
Processing Image Pixels, Color Intensity, Color Filtering,

and Color Inversion

Learn to write a Java program to control color intensity, apply color filtering, and apply color

inversion to an image. Learn to relate the colors to points on a color wheel and points in a color

cube.

Published: June 14, 2005

By Richard G. Baldwin

Java Programming, Notes # 406

 Preface

 Background Information

 Preview

 Discussion and Sample Code

 Communication between the Programs

 Run the Programs

 Summary

 What's Next

 Complete Program Listings

Preface

Fourth in a series

This is the fourth lesson in a series designed to teach you how to use Java to create special

effects with images by directly manipulating the pixels in the images.

The first lesson in the series was titled Processing Image Pixels using Java, Getting Started. The

previous lesson was titled Processing Image Pixels Using Java: Controlling Contrast and

Brightness. This lesson builds upon those earlier lessons. You will need to understand the code

in the lesson titled Processing Image Pixels using Java, Getting Started before the code in this

lesson will make much sense.

Not a lesson on JAI

The lessons in this series do not provide instructions on how to use the Java Advanced Imaging

(JAI) API. (That will be the primary topic for a future series of lessons.) The purpose of this

series is to teach you how to implement common image-processing algorithms by working

directly with the pixels.

A framework or driver program

http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

The lesson titled Processing Image Pixels using Java, Getting Started provided and explained a

program named ImgMod02 that makes it easy to:

 Manipulate and modify the pixels that belong to an image.

 Display the processed image along with the original image.

The lesson titled Processing Image Pixels Using Java: Controlling Contrast and Brightness

provided an upgraded version of that program named ImgMod02a. ImgMod02a serves as a

driver that controls the execution of a second program that actually processes the pixels.

The program that I will explain in this lesson runs under the control of ImgMod02a. In order to

compile and run the program that I will provide in this lesson, you will need to go to the lessons

titled Processing Image Pixels Using Java: Controlling Contrast and Brightness and Processing

Image Pixels using Java, Getting Started to get copies of the program named ImgMod02a and

the interface named ImgIntfc02.

Purpose of this lesson

The purpose of this lesson is to teach you how to write a Java program that can be used to:

 Control color intensity

 Apply color filtering

 Apply color inversion

Future lessons will show you how to create a number of other special effects by directly

modifying the pixels belonging to an image.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

Sample program output

I will begin this lesson by showing you three examples of the types of things that you can do

with this program. I will discuss the examples very briefly here and will discuss them in more

detail later in the lesson.

http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/

Color intensity control

Figure 1 shows an example of color intensity control. The bottom image in Figure 1 is the result

of reducing the intensity of every color pixel to fifty-percent of its original value. As you can

see, this basically caused the intensity of the entire image to be reduced resulting in a darker

image where the colors were somewhat washed out.

Figure 1 Color intensity control example.

The user interface GUI

Figure 2 shows the state of the user interface GUI that produced Figure 1. Each of the three

sliders in Figure 2 controls the intensity of one of the colors red, green, and blue. The intensity

of each color can be adjusted within the range from 0% to 100% of its original value.

Figure 2 Control for Fig. 1

Each of the sliders in Figure 2 was adjusted to a value of 50, causing the intensity of every color

in every pixel to be reduced to 50% of its original value.

(Note that the check box at the top was not checked. I will explain the purpose of

this checkbox later.)

Color filtering

Figure 3 shows an extreme example of color filtering.

(I elected to provide an extreme example so that the results would be obvious.)

In Figure 1, there was no modification of any color relative to any other color. (The value of

every color was adjusted to 50% of its original value.) However, in Figure 3, the relative

intensities of the three colors were modified relative to each other.

Figure 3 Color filtering example.

There was no change to the color values for any of the red pixels in Figure 3. The color values

for all of the green pixels were reduced to 50% of their original values. The color values for all

blue pixels were reduced to zero. Thus, the color blue was completely eliminated from the

output.

As you can see, modifying the pixel color values in this way caused the overall color of the

processed image to be more orange than the original.

(Some would say that the processed image in Figure 3 is warmer than the original

image in Figure 3 because it emphasizes warm colors rather than cool colors.)

The user interface GUI for Figure 3

Figure 4 shows the state of the user interface GUI that produced Figure 3.

Figure 4 Control for Fig. 3

The red slider in Figure 4 is positioned at 100, causing the red color values of all the pixels to

remain unchanged. The green slider is positioned at 50, causing the green color values of all the

pixels to be reduced to 50% of their original values. The blue slider is positioned at 0 causing

the blue color values of all pixels to be reduced to 0.

Once again the checkbox at the top of Figure 4 is not checked. I will explain the purpose of this

checkbox in the next section.

Color inversion

Figure 5 shows an example of color inversion with no color filtering.

(Note that it is also possible to apply a combination of color filtering and color

inversion.)

Figure 5 Color inversion example.

What is color inversion?

I will have a great deal to say about color inversion later in this lesson. For now, suffice it to say

that color inversion causes a change to all the colors in an image. That change is

computationally economical, reversible, and usually obvious to the viewer. As you can readily

see, the colors in the processed image in Figure 5 are obviously different from the colors in the

original image.

The user interface GUI for Figure 5

Figure 6 shows the state of the user interface GUI that produced Figure 5.

Figure 6 Control for Fig. 5

The check box at the top of Figure 6 is checked, sending a message to the image-processing

program to implement color inversion.

Each of the sliders in Figure 6 is positioned at 100. As a result, no color filtering was

applied. As mentioned earlier, however, it is possible to combine color filtering with color

inversion. In fact, by using comment indicators to enable and disable different blocks of code

and recompiling, the program that I will discuss later makes it possible to combine color filtering

and color inversion in two different ways:

 Filter first and then invert.

 Invert first and then filter.

The two different approaches can result in significantly different results.

Display format

The images shown in Figures 1, 3, and 5 were produced by the driver program named

ImgMod02a. The user interface GUIs in Figures 2, 4, and 6 were produced by the program

named ImgMod15.

As in all of the graphic output produced by the driver program named ImgMod02a, the original

image is shown at the top and the processed image is shown at the bottom.

An interactive image-processing program

The image-processing program named ImgMod15 illustrated by the above figures allows the

user to interactively

 Control the color intensity

 Apply color filtering

 Apply color inversion

Color intensity and color filtering are controlled by adjusting the three sliders where each slider

corresponds to one of the colors red, green, and blue.

