
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

The AWT Package, Graphics - Overview of Advanced

Image Processing Capabilities

Java Programming, Lecture Notes # 174, Revised 11/30/97.

 Preface

 Introduction

 ImageProducer Interface

 ImageConsumer Interface

 ImageObserver Interface

 ColorModel Class

o IndexColorModel Class

o DirectColorModel Class

 FilteredImageSource Class

 ImageFilter Class

o RGBImageFilter Class

o CropImageFilter Class

o ReplicateScaleFilter Class

 AreaAveragingScaleFilter Class

 MemoryImageSource Class

 PixelGrabber Class

 Sample Program

o Interesting Code Fragments

o Program Listing

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

The material in this lesson is extremely important. However, there is simply too much material to

be covered in detail during lecture periods. Therefore, students in Prof. Baldwin's Advanced

Java Programming classes at ACC will be responsible for studying this material on their own,

and bringing any questions regarding the material to class for discussion.

This lesson was originally written on November 30, 1997 using the software and documentation

in the JDK 1.1.3 download package.

Introduction

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/

Previous lessons have introduced you to many aspects of working with images in Java. To an

image-processing novice like myself, the advanced image processing capabilities of Java are

somewhat mind-boggling. It would seem that a group of image-processing enthusiasts could

easily spend an entire semester digging into the many capabilities offered in this area.

Of necessity then, this lesson will present a cursory overview of those capabilities. For a more in-

depth discussion, see the book titled Java AWT Reference by John Zukowski.

Most of the advanced image processing capabilities of Java are in the package named

java.awt.image. Note that this is not the Image class of the package named java.awt. This is

another package containing three interfaces and eleven classes.

The three interfaces are:

 ImageConsumer

 ImageObserver

 ImageProducer

The eleven classes in hierarchical arrangement are:

 Object

o ColorModel

 IndexColorModel

 DirectColorModel

o FilteredImageSource

o ImageFilter

 RGBImageFilter

 CropImageFilter

 ReplicateScaleFilter

 AreaAveragingScaleFilter

o MemoryImageSource

o PixelGrabber

A brief discussion of each of the interfaces and each of the classes follows.

ImageProducer Interface

Classes that implement this interface serve as sources for pixel data. The methods of such a class

may generate the pixels from scratch, or may interpret data from another source, such as a GIF

file. No matter how it generates the data, the primary purpose of an image producer is to deliver

pixels to an image consumer.

Image producers operate somewhat like event sources, and the image producer/consumer model

is somewhat analogous to the event source/listener model.

In particular, the methods declared in the ImageProducer interface make it possible for one or

more ImageConsumer objects to register their interest in an image. The image producer then

invokes methods declared in the ImageConsumer interface to deliver the pixels to the image

consumers.

Note that an image producer can register many consumers for its pixels in much the same way

that an event source can register many listeners for its events. Several methods are declared in

the ImageProducer interface, including methods for adding interested consumers to a list of

interested consumers, and removing consumers from the list of interested consumers.

Thus, in our analogy, the image producer is analogous to the event source, and the image

consumers are analogous to the event listeners.

ImageConsumer Interface

The ImageConsumer interface declares methods that must be implemented by classes which are

to receive data from an image producer.

Several methods are declared in the ImageConsumer interface which are used to support the

delivery of pixels from the producer to the consumer. The primary method used for delivery is

void setPixels(int x, int y, int width, int height, ColorModel model, byte

pixels[], int offset, int scansize)

The JDK 1.1.3 documentation provides the following explanation of some of the parameters to

this method.

The pixels of the image are delivered using one or more calls to the

setPixels method. Each call specifies the location and size of the

rectangle of source pixels that are contained in the array of pixels. The

specified ColorModel object should be used to convert the pixels into

their corresponding color and alpha components.

Pixel (m,n) is stored in the pixels array at index (n * scansize + m +

offset). The pixels delivered using this method are all stored as bytes.

ImageObserver Interface

The ImageObserver interface was discussed in an earlier lesson and therefore won't be

discussed further in this lesson.

ColorModel Class

Pictures on a computer screen are composed of individual dots. Each of the dots is commonly

referred to as a pixel which I believe is an abbreviation for the term Picture Element.

