
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

The AWT Package, Graphics- Introduction to Images

Java Programming, Lecture Notes # 170, Revised 09/23/98.

 Preface

 Introduction

 The drawImage() Method

 The Image Class

o Constants of the Image Class

o Constructors of the Image Class

o Methods of the Image Class

 Classes and Interfaces that Support the Image Class

o Image Producer

o MediaTracker

 Constants of the MediaTracker Class

 Constructors of the MediaTrackerClass

 Methods of the MediaTrackerClass

 First Sample Program

o Interesting Code Fragments for First Sample Program

o Program Listing for First Sample Program

 Second Sample Program

o Interesting Code Fragments for Second Sample Program

o Program Listing for Second Sample Program

 Third Sample Program

o Interesting Code Fragments for Third Sample Program

o Program Listing for Third Sample Program

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

Introduction

This lesson provides an introduction to the handling of images in Java, including sample

programs that illustrates some of the methods used to display an image in a Frame object.

Subsequent lessons will provide additional information including animation with double

buffering and some of the more complex image processing techniques.

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/

The drawImage() Method

Methods from several different classes are used in the handling of images in Java. The first thing

we need to do is go back and review the drawImage() method from the Graphics class, because

it is the method used to display an image.

The JDK 1.1.3 documentation lists six different overloaded versions of the drawImage() method

with the brief descriptions given below. More detailed information is available in the JDK

documentation package.

drawImage(Image, int, int, Color, ImageObserver) - Draws as much of

the specified image as is currently available.

drawImage(Image, int, int, ImageObserver) - Draws as much of the

specified image as is currently available.

drawImage(Image, int, int, int, int, Color, ImageObserver) - Draws as

much of the specified image as has already been scaled to fit inside the

specified rectangle.

drawImage(Image, int, int, int, int, ImageObserver) - Draws as much of

the specified image as has already been scaled to fit inside the specified

rectangle.

drawImage(Image, int, int, int, int, int, int, int, int, Color,

ImageObserver) - Draws as much of the specified area of the specified

image as is currently available, scaling it on the fly to fit inside the

specified area of the destination drawable surface.

drawImage(Image, int, int, int, int, int, int, int, int, ImageObserver) -

Draws as much of the specified area of the specified image as is currently

available, scaling it on the fly to fit inside the specified area of the

destination drawable surface.

As you can see, there is a lot of flexibility available when actually drawing the image. A more

detailed description of one of the methods follows:

 public abstract boolean drawImage(Image img,

 int x,

 int y,

 int width,

 int height,

 ImageObserver observer)

 Parameters:

 img - the specified image to be drawn.

 x - the x coordinate.

 y - the y coordinate.

 width - the width of the rectangle.

 height - the height of the rectangle.

 observer - object to be notified as more of the

image is

 converted.

With this version of the method, the image is drawn inside the specified rectangle and is scaled if

necessary. When invoked, this method draws as much of the specified image as has already been

scaled to fit inside the specified rectangle.

Transparent pixels do not affect whatever pixels are already there.

This method returns immediately, even if the entire image has not yet been scaled, and converted

for the current output device. If the current output representation is not yet complete, then

drawImage returns false. As more of the image becomes available, the process that draws the

image notifies the image observer by calling its imageUpdate method and the image continues

to be drawn in pieces.

This is how the process is explained by Peter van der Linden in his book Just Java 1.1 and

Beyond:

"The Component class contains an imageUpdate() method. When it is

called, it schedules a repaint, allowing a little more of the image to be

drawn without interfering at all with your thread of control."

He goes on to explain that a system property with a key value of awt.image.incrementaldraw

determines whether or not the image will be rendered in pieces as described above. The default

value of this property is true. When true, it causes the system to draw parts of an image as they

arrive. When false, it causes the system to wait until all the image is loaded before drawing.

A second system property with a key value of awt.imager.redrawrate determines the minimum

period in milliseconds between calls to repaint() for images. The default value is 100 which only

applies if the other system property described above is true.