Color inversion is controlled by checking or not checking the check box near the top of the GUI.

After making adjustments to the GUI, the user presses the Replot button shown at the bottom of

Figures 1, 3, and 5 to cause the image to be reprocessed and replotted.

Theoretical basis and practical implementation

While discussing the lessons in this series, I will provide some of the theoretical basis for

special-effects algorithms. In addition, I will show you how to implement those algorithms in

Java.

Background Information

The earlier lesson titled Processing Image Pixels using Java, Getting Started provided a great

deal of background information as to how images are constructed, stored, transported, and

rendered. I won't repeat that material here, but will simply refer you to the earlier lesson.

File formats

The earlier lesson introduced and explained the concept of a pixel. In addition, the lesson

provided a brief discussion of image files, and indicated that the program named ImgMod02a is

compatible with gif files, jpg files, and possibly some other file formats as well.

A three-dimensional array of pixel data as type int

The driver program named ImgMod02a:

http://cnx.org/content/m49936/latest/?collection=col11642/latest

 Extracts the pixels from an image file.

 Converts the pixel data to type int.

 Stores the pixel data in a three-dimensional array of type int that is well suited for

processing.

 Passes the three-dimensional array object's reference to an image-processing program.

Display of processed image results

When the image-processing program completes its work, the driver program named

ImgMod02a:

 Receives a reference to a three-dimensional array object containing processed pixel data

from the image-processing program.

 Displays the original image and the processed image in a stacked display as shown in

Figure 1.

Reprocessing with different parameters

In addition, the way in which the two programs work together makes it possible for the user to:

 Provide new input data to the image-processing program.

 Invoke the image-processing program again.

 Create a new display showing the newly-processed image along with the original image.

The manner in which all of this communication between the programs is accomplished was

explained in the earlier lesson titled Processing Image Pixels using Java, Getting Started.

Will concentrate on the three-dimensional array of type int

This lesson will show you how to write an image-processing program that receives raw pixel

data in the form of a three-dimensional array of type int, and returns processed pixel data in the

form of a three-dimensional array of type int. The program is designed to achieve the image-

processing objectives described earlier.

A grid of colored pixels

Each three-dimensional array object represents one image consisting of a grid of colored

pixels. The pixels in the grid are arranged in rows and columns when they are rendered. One of

the dimensions of the array represents rows. A second dimension represents columns. The third

dimension represents the color (and transparency) of the pixels.

Fundamentals

Once again, I will refer you to the earlier lesson titled Processing Image Pixels using Java,

Getting Started to learn:

http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

 How the primary colors of red, green, and blue and the transparency of a pixel are

represented by four unsigned 8-bit bytes of data.

 How specific colors are created by mixing different amounts of red, green, and blue.

 How the range of each primary color and the range of transparency extends from 0 to

255.

 How black, white, and the colors in between are created.

 How the overall color of each individual pixel is determined by the values stored in the

three color bytes for that pixel, as modified by the transparency byte.

Preview

Three programs and one interface

The program that I will discuss in this lesson requires the program named ImgMod02a and the

interface named ImgIntfc02 for compilation and execution. I provided and explained that

material in the earlier lessons titled Processing Image Pixels using Java, Getting Started and

Processing Image Pixels Using Java: Controlling Contrast and Brightness.

I will present and explain a new Java program named ImgMod15 in this lesson. This program,

when run under control of the program named ImgMod02a, will produce outputs similar to

those shown in Figures 1, 3, and 5.

(The results will be different if you use a different image file or provide different

user input values.)

I will also provide, (but will not explain) a simple program named ImgMod27. This program

can be used to display (in 128 different panels) all of the 16,777,216 different colors that can be

produced using three primary colors, each of which can take on any one of 256 values. The

different colors are displayed in groups of 131,072 colors in each panel.

The processImg method

The program named ImgMod15, (and all image-processing programs that are capable of being

driven by ImgMod02a), must implement the interface named ImgIntfc02. That interface

declares a single method named processImg, which must be defined by all implementing

classes.

When the user runs the program named ImgMod02a, that program instantiates an object of the

image-processing program class and invokes the processImg method on that object.

A three-dimensional array containing the pixel data for the image is passed to the method. The

processImg method must return a three-dimensional array containing the pixel data for a

processed version of the original image.

A before and after display

http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest

When the processImg method returns, the driver program named ImgMod02a causes the

original image and the processed image to be displayed in a frame with the original image above

the processed image (see Figure 1 for an example of the display format).

Usage information for ImgMod02a and ImgMod15

To use the program named ImgMod02a to drive the program named ImgMod15, enter the

following at the command line:

java ImgMod02a ImgMod15 ImagePathAndFileName

The image file

The image file can be a gif file or a jpg file. Other file types may be compatible as well. If the

program is unable to load the image file within ten seconds, it will abort with an error message.

(You should be able to right-click on the images in Figures 16, 17, and 18 to

download and save the images used in this lesson. Then you should be able to

replicate the results shown in the various figures in this lesson.)

Image display format

When the program is started, the original image and the processed image are displayed in a

frame with the original image above the processed image. The two images are identical when

the program first starts running.

A Replot button appears at the bottom of the frame. If the user clicks the Replot button, the

processImg method is rerun, the image is reprocessed, and the new version of the processed

image replaces the old version in the display.

Input to the image-processing program

The image-processing program named ImgMod15 provides a GUI for user input, as shown in

Figure 2. The sliders on the GUI make it possible for the user to provide different filter values

for red, green, and blue each time the image-processing method is rerun. The check box near the

top of the GUI makes it possible for the user to request that the colors in the image be inverted.

To rerun the image-processing method with different parameters, adjust the sliders, optionally

check the check box in the GUI, and then press the Replot button at the bottom of the main

display.

Discussion and Sample Code

The program named ImgMod15

This program illustrates how to control color intensity, apply color filters, and apply color

inversion to an image.

The program is designed to be driven by the program named ImgMod02a.

The before and after images

The program places two GUIs on the screen. One GUI displays the "before" and "after" versions

of an image that is subjected to color intensity control, color filtering, and color inversion.

The image at the top of this GUI is the "before" image. The image at the bottom is the "after"

image. An example is shown in Figure 1.