Depending on how you want to represent an image on the screen, a single pixel can be required

to contain a lot of information, or very little information.

For example, if all you want to display is a series of lines all of exactly the same color against a

background of a different color, then the only information that must be contained in an individual

pixel is whether it is turned on or off. In this case, only one bit of information is required to

represent a pixel.

As an aside, an early use of the word bit was in information theory

(Shannon and contemporaries) where one bit of information was deemed

to be that amount of information required to determine how an event

would fall if, lacking additional information, it had an equal probability

of falling in either of two ways. The word was then adopted by computer

scientists to represent the fundamental unit of information stored in a

computer.

At the other extreme in the pixel data format arena is the format used to represent a pixel in

many modern computers where 32-bits are used to represent an individual pixel.

These 32 bits are commonly partitioned into four 8-bit groups or bytes. Three of the bytes are

used to represent the contribution of the primary colors: red, green, and blue. The fourth byte

(commonly known as the alpha byte) is used to represent the degree of transparency with a value

of zero representing total transparency and a value of 255 representing total opacity.

In theory, this format can ascribe some 16-million colors to an individual pixel (but your monitor

may not be capable of displaying that many individual colors electronically).

Each of these extreme cases could be considered to represent a color model. In Java, a color

model determines how colors are represented within the AWT. The ColorModel class is an

abstract class that you can extend to specify your own representation for colors.

The description of this class from the JDK 1.1.3 documentation reads as follows:

A class that encapsulates the methods for translating from pixel values to

alpha, red, green, and blue color components for an image. This class is

abstract.

So, why do we need a color model anyway?

Because many of the methods that receive an array of bytes and convert those bytes into actual

pixels for rendering on the screen need to know how to interpret the bytes in the array, i.e., how

are the bytes to be converted into visual pixels on the screen.

For example, with a simple direct color model, each group of four bytes would probably be

interpreted as representing the color value of a single pixel.

For a simple indexed color model, each byte in the array would probably be interpreted as an

index into a table of 32-bit integers where each integer represents the actual color to be ascribed

to a pixel.

For a crude display which requires only that each pixel be turned on or off, one byte could

represent eight pixels on the screen.

The AWT provides two subclasses of the ColorModel class: IndexedColorModel and

DirectColorModel. You can also define your own subclasses if you have a mind to.

IndexColorModel Class

You can consume a lot of memory by creating high-resolution images with lots of colors. For

example, a 1024 x 768 display contains 786,432 individual pixels. If you represent each of those

pixels with four bytes of memory, you will consume 3,145,728 bytes of memory for only one

image.

It doesn't take very many images like this to consume more memory than you may have

available.

As a result, various schemes have evolved over the years to make it possible to represent images

in a reasonable fashion using far less memory to represent each individual image.

A very common scheme is to allocate a smaller number of bits to each pixel (8 bits for example)

and to use the pixel values as an index into a table containing the 32-bit representations for some

subset of all the possible colors.

For example, if eight bits are used to represent an individual pixel, the pixel value can be used to

index into a table containing 256 actual colors. These 256 colors can be selected beforehand, and

are often referred to as a palette.

Given the same 1024 x 768 display, this scheme would require 1024 bytes to represent the

palette of 256 colors, and 786,432 bytes to represent an image. If there are many images

involved, this may be a more paractical approach than representing every pixel by four bytes.

According to the book Java AWT Reference by John Zukowski, in his discussion of the

IndexColorModel, the says:

"... specifies a ColorModel that uses a color map lookup table (with a

maximum size of 256), rather than storing color information in the pixels

themselves. Pixels are represented by an index into the color map, which

is at most an 8-bit quantity. Each entry in the color map gives the alpha,

red, green, and blue components of some color. One entry in the map can

be designated "transparent." This is called the "transparent" pixel"; the

alpha compnent of this map entry is ignored."

The explanation of the same thing in the JDK 1.1.3 documentation reads as follows:

A ColorModel class that specifies a translation from pixel values to

alpha, red, green, and blue color components for pixels which represent

indices into a fixed colormap. An optional transparent pixel value can be

supplied which indicates a completely transparent pixel, regardless of

any alpha value recorded for that pixel value.