System properties can be modified. Such modifications persist only for the current invocation of

the program.

Three sample programs in this lesson illustrate the use of the drawImage() method to draw an

image. The first sample program illustrates the effect of drawing individual portions of the image

as the scaled portions become available. This program produces a visual output that is not very

satisfactory because it tends to flash as successive calls to imageUpdate are made in the drawing

process.

The second sample program eliminates this flashing problem by using a MediaTracker object to

block the thread, and delay the invocation of drawImage() until the entire scaled image is

available for drawing.

According to the JavaSoft documentation, a scaled version of an image will not necessarily be

available immediately just because an unscaled version of the image has been constructed for the

output device. However, this effect is not apparent in the second sample program.

All of the parameters to the drawImage() method are pretty obvious except for the last one

which is described as follows:

observer - object to be notified as more of the image is converted.

Here is part of what John Zukowski has to say about this topic on page 35 in his book: Java

AWT Reference.

"For the time being, it's enough to say that the call to drawImage() starts

a new thread that loads the requested image. An image observer monitors

the process of loading an image; the thread that is loading the image

notifies the image observer whenever new data has arrived. ... it's safe to

use this as the image observer in a call to drawImage(). More simply,

we could say that any component can serve as an image observer for

images that are drawn on it."

Zukowski has a lot more to say on the topic later on in his book.

The drawImage() method has two parameters which are not primitive int variables as

highlighted in boldface below:

(Image img,

 int x,

 int y,

 int width,

 int height,

 ImageObserver observer)

This suggests that we need to know more about the Image class and the ImageObserver

interface in order to be able to understand these parameters.

The Image Class

As usual, the Image class consists of constants or variables, constructors, and methods.

Constants of the Image Class

One of the methods of the Image class is a method named getScaledInstance() which returns a

scaled version of an image. (We will use this method in the third sample program in this lesson)

One of the parameters to this method is an int value that specifies which of several available

scaling algorithms is to be used in performing the scaling. All but one of the following constants

is used for the purpose of specifying the scaling algorithm. The names and brief descriptions of

the constants are generally self-explanatory. Additional detail can be obtained from the JDK

documentation package.

SCALE_AREA_AVERAGING - Use the Area Averaging image

scaling algorithm.

SCALE_DEFAULT - Use the default image-scaling algorithm.

SCALE_FAST - Choose an image-scaling algorithm that gives higher

priority to scaling speed than smoothness of the scaled image.

SCALE_REPLICATE - Use the image scaling algorithm embodied in

the ReplicateScaleFilter class.

SCALE_SMOOTH - Choose an image-scaling algorithm that gives

higher priority to image smoothness than scaling speed.

UndefinedProperty - The UndefinedProperty object should be

returned whenever a property which was not defined for a particular

image is fetched.

The last constant in this list is not used for scaling. Rather, it is used as a return value from the

method named getProperties() to indicated that the requested property is not available.

Constructors of the Image Class

Although the Image class has a constructor, it is an abstract class and an object of the class

cannot be instantiated directly by invoking the constructor.

You can obtain an Image object indirectly by invoking the getImage() method of either the

Applet class or the Toolkit class. getImage() uses a separate thread to fetch the image. The

practical result of invoking getImage() is to associate an Image reference with a file located

somewhere that contains the image of interest. In this lesson, we will confine ourselves to image

files on the local hard disk, but they could be on a server somewhere on the web.

The thread starts execution when you call a method that requires image information such as

drawImage().

You can also obtain an Image object by invoking the createImage() method of either the

Component class or the Toolkit class.

As we will see in two of the sample programs in this lesson, you can also use the MediaTracker

class to force an image to be loaded before you invoke a method that requires the image

information.

Methods of the Image Class

The seven methods of the Image class, along with brief descriptions are listed below. You are

referred to the JDK documentation for complete descriptions of these methods.

flush() - Flushes all resources being used by this Image object.

getGraphics() - Creates a graphics context for drawing to an off-screen

image.

getHeight(ImageObserver) - Determines the height of the image.

getProperty(String, ImageObserver) - Gets a property of this image by

name.

getScaledInstance(int, int, int) - Creates a scaled version of this image.

getSource() - Gets the object that produces the pixels for the image.

getWidth(ImageObserver) - Determines the width of the image.