The user interface GUI

The other GUI provides instructions and components by which the user can control the

processing of the image. An example of the user interface GUI is shown in Figure 2.

A check box appears near the top of this GUI. If the user checks the check box, color inversion

is performed. If the check box is not checked, no color inversion is performed.

This GUI also provides three sliders that make it possible for the user to control color intensity

and color filtering. Each slider controls the intensity of a single color. The intensity control

ranges from 0% to 100% of the original intensity value for each color for every pixel.

Controlling color intensity

If all three sliders are adjusted to the same value and the replot button is pressed, the overall

intensity of the image is modified with no change in the relative contribution of each color. This

makes it possible to control the overall intensity of the image from very dark (black) to the

maximum intensity supported by the original image. This is illustrated in Figure 1.

Color filtering

If the three sliders are adjusted to different values and the replot button is pressed, color filtering

occurs. In this case, the intensity of each color is changed relative to the intensity of the other

colors. This makes it possible, for example to adjust the "warmth" of the image by emphasizing

red over blue, or to make the image "cooler" by emphasizing blue over red. This is illustrated in

Figure 3.

A greenscale image

It is also possible to totally isolate and view the individual contributions of red, green, and blue

to the overall image as illustrated in Figure 7.

The values for red and blue were set to zero for all of the pixels in the processed image in Figure

7. This leaves only the differing green values for the individual pixels, producing what might be

thought of as a greenscale image (in deference to the use of the term grayscale for a common

class of black, gray, and white images).

Figure 7 Green color filter example.

The user interface GUI for Figure 7

Figure 8 shows the state of the user interface GUI that produced the processed image in Figure

7. As you can see, the sliders for red and blue were set to zero causing all red and blue color

values to be set to zero. The slider for green was set to 100 causing the green value for every

pixel to remain the same as in the original image.

Figure 8 Control for Fig. 7

The checkbox was not checked. Therefore, color inversion was not performed.

Which comes first, the filter or the inversion?

As written, the program applies color filtering before it applies color inversion. As you will see

later, sample code is also provided that can be used to modify the program to cause it to provide

color inversion before it applies color filtering. There is a significant difference in the results

produced by these two approaches, and you may want to experiment with them.

A practical example of color inversion

As a side note, Microsoft Word and Microsoft FrontPage appear to use color inversion to change

the colors in images that have been selected for editing. I will have more to say about this later.

Beware of transparent images

This program illustrates the modification of red, green, and blue values belonging to all the

pixels in an image. It works best with an image that contains no transparent areas. The pixel

modifications performed in this program have no impact on transparent pixels. Therefore, if you

don't see what you expect when you process an image, it may be because your image contains

transparent pixels.

Will discuss in fragments

I will break the program down into fragments for discussion. A complete listing of the program

is provided in Listing 8 near the end of the lesson.

The ImgMod15 class

The ImgMod15 class begins in Listing 1. In order to be suitable for being driven by the program

named ImgMod02a, this class must implement the interface named ImgIntfc02.

class ImgMod15 extends Frame

 implements ImgIntfc02{

 //GUI components used to control color

 // filtering and color inversion.

 JSlider redSlider;

 JSlider greenSlider;

 JSlider blueSlider;

 JCheckBox checkBox;

Listing 1

The class extends Frame, because an object of this class is the user interface GUI shown in

Listings 2, 4, 6, and 8. The code in Listing 1 declares four instance variables that will refer to the

check box and the three sliders in Figure 8.

The constructor for ImgMod15

The constructor is shown in its entirety in Listing 2. Because of the way that an object of the

class is instantiated by ImgMod02a, the constructor is not allowed to take any parameters.

 ImgMod15(){

 //Create and display the user-input GUI.

 setLayout(new FlowLayout());

 //Provide user instructions at the top of the

 // GUI.

 add(new Label(

 "Adjust Color Sliders and Replot."));

 //Provide a check box that is used to request

 // color inversion.

 checkBox = new JCheckBox();

 add(new Label("Check to Invert Colors"));

 add(checkBox);

 //Create three sliders each with a range of

 // 0 to 100 and an initial value of 100.

 redSlider = new JSlider(0,100,100);

 add(redSlider);

 //Put a label under the slider.

 add(new Label("Red"));

 greenSlider = new JSlider(0,100,100);

 add(greenSlider);

 add(new Label("Green"));

 blueSlider = new JSlider(0,100,100);

 add(blueSlider);

 add(new Label("Blue"));

 //Put numeric labels and tick marks on the

 // sliders.

 redSlider.setMajorTickSpacing(20);

 redSlider.setMinorTickSpacing(5);

 redSlider.setPaintTicks(true);

 redSlider.setPaintLabels(true);

 greenSlider.setMajorTickSpacing(20);

 greenSlider.setMinorTickSpacing(5);

 greenSlider.setPaintTicks(true);

 greenSlider.setPaintLabels(true);

 blueSlider.setMajorTickSpacing(20);

 blueSlider.setMinorTickSpacing(5);

 blueSlider.setPaintTicks(true);

 blueSlider.setPaintLabels(true);

 setTitle("Copyright 2005, Baldwin");

 setBounds(400,0,220,330);

 setVisible(true);

 }//end constructor

Listing 2

Although the code in Listing 2 is rather long, all of the code in Listing 2 is straightforward if you

are familiar with the construction of GUIs in Java. If you are not familiar with such

constructions, you should study some of my other lessons on this topic. As mentioned earlier,

you will find an index to all of my lessons at www.DickBaldwin.com.

The processImg method

To be compatible with ImgMod02a, the image-processing program must implement the

interface named ImgIntfc02. A listing of that interface was provided in the earlier lesson titled

Processing Image Pixels using Java, Getting Started. That interface declares a single method

with the following signature:

http://www.dickbaldwin.com/
http://cnx.org/content/m49936/latest/?collection=col11642/latest

int[][][] processImg(int[][][] threeDPix,

 int imgRows,

 int imgCols);

The first parameter is a reference to an incoming three-dimensional array of pixel data stored as

type int. The second and third parameters specify the number of rows and the number of

columns of pixels in the image.