DirectColorModel Class

This class implements the full 32-bit color format in which each pixel consists of four bytes,

representing alpha, red, green, and blue. The description in the JDK 1.1.3 documentation reads

as follows:

A ColorModel class that specifies a translation from pixel values to

alpha, red, green, and blue color components for pixels which have the

color components embedded directly in the bits of the pixel itself.

John Zukowski provides the following description of the DirectColorModel class:

"... specifies a color model in which each pixel contains all the color

information (alpha, red, green, and blue values) explicitly. Pixels are

represented by 32-bit (int) quantities; the constructor lets you change

which bits are allotted to each component."

FilteredImageSource Class

Here is what the JDK 1.1.3 documentation has to say about this class:

This class is an implementation of the ImageProducer interface which

takes an existing image and a filter object and uses them to produce

image data for a new filtered version of the original image.

The constructor for this class requires two parameters:

 a source image of type ImageProducer and

 a filter object of type ImageFilter.

It constructs an object of type ImageProducer which is the result of applying the filter object to

the original source image object. The filter can perform a variety of operations such as color

shifting, image rotation, cropping, etc.

The methods of the class are generally the methods declared in the ImageProducer interface.

ImageFilter Class

According to the JDK 1.1.3 documentation:

This class implements a filter for the set of interface methods that are

used to deliver data from an ImageProducer to an ImageConsumer. It

is meant to be used in conjunction with a FilteredImageSource object to

produce filtered versions of existing images.

It is a base class that provides the calls needed to implement a "Null

filter" which has no effect on the data being passed through. Filters

should subclass this class and override the methods which deal with the

data that needs to be filtered and modify it as necessary.

This class implements the ImageConsumer interface. There are a number of methods defined in

this class, including those declared in the interface, and those that are used to implement the

"null filter" capability described above.

There is only one constructor and it takes no parameters.

To review, this class extends Object and is subclassed as shown in the following hierarchy

diagram from the JDK 1.1.3 AWT.

 ImageFilter

o RGBImageFilter

o CropImageFilter

o ReplicateScaleFilter

 AreaAveragingScaleFilter

In practice, objects of this class and its subclasses are instantiated to be passed as one of the two

parameters to the constructor of a FilteredInputSource object, where it is combined with a

source image object to produce a new filtered image object.

The FilteredInputSource object that is produced can become the source image object for

another image consumer.

RGBImageFilter Class

The JDK 1.1.3 documentation describes this class as follows:

This class provides an easy way to create an ImageFilter which modifies

the pixels of an image in the default RGB ColorModel. It is meant to be

used in conjunction with a FilteredImageSource object to produce

filtered versions of existing images.

It is an abstract class that provides the calls needed to channel all of the

pixel data through a single method which converts pixels one at a time in

the default RGB ColorModel regardless of the ColorModel being used

by the ImageProducer.

The only method which needs to be defined to create a useable image

filter is the filterRGB method.

CropImageFilter Class

The JDK 1.1.3 documentation describes this class as:

An ImageFilter class for cropping images. This class extends the basic

ImageFilter Class to extract a given rectangular region of an existing

Image and provide a source for a new image containing just the extracted

region. It is meant to be used in conjunction with a

FilteredImageSource object to produce cropped versions of existing

images.

ReplicateScaleFilter Class

According to the JDK 1.1.3 documentation, this class is:

An ImageFilter class for scaling images using the simplest algorithm.

This class extends the basic ImageFilter Class to scale an existing image

and provide a source for a new image containing the resampled image.

The pixels in the source image are sampled to produce pixels for an

image of the specified size by replicating rows and columns of pixels to

scale up or omitting rows and columns of pixels to scale down. It is

meant to be used in conjunction with a FilteredImageSource object to

produce scaled versions of existing images.

AreaAveragingScaleFilter Class

The following description of this class was taken from the JDK 1.1.3 documentation:

An ImageFilter class for scaling images using a simple area averaging

algorithm that produces smoother results than the nearest neighbor

algorithm.

This class extends the basic ImageFilter Class to scale an existing image

and provide a source for a new image containing the resampled image.

The pixels in the source image are blended to produce pixels for an

image of the specified size. The blending process is analogous to scaling

up the source image to a multiple of the destination size using pixel

replication and then scaling it back down to the destination size by

simply averaging all the pixels in the supersized image that fall within a

given pixel of the destination image.