We will use two of these methods in the sample programs in this lesson and some of the others in

subsequent lessons.

As usual, we are interested not only in the Image class, but also in the other classes required to

instantiate parameters for the methods, classes required to instantiate the objects returned from

the methods, and other classes which provide general support for the methods.

A brief review of the above list, the JDK documentation, and several books suggests that we

should take a look at the following classes and interfaces that support the methods of the Image

class.

 String

 ImageObserver

 ImageProducer

 Graphics

 Object

 MediaTracker

Classes and Interfaces that Support the Image Class

Of the support classes listed in the previous section, you should already know about String,

ImageObserver, Graphics, and Object. We will take a further look at ImageProducer and

MediaTracker.

ImageProducer

This is the interface for objects which can produce the image data for Images.

Each image contains an ImageProducer which is used to reconstruct the image whenever it is

needed. Examples of the need for reconstruction might be when a new size of the Image is

scaled, or when the width or height of the Image is being requested.

This interface declares several methods which generally have to do with a concept involving

image producers and image consumers. We will have more to say about this in a subsequent

lesson.

MediaTracker

This is a utility class designed to track the status of media objects. In theory, media objects could

include audio clips and other media as well as images. However, JDK 1.1.3 is only capable of

tracking the status of images.

You can use a media tracker object by instantiating an instance of MediaTracker for the

Component that you want have monitored, and invoking its addImage() method for each image

that you want to track. Each image can be assigned a unique identifier, or groups of images can

be assigned the same identifier.

According to the JDK 1.1.3 documentation, this identifier controls the priority order in which the

images are loaded. Images with a lower ID are loaded in preference to those with a higher ID

number.

The identifier can also be used to identify unique subsets of images. In other words, by assigning

the same identifier to several images, you can track them as a group.

You can determine the status of an image (or group of images) by invoking one of several

methods on the MediaTracker object and passing the identifier as a parameter to the method.

You can also cause MediaTracker to block and wait until a specified image (or group of

images) completes loading. We will use this approach in two of the sample programs to make

certain that the image has completed loading before we attempt to draw it.

Constants of the MediaTracker Class

This class provides four constants as described below. Full descriptions of these constants can be

found in the JDK documentation. As the names suggest, each of these constants is used as a

return value for one or more of the methods (such as the method named statusID()) that can be

invoked to inquire as to the status of a given image.

ABORTED - Flag indicating that the downloading of some media was

aborted.

COMPLETE - Flag indicating that the downloading of media was

completed successfully.

ERRORED - Flag indicating that the downloading of some media

encountered an error.

LOADING - Flag indicating some media is currently being loaded.

Constructors of the MediaTracker Class

MediaTracker has a single constructor that can be invoked to instantiate an object to track the

status of some of all of the images on a particular component. A brief description of the

constructor follows:

MediaTracker(Component) - Creates a media tracker to track images

for a given component.

Methods of the MediaTrackerClass

The MediaTracker class has a relatively large number of methods that can be invoked on an

object of the class for various purposes. The following boxes provide a listing of the JDK 1.1.3

methods along with a brief description of each. The methods have been grouped into several

categories in an attempt to make them easier to understand.

A more complete description of each of the methods can be obtained from the JDK

documentation.

Building and Maintaining the List

A MediaTracker object has the ability to track the status of some or all of the images being

loaded for the particular Component that was specified when the MediaTracker object was

instantiated. The following methods are use to build and maintain that list of images. When you

add an image to the list, you also specify a numeric identifier for that image that is later used

with the other methods to extract status information about the image.

addImage(Image, int) - Adds an image to the list of images being

tracked by this media tracker.

addImage(Image, int, int, int) - Adds a scaled image to the list of images

being tracked by this media tracker.

removeImage(Image) - Remove the specified image from this media

tracker.

removeImage(Image, int) - Remove the specified image from the

specified tracking ID of this media tracker.

removeImage(Image, int, int, int) - Remove the specified image with the

specified width, height, and ID from this media tracker.