The beginning of the processImg method is shown in Listing 3.

 public int[][][] processImg(

 int[][][] threeDPix,

 int imgRows,

 int imgCols){

 //Make a working copy of the 3D array to

 // avoid making permanent changes to the

 // raw image data.

 int[][][] temp3D =

 new int[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 temp3D[row][col][0] =

 threeDPix[row][col][0];

 temp3D[row][col][1] =

 threeDPix[row][col][1];

 temp3D[row][col][2] =

 threeDPix[row][col][2];

 temp3D[row][col][3] =

 threeDPix[row][col][3];

 }//end inner loop

 }//end outer loop

Listing 3

It's best to make and modify a copy

Normally the processImg method should make a copy of the incoming array and process the

copy rather than modifying the original. Then the method should return a reference to the

processed copy of the three-dimensional pixel array. The code in Listing 3 makes such a copy.

Get the slider values

The code in Listing 4 gets the current values of each of the three sliders. This information will

be used to scale the red, green, and blue pixel values to new values in order to implement color

intensity control and color filtering. The new color values can range from 0% to100% of the

original values

 int redScale = redSlider.getValue();

 int greenScale = greenSlider.getValue();

 int blueScale = blueSlider.getValue();

Listing 4

Process each color value

The code in Listing 5 is the beginning of a for loop that is used to process each color value for

every pixel. The boldface code in Listing 5 is executed for the case where the check box near the

top of Figure 2 has not been checked.

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 if(!checkBox.isSelected()){

 //Apply color filtering but no color

 // inversion

 temp3D[row][col][1] =

 temp3D[row][col][1] * redScale/100;

 temp3D[row][col][2] =

 temp3D[row][col][2] * greenScale/100;

 temp3D[row][col][3] =

 temp3D[row][col][3] * blueScale/100;

Listing 5

In this case, each color value for every pixel is multiplied by a scale factor that is determined by

the position of the slider corresponding to that color. In effect, the product of the color value and

the scale factor causes the processed color value to range from 0% to 100% of the original color

value.

Note that the code in Listing 5 is the first half of an if-else statement.

Apply color inversion

In the event that the color-inversion check box is checked, the boldface code in Listing 6 is

executed instead of the boldface code in Listing 5. The code in Listing 6 first applies color

filtering using the slider values and then applies color inversion.

 }else{

 temp3D[row][col][1] = 255 -

 temp3D[row][col][1] * redScale/100;

 temp3D[row][col][2] = 255 -

 temp3D[row][col][2] * greenScale/100;

 temp3D[row][col][3] = 255 -

 temp3D[row][col][3] * blueScale/100;

Listing 6

The formula for color inversion

Recall that an individual color value can fall anywhere in the range from 0 to 255. The code in

Listing 6 performs color inversion by subtracting the scaled color value from 255. Therefore, a

scaled color value of 200 would be inverted into a value of 55. Likewise, a scaled color value of

55 would be inverted into a value of 200. Thus, the inversion process can be reversed simply by

applying it twice in succession.

Since it may not be obvious what the results of such an operation will be, I will discuss the

ramifications of color inversion in some detail.

An experiment

Let's begin with an experiment. You will need access to either Microsoft Word or Microsoft

FrontPage to perform this experiment.

Get and save the image

Figure 5 shows the result of performing color inversion on an image of a starfish. The original

image is shown at the top of Figure 5 and the color-inverted image is shown at the bottom of

Figure 5. Begin the experiment by right-clicking the mouse on the image in Figure 5 and saving

the image locally on your disk.

Insert the image into a Word or FrontPage document

Now create a new document in either Microsoft Word or Microsoft FrontPage and type a couple

of paragraphs of text into the new document.

Insert the image that you saved between the paragraphs in your document. It should be the

image with the tan starfish at the top and the blue starfish at the bottom.

Select the image

Now use your mouse and select some of the text from both paragraphs. Include the image

between the paragraphs in the selection. If your system behaves like mine, the starfish at the top

should turn blue and the starfish at the bottom should turn tan. In other words, the two images

should be exactly the same except that their positions should be reversed.

What does this mean?

Whenever an image is selected in an editor program like Microsoft Word or Microsoft

FrontPage, some visual change must be made to the image so that the user will know that the

image has been selected. It appears that Microsoft inverts the colors in selected images in Word

and FrontPage for this purpose.

(Note, however, that the Netscape browser, the Netscape Composer, and the

Internet Explorer browser all use a different method for indicating that an image

has been selected, so this is not a universal approach.)

Why use inverted colors?

Color inversion is a very good way to change the colors in a selected image. The approach has

several very good qualities.

Computationally economical

To begin with, inverting the colors is computationally economical. All that is required

computationally to invert the colors is to subtract each color value from 255. This is much less

demanding of computer resources than would be the case if the computation required

multiplication or division, for example.

Overflow is not possible

Whenever you modify the color values in a pixel, you must be very careful to make sure that the

new color value is within the range from 0 to 255. Otherwise, serious overflow problems can

result. The inversion process guarantees that the new color value will fall within this range, so

overflow is not possible.

A reversible process

The process is guaranteed to be reversible with no requirement to maintain any information

outside the image regarding the original color values in the image. All that is required to restore

the inverted color value back to the original color value is to subtract the inverted color value

from 255. The original color value is restored after two successive inversions. Thus, it is easy

and economical to switch back and forth between original color values and inverted color values.

Given all of the above, I'm surprised that the color-inversion process isn't used by programs other

than Word and FrontPage.

Another example of color inversion

The color values in a digitized color film negative are similar to (but not identical to) the inverse

of the colors in the corresponding color film positive. Therefore, some photo processing

programs begin the process of converting a digitized color film negative to a positive by

inverting the colors. Additional color adjustments must usually be made after inversion to get the

colors just right.

You will find an interesting discussion of this process in an article titled Converting negative

film to digital pictures by Phil Williams.

What will the inverted color be?

http://www.macedition.com/feat/film/feat_film_20030626.php
http://www.macedition.com/feat/film/feat_film_20030626.php

Another interesting aspect of color inversion has to do with knowing what color will be produced

by applying color inversion to a pixel with a given color. For this, let's look at another example

shown in Figures 9 and 10.

Figure 9 shows the result of applying color inversion to the pure primary colors red, green, and

blue.

Figure 9 Color inversion

for primary colors.

The color bar at the top in Figure 9 shows the three primary colors. The color bar at the bottom

shows the corresponding inverted colors.