MemoryImageSource Class

The following brief description of this class is from the JDK 1.1.3 documentation.

This class is an implementation of the ImageProducer interface which

uses an array to produce pixel values for an Image.

There are six different constructors, each of which requires some or all of the following

parameters:

 Width and height in pixels of the image being created,

 Color model to be used in the conversion (two of the constructors don't require this and

default to the RGB color model),

 An array of bytes or integers containing the values to be converted to pixels in

accordance with the color model,

 An offset specifying the first pixel used in the array,

 The number of pixels per scan line in the array which may be larger than the number of

pixels in the actual scan line in the image, resulting in some of the data in the array being

ignored,

 A Hashtable object containing the properties associated with the image, if any.

In all cases, the constructor constructs an ImageProducer object which uses an array of bytes or

integers to produce data for an Image object.

This class implements the ImageProducer interface and as such defines all of the methods of

that interface. Several other methods are defined as well.

Also according to the JDK 1.1.3 documentation:

The MemoryImageSource is also capable of managing a memory image

which varies over time to allow animation or custom rendering.

According to Zukowski, in JDK 1.1.x, MemoryImageSource can now pass multiple frames to

interested consumers, and mimics GIF89A multiframe functionality to produce animation.

Zukowski provides an example of this feature in his book Java AWT Reference.

PixelGrabber Class

The PixelGrabber class is a utility for converting an image into an array of pixel values. The

description of the class, according to the JDK 1.1.3 documentation is:

The PixelGrabber class implements an ImageConsumer which can be

attached to an Image or ImageProducer object to retrieve a subset of the

pixels in that image.

This class has three constructors which require different parameters to control how the object is

constructed.

Two of the constructors require you to pass an array of int which is where the numeric values of

the pixels will be stored.

The third constructor doesn't require the array as a parameter. In this case, you invoke the

getPixel() method on the PixelGrabber object to get the buffer where the resulting data is

stored.

This class implements the ImageConsumer interface. Hence, it defines the methods of that

interface as well as other methods which determine its behavior.

Sample Program

As I mentioned early in this lesson, the image-processing capabilities of Java are extensive.

Thus, many different sample programs would be required to illustrate all of the features.

We won't attempt to illustrate all the features in this lesson. Rather, we will provide a simple

program that illustrates a few of the features in hopes that you can use that as a jumping off place

to investigate the other features on your own.

This program illustrates image manipulation by removing the red color from all the pixels in an

image and also making the image partially transparent.

The program requires access to an image file named "logomain.gif" in the current directory on

the hard disk.

Just about any image should do, but it needs to be large enough that you can see it when it is

displayed at its normal size and should be small enough to fit on the screen.

If the program is unable to load the image file within ten seconds, it will abort with an error

message. You can easily modify the source code to change the name of the image file and

change the timeout interval if you wish to do so.

A large portion of the code in this program has been illustrated in previous lessons and won't be

discussed in this lesson. The following discussion primarily involves material that has not been

covered in a previous lesson.

This program reads an image file from the disk and saves it in memory under the name

rawImage.

Then it declares an array of int of sufficient size to contain one int value for every pixel in the

image. The name of the array is pix.

Then it instantiates an object of type PixelGrabber which associates the rawImage with the

array of int named pix.

Following this, it invokes the grabPixels() method on the object of type PixelGrabber to cause

the pixels in the rawImage to be converted to numeric values of type int and stored in the array

named pix.

Then it uses bitwise operators to mask the red byte out of every pixel value and to make the

image partially transparent by masking the alpha byte with the hex value C0 (an alpha value of

00 is completely transparent, and an alpha value of FF is completely opaque).

Then it uses the createImage() method of the Component class along with the constructor for

the MemoryImageSource class to create a new image from the modified pixel data. The name

of the new image is modImage.

Finally, it overrides the paint() method where it uses the drawImage() method to display both

the raw image and the modified image on the same Frame object for comparison.

The colors in the modified image should reflect the lack of red (assuming they contained red in

the first place).

Also the modified image is partially transparent, allowing the yellow background to show

through on many pixels.

On a Win95 system. transparency seems to be accomplished by causing a regular distribution of

pixels to be rendered in the background color. The higher the degree of transparency, the larger

the percentage of pixels that are rendered in the background color.