Waiting for Image(s) to finish Loading

A MediaTracker object can be used to cause its thread to block until one or more of the images

on its list have completed loading. This is accomplished using the following methods. The first

and third methods return void. The second and fourth methods return true if all images were

successfully loaded and false otherwise.

waitForAll() - Starts loading all images tracked by this media tracker.

waitForAll(long) - Starts loading all images tracked by this media

tracker.

waitForID(int) - Starts loading all images tracked by this media tracker

with the specified identifier.

waitForID(int, long) - Starts loading all images tracked by this media

tracker with the specified identifier.

Checking the Load Status of Images

It is also possible to use the following methods to check the status of one or more images on the

list without blocking the thread. This makes it possible to continue doing other work while the

image(s) are loading. These methods return true or false to indicate if loading is complete.

You will note that there are two overloaded versions of each of these methods. The version with

the boolean parameter will start loading any images that have not already started loading if the

boolean parameter is true. The other version will not start loading any images. That is the

general interpretation of the boolean parameter in the other methods of this class that have a

boolean parameter.

checkAll() - Checks to see if all images being tracked by this media

tracker have finished loading.

checkAll(boolean) - Checks to see if all images being tracked by this

media tracker have finished loading.

checkID(int) - Checks to see if all images tracked by this media tracker

that are tagged with the specified identifier have finished loading.

checkID(int, boolean) - Checks to see if all images tracked by this media

tracker that are tagged with the specified identifier have finished loading.

Testing for Successful Load

The fact that one of the above methods indicates that loading is complete is not a guarantee that

the load was successful. The following methods can be used to determine if there was a problem

loading the images. These methods either return a list or a boolean, depending on which is

required to satisfy the intent of the method.

getErrorsAny() - Returns a list of all media that have encountered an

error.

getErrorsID(int) - Returns a list of media with the specified ID that have

encountered an error.

isErrorAny() - Checks the error status of all of the images.

isErrorID(int) - Checks the error status of all of the images tracked by

this media tracker with the specified identifier.

Get the Numeric Status Value

The following methods return the bitwise inclusive OR of the integer status values of the images

being inquired about.

statusAll(boolean) - Calculates and returns the bitwise inclusive OR of

the status of all media that are tracked by this media tracker.

statusID(int, boolean) - Calculates and returns the bitwise inclusive OR

of the status of all media with the specified identifier that are tracked by

this media tracker.

First Sample Program

This program illustrates loading and drawing an image without using MediaTracker to improve

the visual effect. The use of MediaTracker is illustrated in the second and third sample

programs in this lesson.

This program also illustrates:

 Use of the Toolkit class and the getImage() method to associate an image file on the

local hard disk with the name of a reference variable of type Image.

 Use of the drawImage() method to draw a loaded image onto a Frame object.

 Use of the getWidth() and getHeight() methods to determine the size of the image for

drawing purposes.

 Use of the translate() method to eliminate the coordinate offset caused by the insets of a

Frame object.

 Use of an anonymous inner-class to service the "close" button on a Frame object. This

program was tested using JDK 1.1.3 under Win95.

Interesting Code Fragments for First Sample Program

The first interesting code fragment is the declaration of an instance variable which is a reference

variable of type Image. This reference is used later to manipulate the image.

class Image01 extends Frame{ //controlling class

 Image image; //reference to an Image object

The next interesting code fragment is the statement inside the constructor for the container that

uses the getImage() method of the Toolkit class to associate the image file named logomain.gif

with the reference variable named image.

It is important to note that this statement does not cause the image to appear on the screen when

its container becomes visible. Rather, the container is visible for a noticeable period of time

before the image is actually drawn on the surface of that container.

 image =

Toolkit.getDefaultToolkit().getImage("logomain.gif");

The next interesting code fragment is the code inside the overridden paint() method that invokes

one overloaded version of the drawImage() method on the graphics context for the container.