No color filtering was applied

Figure 10 shows that no color filtering was involved. The colors shown in the bottom image of

Figure 9 are solely the result of performing color inversion on the top image in Figure 9.

Figure 10 Control for Fig 9

Experimental results

From Figure 9, we can conclude experimentally that applying color inversion to a pure red pixel

will cause the new pixel color to be aqua. Similarly, applying color inversion to a pure green

pixel will cause the new pixel color to be fuchsia. Finally, applying color conversion to a pure

blue pixel will cause the new pixel color to be yellow. To summarize:

 Red inverts to aqua

 Green inverts to fuchsia

 Blue inverts to yellow

An explanation of the results

Consider why the experimental results turn out the way that they do. Consider the case of the

pure blue pixel. The red, green, and blue color values for that pixel are as shown below:

 R = 0

 G = 0

 B = 255

Let the inverted color values be given by R', G', and B'. Looking back at the code in Listing 6

(with no color filtering applied), the color values for the pixel following the inversion will be:

 R' = 255 - 0 = 255

 G' = 255 - 0 = 255

 B' = 255 - 255 = 0

The inverted color is yellow

Thus we end up with a pixel having full color intensity for red and green and no intensity for

blue. What do we get when we mix red and green in equal amounts? The answer is

yellow. Adding equal amounts of red and green produces yellow. Hence, the inverted color for

a pure blue pixel is yellow, as shown in Figure 9 and explained on the basis of the arithmetic.

We could go through a similar argument to determine the colors resulting from inverting pure

red and pure green. The answers, of course, would be aqua for red and fuchsia for green.

A more difficult question

What colors are produced by inverting pixels that are not pure red, green, or blue, but rather

consist of weighted mixtures of red, green, and blue?

The answer to this question requires a bit of an extrapolation on our part. First, let's establish the

colors that result from mixing equal amounts of the three primary colors in pairs.

 red + green = yellow (bottom right in Figure 9)

 red + blue = fuchsia (bottom center in Figure 9)

 green + blue = aqua (bottom left in Figure 9)

A simple color wheel

Now let's construct a simple color wheel. Draw a circle and mark three points on the circle at 0

degrees, 120 degrees, and 240 degrees. Label the first point red, the second point green, and the

third point blue.

Now mark three points on the circle half way between the three points described above. Label

each of these points with the color that results from mixing equal quantities of the colors

identified with that point's neighbors. For example, the point half way between red and green

would be labeled yellow. The point half way between green and blue would be labeled aqua,

and the point half way between blue and red would be labeled fuchsia.

Look across to the opposite side

Now note the color that is on the opposite side of the circle from each of the primary

colors. Aqua is opposite of red. Fuchsia is opposite of green, and yellow is opposite of

blue. Comparing this with the colors shown in Figure 9, we see that the color that results from

inverting one of the primary colors on the circle is the color that appears on the opposite side of

the color wheel.

A reversible process

Earlier I told you that the inversion process is reversible. For example, if we have a full-intensity

yellow pixel, the color values for that pixel will be:

 R = 255

 G = 255

 B = 0

If we invert the colors for that pixel, the result will be:

 R' = 255 - 255 = 0

 G' = 255 - 255 = 0

 B' = 255 - 0 = 255

Thus, the color of the inverted yellow pixel is blue, which is the color that is opposite yellow on

the circle.

General conclusion

In general, we can conclude that if we invert a pixel whose color corresponds to a color at a point

on the color wheel, (such as the color wheel shown in Figure 11), the color of the inverted pixel

will match the color at the corresponding point on the opposite side of the color wheel.

Figure 11 Color wheel.

Experimental confirmation

We can demonstrate this experimentally by inverting the image of the color wheel without

performing any color filtering. The result of such an inversion is shown in the bottom half of

Figure 12. Once again, the original image of the color wheel is shown at the top, and the

inverted image of the color wheel is shown at the bottom.

Figure 12 Inverted color

wheel.

As you can see in Figure 12, each of the colors in the original image moved to the opposite side

of the wheel when the color wheel was inverted.

Also, you can see from Figure 12 that white pixels turn into black pixels and black pixels turn

into white pixels when they are inverted. You should be able to explain that by considering the

color values for black and white pixels along with the inversion formula.

Another exercise

Another exercise might be useful. It might be possible to use the color wheel in Figure 11 to

explain what happened to the colors when the starfish image was inverted in Figure 5. Pick a

point on the starfish in the original image in Figure 5 and note the color of that point. Then find

a point on the color wheel of Figure 11 whose color matches that point. Then find the

corresponding point on the opposite side of the color wheel. The color of that point should

match the color of the corresponding point on the inverted starfish image at the bottom of Figure

5.

May not have found the matching point

A potential problem here is that you may not be able to find a point on the color wheel that

matches the color of a point on the starfish. That is because any individual pixel on the starfish

can take on any one of 16,777,216 different colors. The colors shown on the color wheel are a

small subset of that total and may not include the color of a specific point on the starfish.

Difficulty of displaying 3-dimensional data

The problem that we have here is the classic problem of trying to represent a three-dimensional

entity in a two-dimensional display medium. Pixel color is a three-dimensional entity, with the

dimensions being red, green, and blue. Any of the three color values belonging to a pixel can

take on any one of 256 different values. It is very difficult to represent that on a flat two-

dimensional screen, and a color wheel is just one of many schemes that have devised in an

attempt to do so.

Could display as a cube

One way to represent these 16,777,216 colors is as a large cube having eight corners and six

faces. Consider the large cube to be made up of 16,777,216 small cubes, each being a different

color. Arrange the small cubes so as to form the large cube with 256 cubes (colors) along each

edge. Thus, each face is a square with 256 small cubes along each side.

Arrange the small cubes so that the colors of the cubes at the corners on one face are black, blue,

green, and aqua as shown in the top half of Figure 13. Arrange the remaining cubes on that face

to contain the same colors in the same order as that shown in the top half of Figure 13.

Figure 13 Colors on one face at

top. Inverse colors at bottom.

(The colors in the bottom half of Figure 13 are the inverse of the colors shown in

the top half.)

The opposite face

Arrange the small cubes such that the diagonal corners on the opposite face are set to white,

yellow, red, and fuchsia as shown in the top half of Figure 14. Recall that these colors are the

inverse of black, blue, green, and aqua. Arrange additional small cubes such that the colors on

that face progress in an orderly manner between the colors at the corners as shown in the top half

of Figure 14.