This program was tested using JDK 1.1.3 under Win95.

Interesting Code Fragments

The first interesting code fragment is the statement in the constructor that gets an image from a

specified file. We have seen this before, but it is being repeated here for review purposes.

 rawImage =

Toolkit.getDefaultToolkit().getImage("logomain.gif");

Follwing this, we use the MediaTracker class to track the loading of the image file, etc., but you

have seen all of that before. After doing some things with height, width, etc., we get down to the

topic that is being illustrated in this lesson.

We declare an array object of type int to receive the numeric representation of all the pixels in

the image.

 int[] pix = new int[rawWidth * rawHeight];

Then we instantiate an object of type PixelGrabber that deals with some size information, and

associates our rawImage object with the array named pix where we will deposit the numeric

values for the pixels. This is accomplished with the following statement. You are referred to the

JDK 1.1.3 documentation for an explanation of all the parameters to the constructor.

 PixelGrabber pgObj = new PixelGrabber(

 rawImage,0,0,rawWidth,rawHeight,

pix,0,rawWidth);

Once we have the PixelGrabber object, we invoke the grabPixels() method on that object to

perform the actual conversion of the pixels in the image to numeric form.

A more detailed description of this method is definitely worth seeing. The following description

was extracted from the JDK 1.1.3 documentation.

public boolean grabPixels() throws InterruptedException

Request the Image or ImageProducer to start delivering pixels and wait

for all of the pixels in the rectangle of interest to be delivered.

Returns: true if the pixels were successfully grabbed, false on abort,

error or timeout

Throws: InterruptedException Another thread has interrupted this thread.

We also invoked the getStatus() method to check the status of the operation. A description of

that method follows.

public synchronized int getStatus()

Return the status of the pixels. The ImageObserver flags representing

the available pixel information are returned.

Returns: the bitwise OR of all relevant ImageObserver flags

To make much sense out of this, we need information about the ImageObserverflags. A

description of the ImageObserver flags follows. We will make use of the ALLBITS flag in our

program.

ABORT - An image which was being tracked asynchronously was

aborted before production was complete.

ALLBITS - A static image which was previously drawn is now complete

and can be drawn again in its final form.

ERROR - An image which was being tracked asynchronously has

encountered an error.

FRAMEBITS - Another complete frame of a multi-frame image which

was previously drawn is now available to be drawn again.

HEIGHT - The height of the base image is now available and can be

taken from the height argument to the imageUpdate callback method.

PROPERTIES - The properties of the image are now available.

SOMEBITS - More pixels needed for drawing a scaled variation of the

image are available.

WIDTH - The width of the base image is now available and can be taken

from the width argument to the imageUpdate callback method.

The statement in our sample program that invokes the grabPixels() and getStatus() methods is

shown below.

 if(pgObj.grabPixels() && ((pgObj.getStatus() &

 ImageObserver.ALLBITS) != 0)){

If the above statement returns true, the next step is to process the numeric pixel values to

produce the desired modification of the image. (When examining the above statement, pay close

attention to the difference between the use of logical && and bitwise &.)

Once we have the pixel data in numeric int form (alpha, red, green, blue bytes) it is a simple

matter to use a for loop and a bitwise AND operation to mask out the red byte and to modify the

alpha byte. To accomplish this, we AND the red byte with hex 00 and AND the alpha byte with

hex C0.

 for(int cnt = 0; cnt <

(rawWidth*rawHeight);cnt++){

 pix[cnt] = pix[cnt] & 0xC000FFFF;

 }//end for loop

The next step is to use the createImage() method of the Component class to create an image

from the numeric array.

To accomplish this, we need to instantiate an object of the MemoryImageSource class

describing the manner in which we want to convert the array of numeric data to an image and

pass that object to the createImage() method. (See the JDK 1.1 documentation for a description

of the parameters to the MemoryImageSource constructor.) You will probably recognize most

of those parameters from their names.

The following code creates the desired Image object and names it modImage.

 modImage = this.createImage(

 new MemoryImageSource(

rawWidth,rawHeight,pix,0,rawWidth));

Finally, we override the paint() method to display both the raw image and the modified image,

one above the other on the same Frame object for comparison.

 g.drawImage(rawImage,inLeft,inTop,this);

 g.drawImage(modImage,inLeft,inTop+rawHeight,this);

A complete listing of the program is provided in the next section.