The parameter list for the version used specifies the image to be drawn by the name of the

reference variable that refers to the image file on the local hard disk as its first parameter.

The parameter list also specifies the coordinates where the upper left-hand corner of the image is

to be placed when the image is drawn (0,0 in this case).

The parameter list specifies the width and height of the rendered image. Note that this version of

the drawImage() method automatically scales the image to force it to meet this size requirement.

The getWidth() and getHeight() methods of the Image class were used to determine the original

width and height of the image before scaling. These dimensions were then divided by 2 and

passed as parameters so that the rendered version of the image would be half its original size.

Note that the getWidth() and getHeight() methods require the image observer as a parameter. In

this case, the container object specified by this is the image observer.

Finally, the drawImage() method requires the image observer as its last parameter. Again, this

was the image observer object.

 //Now draw it half its normal size.

 g.drawImage(image,0,0,image.getWidth(this)/2,

 image.getHeight(this)/2,this);

A complete program listing for the first sample program follows in the next section.

Program Listing for First Sample Program

Some of the interesting code fragments in the following program listing are highlighted in

boldface.

/*File Image01.java

Copyright 1997, R.G.Baldwin

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

class Image01 extends Frame{ //controlling class

 Image image; //reference to an Image object

 public Image01(){//constructor

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(350,200);

 //Get an image from the specified file in the current

 // directory on the local hard disk.

 image =

 Toolkit.getDefaultToolkit().getImage("logomain.gif");

 //Make the Frame object visible. Note that the image

 // is not visible on the Frame object when it first

 // appears on the screen.

 this.setVisible(true);

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

//===//

 //Override the paint method

 public void paint(Graphics g){

 //Translate origin to avoid insets.

 g.translate(

 this.getInsets().left,this.getInsets().top);

 //Now draw it half its normal size.

 g.drawImage(image,0,0,image.getWidth(this)/2,

 image.getHeight(this)/2,this);

 }//end paint()

//===//

 public static void main(String[] args){

 new Image01();//instantiate this object

 }//end main

}//end Image01 class

//===//

Second Sample Program

The previous program did not provide a pleasing visual effect while the image was being drawn

on the screen as it was loading. For the image being used in the test, which was not particularly

large, there was a lot of flashing while the image was being drawn on the screen.

This problem was eliminated in the second program by using a MediaTracker object to block

the thread until the image was fully loaded before attempting to draw it on the screen.

A maximum allowable load time of one second was specified. If the image failed to load

successfully within one second, the program would display a message to that effect and

terminate. A larger image, or an image loaded from a slower source (such as a web server) might

require more time.

Interesting Code Fragments for Second Sample Program

Note that I am skipping those code fragments in this program which duplicate the previous

program. The first interesting new code fragment in this program is the statement that

instantiates a MediaTracker object. The parameter to the constructor is the Component whose

images are to be tracked, which in this case is this.

 MediaTracker tracker = new MediaTracker(this);

The next interesting code fragment is the statement to add the image to the list of images being

tracked by the MediaTracker object. In this case, the parameters are:

 a reference to the image file and

 an identifier which is used later to inquire about the load status of the image.

Any int value can be used as the identifier. Recall that this value also represents the priority for

tracking with low values having the higher priority.

 tracker.addImage(image,1);//add image to tracker list

The next interesting code fragment is the invocation of the waitForId() method on the tracker

object. In this case, the identifier of the image being tracked is passed as a parameter. Also a

value of 1000 milliseconds is passed as a parameter to cause the program to cease blocking and

terminate if the load of the image isn't completed within that time interval.

This particular method returns true if the image was successfully loaded and returns false

otherwise. Some of the other methods that can be used for similar purposes return void, in which

case other means should be taken to determine if the image was successfully loaded.

In this program, the return value is used to terminate the program if the image fails to load

successfully. (Note the "!" operator in front of the word tracker)..

This method also throws an InterruptedException object which is a checked exception.