Figure 14 Colors on opposite face

at top. Inverse colors at bottom.

Inverse colors

Each of the colors in the top half of Figure 14 is the inverse of the color at the diagonally

opposite location on the face shown in Figure 13. For example, the yellow hues near the bottom

left corner of Figure 14 are the inverse of the blues hues near the upper right corner in Figure 13.

(Also, the colors in the bottom half of Figure 14 are the inverse of the colors at

the corresponding locations in the upper half of Figure 14.)

Can't show all 16,777,216 colors

In order for me to show you all 16,777,216 colors, I would have to display 128 panels like those

shown in Figures 13 and 14. Each panel would represent two slices cut through the cube parallel

to the two faces shown in Figures 13 and 14.

(The top half of the panel would represent one slice and the bottom half would

represent the other slice.)

Each slice would represent the colors produced by combining a different value for red with all

possible combinations of the values for green and blue. Obviously, it would be impractical for

me to attempt to display 128 such panels in this lesson.

(Because each panel shows the raw colors at the top and the inverse colors at the

bottom, only 128 such panels would be required. If only the raw colors were

shown in each panel, 256 panels would be required to show all 16,777,216

colors.)

Two slices from inside the cube

The top half of Figure 15 shows a slice through the cube for a red value of 50 combined with all

possible values for green and blue. The bottom half shows a slice for the inverse red value given

by (255 - 50) or 205.

(Once again, the colors in the bottom half of Figure 15 are the inverse of the

colors in the top half of Figure 15.)

Figure 15 A single slice through

the cube for a red value of 50.

You can generate the colors yourself

Since it is impractical for me to show you all 16,777,216 colors and their inverse, I am going to

do the next best thing. Listing 9 contains the program named ImgMod27 that I used to produce

the output shown in Figures 13, 14, and 15. You can compile this program and run it yourself

for any value of red from 0 to 255. Just enter the red value as a command-line parameter.

The top half of the output produced by the program displays the 65,536 colors represented by a

single slice through the cube parallel to the faces shown in Figures 13 and 14. The bottom half

of the output in each case represents the inverse of the colors shown in the top half.

Most colors don't have names

Most of the different colors don't have names, and even if they all did have names, most of us

wouldn't have them all memorized. Therefore, it is impossible for me to describe in a general

sense the color that will be produced by inverting a pixel having one of the 16,777,216 possible

colors.

Contribution of red, green, and blue

By doing a little arithmetic, I can describe the inverse color numerically by indicating the

contribution of red, green, and blue, but most of us would probably have difficulty seeing the

color in our mind's eye even if we knew the contribution of red, green, and blue.

The colors that result from some combinations of red, green, and blue are intuitive, and others

are not. For example, I have no difficulty picturing that red plus blue produces fuchsia, and I

have no difficulty picturing that green plus blue produces aqua. However, I am unable to picture

that red plus green produces yellow. That seems completely counter-intuitive to me. I don't see

anything in yellow that seems to derive from either red or green.

Of course, things get even more difficult when we start thinking about mixtures of different

contributions of all three of the primary colors.

Back to experimentation

So, that brings us back to experimentation. The program in Listing 9 can be used to produce any

of the 16,777,216 colors in groups of 65,536 colors, along with the inverse of each color in the

group. Perhaps you can experiment with this program to produce the color that matches a point

on the starfish at the top of Figure 5. If so, the inverse color shown in your output will match the

color shown in the corresponding point on the starfish at the bottom of Figure 5.

And that is probably more than you ever wanted to hear about color inversion.

The remaining code

Now back to the main program named ImgMod15. The remaining code in the program is

shown in Figure 7.

(Note that the boldface code in Listing 7 is inside a comment block.)

 /*Compile the following block of code

 instead to invert before filtering.

 temp3D[row][col][1] = (255 -

 temp3D[row][col][1]) * redScale/100;

 temp3D[row][col][2] = (255 -

 temp3D[row][col][2]) * greenScale/100;

 temp3D[row][col][3] = (255 -

 temp3D[row][col][3]) * blueScale/100;

 */ end comment block

 }//end else

 }//end inner loop

 }//end outer loop

 //Return the modified array of image data.

 return temp3D;

 }//end processImg

}//end class ImgMod15

Listing 7

As I mentioned earlier, the boldface code in Listing 6 filters (scales) the pixel first and then

inverts the pixel. In some cases, it might be useful to reverse this process by replacing the

boldface code in Listing 6 with the boldface code in Listing 7. This code inverts the color of the

pixel first and then applies the filter. If you filter and you also invert, the order in which you

perform these two operations can be significant with respect to the outcome.

The remaining code in Listing 7 signals the end of the processImg method and the end of the

ImgMod15 class.

Communication between the Programs

In case you are interested in the details, this section describes how the program named

ImgMod02a communicates with the image-processing program. If you aren't interested in this

much detail, just skip to the section titled Run the Program.

Instantiate an image-processing object

During execution, the program named ImgMod02a reaches a point where it has captured the

pixel data from the original image file into a three-dimensional array of type int suitable for

processing. Then it invokes the newInstance method of the class named Class to instantiate an

object of the image-processing class.

Invoke the processImg method

At this point, the program named ImgMod02a:

 Has the pixel data in the correct format

 Has an image-processing object that will process those pixels and will return an array

containing processed pixel values

All that the ImgMod02a program needs to do at this point is to invoke the processImg method

on the image-processing object passing the pixel data along with the number of rows and

columns of pixels as parameters.

Posting a counterfeit ActionEvent

The ImgMod02a program posts a counterfeit ActionEvent to the system event queue and

attributes the event to the Replot button. The result is exactly the same as if the user had pressed

the Replot button shown in Figure 1.

In either case, the actionPerformed method is invoked on an ActionListener object that is

registered on the Replot button. The code in the actionPerformed method invokes the

processImg method on the image-processing object.

The three-dimensional array of pixel data is passed to the processImg method. The processImg

method returns a three-dimensional array of processed pixel data, which is displayed as an image

below the original image as shown in Figure 1.

Run the Programs

I encourage you to copy, compile, and run the programs named ImgMod15 and ImgMod27

provided in this lesson. Experiment with them, making changes and observing the results of

your changes.