Program Listing

Some of the interesting code fragments are highlighted in boldface in the following program

listing. A description of the program was provided in an earlier section.

/*File Image05.java

Copyright 1997, R.G.Baldwin

This program illustrates image manipulation by removing

the red color from all the pixels in an image and also

making the image partially transparent.

The program requires access to an image file named

"logomain.gif" in the current directory on the hard disk.

If the program is unable to load the image file within ten

seconds, it will abort with an error message.

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

class Image05 extends Frame{ //controlling class

 Image rawImage;//ref to raw image file fetched from disk

 int rawWidth;

 int rawHeight;

 Image modImage; //ref to modified image

 //Inset values for the container object

 int inTop;

 int inLeft;

 //===//

 public static void main(String[] args){

 Image05 obj = new Image05();//instantiate this object

 obj.repaint();//render the image

 }//end main

 //===//

 public Image05(){//constructor

 //Get an image from the specified file in the current

 // directory on the local hard disk.

 rawImage =

 Toolkit.getDefaultToolkit().getImage("logomain.gif");

 //Use a MediaTracker object to block until the image

 // is loaded or ten seconds has elapsed.

 MediaTracker tracker = new MediaTracker(this);

 tracker.addImage(rawImage,1);

 try{ //because waitForID throws InterruptedException

 if(!tracker.waitForID(1,10000)){

 System.out.println("Load error.");

 System.exit(1);

 }//end if

 }catch(InterruptedException e){System.out.println(e);}

 //Raw image has been loaded. Establish width and

 // height of the raw image.

 rawWidth = rawImage.getWidth(this);

 rawHeight = rawImage.getHeight(this);

 this.setVisible(true);//make the Frame visible

 //Get and store inset data for the Frame object so

 // that it can be easily avoided.

 inTop = this.getInsets().top;

 inLeft = this.getInsets().left;

 //Use the insets and the size of the raw image to

 // establish the overall size of the Frame object.

 // Make the Frame object twice the height of the

 // image so that the raw image and the modified image

 // can both be rendered on the Frame object.

 this.setSize(inLeft+rawWidth,inTop+2*rawHeight);

 this.setTitle("Copyright 1997, Baldwin");

 this.setBackground(Color.yellow);

 //Declare an array object to receive the pixel

 // representation of the image

 int[] pix = new int[rawWidth * rawHeight];

 //Convert the rawImage to numeric pixel representation

 try{//because grapPixels() throws InterruptedException

 //Instantiate a PixelGrabber object specifying

 // pix as the array in which to put the numeric

 // pixel data. See JDK 1.1.3 docs for parameters

 PixelGrabber pgObj = new PixelGrabber(

 rawImage,0,0,rawWidth,rawHeight,

 pix,0,rawWidth);

 //Invoke the grabPixels() method on the PixelGrabber

 // object to actually convert the image to an array

 // of numeric pixel data stored in pix. Also test

 // for success in the process.

 if(pgObj.grabPixels() && ((pgObj.getStatus() &

 ImageObserver.ALLBITS) != 0)){

 //Mask the red byte out of every pixel by ANDing

 // the red byte with 00. Also make partially

 // transparent by ANDing the alpha byte with C0

 for(int cnt = 0; cnt < (rawWidth*rawHeight);cnt++){

 pix[cnt] = pix[cnt] & 0xC000FFFF;

 }//end for loop

 }//end if statement

 else System.out.println("Pixel grab not successful");

 }catch(InterruptedException e){System.out.println(e);}

 //Use the createImage() method to create a new image

 // from the array of pixel values.

 modImage = this.createImage(

 new MemoryImageSource(

 rawWidth,rawHeight,pix,0,rawWidth));

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

//===//

 //Override the paint method to display both the rawImage

 // and the modImage on the same Frame object.

 public void paint(Graphics g){

 if(modImage != null){

 g.drawImage(rawImage,inLeft,inTop,this);

 g.drawImage(modImage,inLeft,inTop+rawHeight,this);

 }//end if

 }//end paint()

}//end Image05 class

//===//

-end-