Therefore, the method call is enclosed in a try block followed by a catch block.

 try{

 //Block for up to one second while trying to load

 // the image. A larger image may require more time.

 if(!tracker.waitForID(1,1000)){

 System.out.println("Failed to load

image");

 System.exit(0);

 }//end if

 }catch(InterruptedException e){System.out.println(e);}

Finally, the drawImage() method is used as before to draw the image on its container once it is

loaded. This program provides a much more pleasing visual experience than the previous

program because only one draw operation is executed to draw the entire image.

 //Now draw it half its normal size.

 g.drawImage(image,0,0,image.getWidth(this)/2,

 image.getHeight(this)/2,this);

A complete program listing for this program follows in the next section.

Program Listing for Second Sample Program

Some of the interesting code fragments in this complete program listing are highlighted in

boldface.

/*File Image02.java

Copyright 1997, R.G.Baldwin

This program illustrates the fetch and display of an

image.

In doing so, it also illustrates:

Use of the Toolkit class and the getImage() method to read

an image file from the local hard disk.

Use of a MediaTracker object to monitor the loading of

an image file from the local hard disk and block the

thread until the image is loaded.

Use of the drawImage() method to display a loaded image

onto a Frame object.

Use of the getWidth() and getHeight() methods to determine

the size of the image for drawing purposes.

Use of the translate() method to eliminate the coordinate

offset caused by the insets of a Frame object.

Use of an anonymous inner-class to service the "close"

button on a Frame object.

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

class Image02 extends Frame{ //controlling class

 Image image; //reference to an Image object

 public Image02(){//constructor

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(350,200);

 //Get an image from the specified file in the current

 // directory on the local hard disk.

 image =

 Toolkit.getDefaultToolkit().getImage("logomain.gif");

 //Make the Frame object visible. Note that the image

 // is not visible on the Frame object when it first

 // appears on the screen.

 this.setVisible(true);

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

//===//

 //Override the paint method

 public void paint(Graphics g){

 //Translate origin to avoid insets.

 g.translate(

 this.getInsets().left,this.getInsets().top);

 //Use a MediaTracker object to block until the image

 // is fully loaded before attempting to draw it on the

 // screen. If the image fails to load successfully

 // within one second, terminate the program. Without

 // the use of the MediaTracker object, the display of

 // the image is very choppy while it is being loaded

 // for the particular image being used. A smaller

 // image may load and display more smoothly without

 // use of MediaTracker.

 MediaTracker tracker = new MediaTracker(this);

 tracker.addImage(image,1);//add image to tracker list

 try{

 //Block for up to one second while trying to load

 // the image. A larger image may require more time.

 if(!tracker.waitForID(1,1000)){

 System.out.println("Failed to load image");

 System.exit(0);

 }//end if

 }catch(InterruptedException e){System.out.println(e);}

 //Now draw it half its normal size.

 g.drawImage(image,0,0,image.getWidth(this)/2,

 image.getHeight(this)/2,this);

 }//end paint()

//===//

 public static void main(String[] args){

 new Image02();//instantiate this object

 }//end main

}//end Image02 class

//===//

Third Sample Program

Although the two previous programs are rather simple, they illustrate a number of important

concepts involved in the handling of images in Java. This third sample program illustrates some

additional concepts.

In this program, five separate scaled instances of an image are created and drawn. This program

illustrates the use of the getScaledInstance() method of the Image class for producing multiple

instances of an image with different scaling.

The program invokes the getImage() method on an object of the Toolkit class to associate an

Image reference named rawImage to an image file on the local hard disk.

Then the program invokes the getScaledInstance() method on the rawImage object five times

in succession to produce five new scaled instances of the image. A different scaling algorithm is

used for each of the new scaled instances of the image.

A MediaTracker object is instantiated in the overridden paint() method. The rawImage object

as well as the five new scaled instances are added to the list being tracked by the MediaTracker

object. All are added with the same identifier (same priority).