Process a variety of images

Download a variety of images from the web and process those images with the program named

ImgMod15.

(Be careful of transparent pixels when processing images that you have

downloaded from the web. Because of the quality of the data involved, you will

probably get better results from jpg images than from gif images. Remember, you

will also need to copy the program named ImgMod02a and the interface named

ImgIntfc02 from the earlier lessons titled Processing Image Pixels Using Java:

Controlling Contrast and Brightness and Processing Image Pixels using Java,

Getting Started.)

View a large number of different colors

Compute and observe the colors and their inverse for various slices through the color cube as

provided by the program named ImgMod27.

Change the order of filtering and inversion

Run some experiments to determine the difference in results for various images based on

filtering before inverting and on inverting before filtering.

(Of course, if you don't filter, it won't matter which approach you use.)

Write an advanced filter program

http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

Write an advanced version of the program that applies color filtering by allowing you to control

both the location and the width of the distribution for each of the three colors separately. You

can get some ideas on how to do this from the program titled Processing Image Pixels Using

Java: Controlling Contrast and Brightness.

Replicate the results

To replicate the results shown in this lesson, right-click and download the jpg image files in

Figures 17, 18, and 19 below.

Have fun and learn

Above all, have fun and use this program to learn as much as you can about manipulating images

by modifying image pixels using Java.

Test images

Figures 17, 18, and 19 contain the jpg images that were used to produce the results shown in this

lesson. You should be able to right-click on the images to download and save them

locally. Then you should be able to replicate the results shown in this lesson.

Figure 17

Figure 18

http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest

Figure 19

Summary

In this lesson, I showed you how to write a Java program that can be used to:

 Control color intensity

 Apply color filtering

 Apply color inversion

I provided several examples of these capabilities. In addition, I explained some of the theory

behind color inversion and showed you how to relate the colors on original and inverted pixels to

points on a color wheel as well as pixels in a color cube.

What's Next?

Future lessons will show you how to write image-processing programs that implement many

common special effects as well as a few that aren't so common. This will include programs to do

the following:

 Blur all or part of an image.

 Deal with the effects of noise in an image.

 Sharpen all or part of an image.

 Perform edge detection on an image.

 Morph one image into another image.

 Rotate an image.

 Change the size of an image.

 Other special effects that I may dream up or discover while doing the background

research for the lessons in this series.

Complete Program Listings

Complete listings of the programs discussed in this lesson are provided in Listings 8 and 9.

A disclaimer

The programs that I will provide and explain in this series of lessons are not intended to be used

for high-volume production work. Numerous integrated image-processing programs are

available for that purpose. In addition, the Java Advanced Imaging API (JAI) has a number of

built-in special effects if you prefer to write your own production image-processing programs

using Java.

The programs that I will provide in this series are intended to make it easier for you to develop

and experiment with image-processing algorithms and to gain a better understanding of how they

work, and why they do what they do.

/*File ImgMod15.java.java

Copyright 2005, R.G.Baldwin

This program illustrates color intensity control,

color filtering, and color inversion.

The program is designed to be driven by the

program named ImgMod02. Enter the following at

the command line to run this program.

java ImgMod02 ImgMod15 gifFileName

The program places two GUIs on the screen. One

GUI displays the "before" and "after" images of

an image that is subjected to color intensity

cotrol, color filtering, and color inversion. The

image at the top is the "before" image. The

image at the bottom is the "after" image.

The other GUI provides instructions and

components by which the user can control the

processing of the image. A check box appears

near the top of this GUI. If the user checks

the check box, color filtering is performed

before color inversion takes place. If the

check box is not checked, no color inversion is

performed.

This GUI also provides three sliders that make

it possible for the user to control color

intensity and filtering. Each slider controls

the intensity of a single color. The intensity

control ranges from 0% to 100% of the original

intensity value for each pixel.

If all three sliders are adjusted to the same

percentage value and the replot button is

pressed, the overall intensity of the image is

modified with no change in the relative

contribution of each color. This makes it

possible to control the overall intensity of the

image from very dark (black) to the maximum

intensity supported by the image.

If the three sliders are adjusted to different

percentage values and the replot button is

pressed, color filtering occurs. By this, I mean

that the intensity of one color is changed

relative to the intensity of the other colors.

This makes it possible, for example to adjust the

"warmth" of the image by emphasizing red over

blue, or to make the image "cooler" by

emphasizing blue over red. It is also possible

to totally isolate and view the contributions of

red, green, and blue to the overall image.

As written, the program applies color filtering

before color inversion. Sample code is also

provided that can be used to modify the program

to cause it to provide color inversion before

color filtering. There is a significant

difference in the results produced by these two

different approaches.

As an interesting side note, Microsoft Word and

Microsoft FrontPage appear to use color

inversion to change the colors in images that

have been selected for editing.

This program illustrates the modification of

the pixels in an image. It works best with

an image file that contains no transparent areas.

The pixel modifications performed in this program

have no impact on transparent pixels. If you

don't see what you expect, it may be because your

image contains transparent pixels.

Tested using JDK 1.5.0 and WinXP

**/

import java.awt.*;

import javax.swing.*;

class ImgMod15 extends Frame

 implements ImgIntfc02{

 //GUI components used to control color

 // filtering and color inversion.

 JSlider redSlider;

 JSlider greenSlider;

 JSlider blueSlider;

 JCheckBox checkBox;

 //Constructor must take no parameters

 ImgMod15(){

 //Create and display the user-input GUI.

 setLayout(new FlowLayout());

 //Provide user instructions at the top of the

 // GUI.

 add(new Label(

 "Adjust Color Sliders and Replot."));

 //Provide a check box that is used to request

 // color inversion.

 checkBox = new JCheckBox();

 add(new Label("Check to Invert Colors"));

 add(checkBox);

 //Create three sliders each with a range of

 // 0 to 100 and an initial value of 100.

 redSlider = new JSlider(0,100,100);

 add(redSlider);

 //Put a label under the slider.

 add(new Label("Red"));

 greenSlider = new JSlider(0,100,100);

 add(greenSlider);

 add(new Label("Green"));

 blueSlider = new JSlider(0,100,100);

 add(blueSlider);

 add(new Label("Blue"));

