1,1,1,0, 0, 0,0,1,1,1,0,0},

 {1,1,0,0,0,1,1, 0, 1,1,1,1,1,1,1, 0, 0,1,1,1,1,1,0},

 {1,1,1,1,1,1,1, 0, 1,0,0,0,0,1,1, 0, 1,1,0,0,0,1,1},

 {1,1,1,1,1,1,1, 0, 0,0,1,1,1,1,0, 0, 1,1,0,0,0,1,1},

 {1,1,0,0,0,1,1, 0, 0,1,1,1,1,0,0, 0, 1,1,0,0,0,1,1},

 {1,1,0,0,0,1,1, 0, 1,1,0,0,0,0,0, 0, 1,1,0,0,0,1,1},

 {1,1,0,0,0,1,1, 0, 1,1,1,1,1,1,1, 0, 0,1,1,1,1,1,0},

 {1,1,0,0,0,1,1, 0, 1,1,1,1,1,1,1, 0, 0,0,1,1,1,0,0},

 };//end array

 int wmRows = watermark.length;

 int wmCols = watermark[0].length;

 for(int row = 0;row < wmRows;row++){

 for(int col = 0;col < wmCols;col++){

 if(watermark[row][col] == 1){//Ignore 0 values.

 //Place a high intensity watermark only in the

 // red color plane of the image. Place it in the

 // upper left.

 if(color == 1){//Modify red plane only.

 plane[row+10][col+10] = 255.0;

 }//end if

 //Place a watermark in the upper right area.

 // Make the color of the watermark be the

 // same as the color of the image but twice as

 // intense.

 if(color != 0){//Don't modify the alpha plane.

 plane[row+10][imgCols-wmCols-10+col] =

 plane[row+10][imgCols-wmCols-10+col]*2.0;

 plane[row+10][imgCols-wmCols-10+col] =

 clamp(plane[row+10][imgCols-wmCols-10+col]);

 }//end if

 //Place a watermark in the center of the image.

 // Make the intensity of each color to be half of

 // the original intensity.

 if(color != 0){//Don't modify alpha plane.

 plane[imgRows-(imgRows/2+wmRows/2)+ row]

 [imgCols-(imgCols/2+wmCols/2)+col] =

 plane[imgRows-(imgRows/2+wmRows/2)+row]

 [imgCols-(imgCols/2+wmCols/2)+col]*0.5;

 }//end if

 //Place a watermark in the lower left. Make the

 // transparency value of each pixel to be half of

 // its original value.

 if(color == 0){//Modify alpha plane only.

 plane[imgRows-wmRows-10+row][col+10] =

 plane[imgRows-wmRows-10+row][col+10]/2.0;

 }//end if

 //Place a high intensity white watermark in the

 // bottom-right.

 if(color != 0){//Don't modify the alpha plane.

 plane[imgRows-wmRows-10+row]

 [imgCols-wmCols-10+col] = 255.0;

 }//end if

 }//end if on watermark pixel value

 }//end inner loop on wmCols

 }//end outer loop on wmRows

 }//end addWatermark

 //---//

 //The purpose of this method is to clamp the incoming

 // value to guarantee that it falls in the range from 0

 // to 255 inclusive.

 double clamp(double data){

 if(data > 255.0){

 return 255.0;

 }else if(data < 0.0){

 return 0.0;

 }else{

 return data;

 }//end else

 }//end clamp

 //---//

}//end class ImgMod36

Listing 13

Copyright 2006, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which have gained a worldwide following among

experienced and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

Keywords
java image watermark pixel

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