The waitForAll() method of the MediaTracker class is used to block the thread until all six of

the image objects are loaded and properly scaled. A noticeable pause of about 4 to 5 seconds

occurs at this point using JDK 1.1.3 under Win95 with a 133mhz Pentium processor. (This will

probably vary depending on the complexity and size of the image.)

All five scaled images are then drawn on the screen. There are no obvious pauses at this point.

All five images appear on the screen almost simultaneously.

In an earlier program written by this author, but not included in this lesson, when a version of the

drawImage() method that scales while drawing the images was used, and several scaled versions

of the image were drawn, there were noticeable pauses and a noticeable progression from the

first to the last image as they were being drawn on the screen.

Thus, the tradeoff is to incur the earlier pause while the thread is blocked and the images are

being scaled in order to achieve very fast drawing of the scaled images. This program was tested

using JDK 1.1.3 under Win95.

Interesting Code Fragments for Third Sample Program

For the most part, only those code fragments that were not highlighted in one of the previous

programs will be highlighted here.

The first interesting code fragment uses the getImage() method to associate an Image reference

variable named rawImage to an image file in the current directory on the local hard disk. This is

essentially the same as the previous program. However, the reference variable named rawImage

is then used to create five additional scaled instances of the image using the getScaledInstance()

method.

Each of the five scaled instances are created using a different scaling algorithm where the

algorithm being used is specified by the symbolic constant in the third position of the parameter

list (such as SCALE_AREA_AVERAGING for example).

The width and the height of the scaled instance are specified by the first two parameters. If either

of these parameters is -1, the scaled size in pixels of the scaled instance is based on the other

parameter and the same height-to-width ratio as the original is maintained. If non-negative values

are passed for both parameters, the image will be scaled to fit the rectangle defined by those

parameters.

A parameter value of -1 was used as the second parameter in all five invocations of

getScaledInstance() in this program. Also, all five scaled instances were scaled to the same size

using different scaling algorithms.

 rawImage =

Toolkit.getDefaultToolkit().getImage("logomain.gif");

 image1 = rawImage.getScaledInstance(

 200,-

1,Image.SCALE_AREA_AVERAGING);

 image2 = rawImage.getScaledInstance(

 200,-1,Image.SCALE_DEFAULT);

 image3 = rawImage.getScaledInstance(

 200,-1,Image.SCALE_FAST);

 image4 = rawImage.getScaledInstance(

 200,-1,Image.SCALE_REPLICATE);

 image5 = rawImage.getScaledInstance(

 200,-1,Image.SCALE_SMOOTH);

The next interesting code fragment occurs in the overridden paint() method where the six Image

references are added to the list of images being tracked by a MediaTracker object. All six

references are added at the same priority level.

 MediaTracker tracker = new MediaTracker(this);

 //Add images to the tracker list

 tracker.addImage(rawImage,1);

 tracker.addImage(image1,1);

 tracker.addImage(image2,1);

 tracker.addImage(image3,1);

 tracker.addImage(image4,1);

 tracker.addImage(image5,1);

The next interesting code fragment is the code to block the thread until all six of the images have

completed loading and scaling.

 try{

 tracker.waitForAll();

 }catch(InterruptedException e){System.out.println(e);}

The final interesting code fragment shows the use of a non-scaling version of the drawImage()

method to draw the five pre-scaled images. Because the method is not required to scale the

images as they are being drawn, the images appear on the screen almost simultaneously (in the

blink of an eye).

Note that the isErrorAny() method was used (with a not operator) to confirm that there were no

load errors prior to invoking the drawImage() method to render the images to the screen.

 if(!tracker.isErrorAny()){

 g.drawImage(image1,0,0,this);

 g.drawImage(image2,0,80,this);

 g.drawImage(image3,0,160,this);

 g.drawImage(image4,0,240,this);

 g.drawImage(image5,0,320,this);

 }//end if

 else{

 System.out.println("Load error");

 System.exit(1);

 }//end else

A complete listing of the program is presented in the next section.

Program Listing for Third Sample Program

Some of the interesting code fragments are highlighted in boldface in the program listing that

follows.