 //Put numeric labels and tick marks on the

 // sliders.

 redSlider.setMajorTickSpacing(20);

 redSlider.setMinorTickSpacing(5);

 redSlider.setPaintTicks(true);

 redSlider.setPaintLabels(true);

 greenSlider.setMajorTickSpacing(20);

 greenSlider.setMinorTickSpacing(5);

 greenSlider.setPaintTicks(true);

 greenSlider.setPaintLabels(true);

 blueSlider.setMajorTickSpacing(20);

 blueSlider.setMinorTickSpacing(5);

 blueSlider.setPaintTicks(true);

 blueSlider.setPaintLabels(true);

 setTitle("Copyright 2005, Baldwin");

 setBounds(400,0,220,330);

 setVisible(true);

 }//end constructor

 //The following method must be defined to

 // implement the ImgIntfc02 interface.

 public int[][][] processImg(

 int[][][] threeDPix,

 int imgRows,

 int imgCols){

 //Make a working copy of the 3D array to

 // avoid making permanent changes to the

 // raw image data.

 int[][][] temp3D =

 new int[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 temp3D[row][col][0] =

 threeDPix[row][col][0];

 temp3D[row][col][1] =

 threeDPix[row][col][1];

 temp3D[row][col][2] =

 threeDPix[row][col][2];

 temp3D[row][col][3] =

 threeDPix[row][col][3];

 }//end inner loop

 }//end outer loop

 //Get the current values of the three

 // sliders. This information will be used to

 // scale the red, green, and blue pixel

 // values to new values ranging from 0% to

 // 100% of the original values in order to

 // implement color filtering.

 int redScale = redSlider.getValue();

 int greenScale = greenSlider.getValue();

 int blueScale = blueSlider.getValue();

 //Process each pixel value to apply color

 // filtering either with, or without color

 // inversion depending on the state of the

 // check box.

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 if(!checkBox.isSelected()){

 //Apply color filtering but no color

 // inversion

 temp3D[row][col][1] =

 temp3D[row][col][1] * redScale/100;

 temp3D[row][col][2] =

 temp3D[row][col][2] * greenScale/100;

 temp3D[row][col][3] =

 temp3D[row][col][3] * blueScale/100;

 }else{

 //Apply color filtering with inversion.

 // Compile the following block of code

 // to filter before inverting.

 temp3D[row][col][1] = 255 -

 temp3D[row][col][1] * redScale/100;

 temp3D[row][col][2] = 255 -

 temp3D[row][col][2] * greenScale/100;

 temp3D[row][col][3] = 255 -

 temp3D[row][col][3] * blueScale/100;

 /*Compile the following block of code

 instead to invert before filtering.

 temp3D[row][col][1] = (255 -

 temp3D[row][col][1]) * redScale/100;

 temp3D[row][col][2] = (255 -

 temp3D[row][col][2]) * greenScale/100;

 temp3D[row][col][3] = (255 -

 temp3D[row][col][3]) * blueScale/100;

 */

 }//end else

 }//end inner loop

 }//end outer loop

 //Return the modified array of image data.

 return temp3D;

 }//end processImg

}//end class ImgMod15

Listing 8

/*File ImgMod27.java Copyright 2005, R.G.Baldwin

Creates a Frame containing 65536 colors at the

top and the inverse of those 65536 colors at the

bottom for a total of 131072 different colors.

Enter a color for red between 0 and 255 at the

command line. Program displays 65536 colors

based on that color for red combined with all

possible combinations of green and blue in the

top half of the Frame.

The 131072 colors are surrounded by a thin

yellow border, which in turn is surrounded by

a wider gray border, all inside a Frame.

Tested using JDK 1.5 under WinXP.

**/

import java.awt.*;

import java.awt.event.*;

public class ImgMod27 extends Frame{

 static int red = 0;

 public static void main(String[] args){

 //Get input value for red.

 if(args.length == 1){

 red = Integer.parseInt(args[0]);

 }else{

 System.out.println(

 "Usage: java ImgMod27 redValue\n"

 + "Using red = 0");

 }//end else

 //Confirm that red is within range.

 if((red < 0) || (red > 255)){

 System.out.println(

 "Red must be >= 0 and <= 255\n"

 + "Terminating");

 System.exit(0);

 }//end if

 new ImgMod27();

 }//end main

 ImgMod27(){//constructor

 int panelWidth = 256 + 4;

 int panelHeight = 512 + 4;

 setVisible(true);

 setBackground(Color.gray);

 Insets insets = this.getInsets();

 setSize(panelWidth + insets.left

 + insets.right + 8,

 panelHeight + insets.top

 + insets.bottom + 8);

 setLayout(null);

 MyPanel panel = new MyPanel();

 panel.setBounds(insets.left + 4,

 insets.top + 4,panelWidth,panelHeight);

 panel.setBackground(Color.YELLOW);

 add(panel);

 setTitle("Copyright 2005, Baldwin");

 //===//

 //Anonymous inner class listener to terminate

 // program.

 this.addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

 //---//

 //Inner class

 class MyPanel extends Panel{

 int green = 0;

 int blue = 0;

 int xcoor = 1;

 int ycoor = 1;

 public void paint(Graphics g){

 //Compute and display colors at top of

 // Frame.

 for(green = 0;green < 256;green++){

 for(blue = 0;blue < 256;blue++){

 g.setColor(new Color(red,green,blue));

 g.drawOval(xcoor++,ycoor,1,1);

 if(xcoor > 256){

 xcoor = 1;

 ycoor++;

 }//end if

 }//end inner loop

 }//end outer loop

 //Now compute and display inverted colors

 // at bottom of Frame.

 for(green = 0;green < 256;green++){

 for(blue = 0;blue < 256;blue++){

 g.setColor(new Color(255-red,

 255-green,255-blue));

 g.drawOval(xcoor++,ycoor,1,1);

 if(xcoor > 256){

 xcoor = 1;

 ycoor++;

 }//end if

 }//end inner loop

 }//end outer loop

 }//end overridden paint

 }//end inner class MyPanel

}//end class ImgMod27

Listing 9

Copyright 2005, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which have gained a worldwide following among

experienced and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

Keywords

java image pixel color intensity filtering inversion framework GUI transparent slider experiment

wheel cube

-end-

mailto:baldwin@dickbaldwin.com