/*File Image03.java

Copyright 1997, R.G.Baldwin

This program illustrates the use of the getScaledInstance()

method of the Image class.

The program invokes the getImage() method on an object of

the Toolkit class to associate an Image reference named

rawImage to an image file on the local hard disk.

Then the program invokes the getScaledInstance() method

on the rawImage object five times in succession to produce

five new scaled instances of the image. A different

scaling algorithm is implemented for each of the new

scaled instances of the image.

A MediaTracker object is instantiated in the overridden

paint() method. The rawImage object as well as the five

new scaled instances are added to the list being tracked

by the MediaTracker object. All are added with the same

identifier (same priority).

The waitForAll() method of the MediaTracker class is used

to block the thread until all six of the image objects are

loaded and properly scaled. A noticeable pause of about

4 or 5 seconds occurs at this point using JDK 1.1.3 under

Win95 with a 133mhz Pentium processor.

All five scaled images are then drawn on the screen. There

are no obvious pauses at this point. All five images

appear on the screen almost simultaneously.

In an earlier program written by this author, but not

included in the lesson, when a version of the drawImage()

method that scales while drawing the images was used,

and several scaled versions of the image were drawn,

there was a noticeable progression from the first to the

last image as they were being drawn on the screen.

Thus, the tradeoff is to incur the earlier pause in order

to achieve very fast drawing of the scaled images.

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

class Image03 extends Frame{ //controlling class

 //references to Image objects

 Image rawImage,image1,image2,image3,image4,image5;

 public Image03(){//constructor

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(300,500);

 //Get an image from the specified file in the current

 // directory on the local hard disk.

 rawImage =

 Toolkit.getDefaultToolkit().getImage("logomain.gif");

 //Create five scaled instances of the image using each

 // of the five different scaling algorithms

 image1 = rawImage.getScaledInstance(

 200,-

1,Image.SCALE_AREA_AVERAGING);

 image2 = rawImage.getScaledInstance(

 200,-1,Image.SCALE_DEFAULT);

 image3 = rawImage.getScaledInstance(

 200,-1,Image.SCALE_FAST);

 image4 = rawImage.getScaledInstance(

 200,-1,Image.SCALE_REPLICATE);

 image5 = rawImage.getScaledInstance(

 200,-1,Image.SCALE_SMOOTH);

 //Make the Frame object visible. Note that the image

 // is not visible on the Frame object when it first

 // appears on the screen.

 this.setVisible(true);

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

//===//

 //Override the paint method

 public void paint(Graphics g){

 //Translate origin to avoid insets.

 g.translate(

 this.getInsets().left,this.getInsets().top);

 //Use a MediaTracker object to block until all images

 // are scaled and loaded before attempting to draw

 // them. Instantiate the object and add all five

 // scaled images to the list.

 MediaTracker tracker = new MediaTracker(this);

 //Add images to the tracker list

 tracker.addImage(rawImage,1);

 tracker.addImage(image1,1);

 tracker.addImage(image2,1);

 tracker.addImage(image3,1);

 tracker.addImage(image4,1);

 tracker.addImage(image5,1);

 try{

 //Block until all images on the list are scaled and

 // loaded. There is a noticeable pause of 4 or 5

 // seconds at this point using JDK 1.1.3 under Win95

 // with a 133mhz Pentium processor.

 tracker.waitForAll();

 }catch(InterruptedException e){System.out.println(e);}

 //Now test for errors and draw all five images if no

 // errors were detected. All five images appear

 // on the screen almost simultaneously.

 if(!tracker.isErrorAny()){

 g.drawImage(image1,0,0,this);

 g.drawImage(image2,0,80,this);

 g.drawImage(image3,0,160,this);

 g.drawImage(image4,0,240,this);

 g.drawImage(image5,0,320,this);

 }//end if

 else{

 System.out.println("Load error");

 System.exit(1);

 }//end else

 }//end paint()

//===//

 public static void main(String[] args){

 new Image03();//instantiate this object

 }//end main

}//end Image03 class

//===//

-end-

