
Swing from A to Z: Analyzing Swing Components, Part 4,

Inheritance

Baldwin has previously introduced you to a very useful program that displays information about

any Java component, including inheritance, interfaces, properties, events, and methods. In this

lesson, Baldwin explains the code that gets and displays inheritance information about a

component.

Published: April 16, 2001

By Richard G. Baldwin

Java Programming, Lecture Notes # 1066

 Preface

 Preview

 Introduction

 Sample Program

 Interesting Code Fragments

 Summary

 What's Next

 Complete Program Listing

Preface

This series of lessons entitled Swing from A to Z, discusses the capabilities and features of Swing

in quite a lot of detail. This series is intended for those persons who need to understand Swing at

a detailed level.

This is the fourth lesson in a miniseries discussing the use of introspection for analyzing Swing

components. The first lesson in this miniseries was entitled Swing from A to Z: Analyzing

Swing Components, Part 1, Concepts. You will find links to all of the lessons in the miniseries

at the following web site.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Recommended supplementary reading

In an earlier lesson entitled Alignment Properties and BoxLayout, Part 1, I recommended a list

of Swing tutorials for you to study prior to embarking on a study of this series of lessons.

Java1060.htm
Java1060.htm
http://www.geocities.com/Athens/7077/scoop/onjava.html

The lessons identified on that list will introduce you to the use of Swing while avoiding much of

the detail included in this series.

Where are the lessons located?

You will find those lessons published at Gamelan.com. However, as of the date of this writing,

Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and sometimes my

lessons are difficult to locate there. You will find a consolidated index at Baldwin's Java

Programming Tutorials.

The index on my site provides links to the lessons at Gamelan.com.

Preview

Streamlined Documentation

The lessons in this miniseries discuss a very useful Java program that serves as a supplement to

the Sun documentation.

I will show you how to write a Java program that provides information about Swing and AWT

components at the click of a button. The program displays:

 Inheritance family tree of the component

 Interfaces implemented by the component

 Properties of the component

 Events multicast by the component

 Public methods exposed by the component

Introspection

Introspection can be used to extract information about any class that qualifies as a JavaBeans

Component. This includes all of the Swing and AWT components. It also includes many of the

other classes in the standard library as well.

Program output

Figure 1 is a screen shot showing the program output after you start the program and click the

OK button.

http://gamelan.earthweb.com/dlink.index-jhtml.72.1082.-.43.jhtml
http://www.geocities.com/Athens/7077/scoop/onjava.html
http://www.geocities.com/Athens/7077/scoop/onjava.html

Figure 1. Screen shot showing program output.

The various parts of this GUI have been explained in the earlier lessons in this miniseries.

Analysis of a JButton component

The screen shot of Figure 1 displays information about a JButton component, using all of the

superclasses except the Object class.

In the previous lessons, I have walked you through the code for this program, up to, and

including the constructor. This included the instantiation of Class and BeanInfo objects from

which information about the target class can be obtained.

In this lesson, I will discuss the code that gets and displays the inheritance information shown in

the top left-hand scroll pane of Figure 1.

Subsequent lessons will explain other aspects of the program.

Introduction

The Class class and the Introspector class

Previous lessons explained the use of the Class class and the Introspector class to achieve the

objectives of this program.

This included a discussion of the forName() and getBeanInfo() methods.

Superclasses and interfaces

It was explained that information about the superclass of a target class and the interfaces that it

implements can be obtained through use of a Class object that represents the target class.

This lesson will use that fact to develop the inheritance family tree for the target class.

Properties, events, and methods

Previous lessons also explained that an object of the interface type BeanInfo can be used to

obtain other important information about the properties, events, and methods of a target class.

Sample Program

A complete listing of this program, named Introspect03 is provided near the end of the

lesson. It is provided here so that you can copy, compile, and begin using it even before you

have an opportunity to learn exactly how it works.

Interesting Code Fragments

I will break this program down and discuss it in fragments.

The previous lesson, entitled Swing from A to Z: Analyzing Swing Components, Part 3,

Construction discussed the constructor for this program. It explained the purpose of most of the

code in the constructor, including an anonymous inner class that provides action event handling

capability for the OK button in the lower right-hand corner of Figure 1.

The actionPerformed() method

The code in Listing 1 is an abbreviated version of the actionPerformed() method that was

discussed in the previous lesson. Most of the code has been deleted because it is not germane to

this lesson.

 public void actionPerformed(

 ActionEvent

e){

 //...

 doInheritance();

Listing 1

Java1064.htm
Java1064.htm

The doInheritance() method

The method named doInheritance() invoked by the actionPerformed() method is the primary

topic of this lesson.

The purpose of the doInheritance() method is to obtain and display the inheritance family tree

beginning with the target class, and progressing up the inheritance hierarchy to the class named

Object.

Methodology

The approach used is to get and save the superclass of the target class. Then use that superclass

as a new target class and repeat the process until the class named Object is encountered.

The objective is to display the family tree beginning with the class named Object, and ending

with the original target class. All of this information is saved in the process described

above. The information that has been saved is then displayed in the output scroll pane in the

reverse order from which it was saved.

The method signature

Listing 2 shows the beginning of the method named doInheritance(). As you can see, the

method throws a ClassNotFoundException. Therefore, the method call in the

actionPerformed() method shown earlier is enclosed in a try block.

 void doInheritance()

 throws

ClassNotFoundException{

Listing 2

Temporary storage

Listing 3 shows the declaration of a new object of the class Vector.

 Vector inherVector = new Vector();

Listing 3

In case you are unfamiliar with the use of the Vector class, an object of this class is an extremely

useful container for an unknown amount of data that needs to be accessed later using an ordinal

index. (You can find a detailed discussion of the Vector class among the many tutorial lessons on

my web site.)

http://www.geocities.com/Athens/7077/scoop/onjava.html

In this case, we need a container for an unknown amount of data that needs to be accessed later

using an ordinal index, so a Vector object is my container of choice. To begin with, there is no

advance knowledge of how many different classes comprise the family tree. Further, it will later

be necessary to access the class names in the reverse of the order in which they are saved in

order to display them.

The target class

During operation, the user enters the name of the target class in the text field shown in the lower

left of the GUI in Figure 1. The code in Listing 4 invokes the getText() method on the reference

to that JTextField object to obtain the name of the target class as a String.

 String theClass = targetClass.

 getText();

Listing 4

Working variables

The code in Listing 5 shows the declaration of a pair of working variables that will be used

later. The first variable named theClassObj is used to refer to an object of the Class class that

represents the target class.

The second variable named theSuperClass is used to refer to an object of the Class class that

represents the superclass of the target class.

 Class theClassObj = null;

 Class theSuperClass = null;

Listing 5

A while loop

Listing 6 shows the beginning of a while loop that is used to get and save the names of all the

classes in the inheritance family tree. Note that this loop continues to iterate as long as the name

of the class is not java.lang.Object. Once the Object class is encountered, execution of the loop

is terminated.

 while(!(theClass.equals(

 "java.lang.Object"))){

 inherVector.add(theClass);

Listing 6

Saving the class name

At the beginning of the loop, the add() method is used to store the name of the class in the

Vector object referred by inherVector. This is shown in Listing 6 above.

Getting the superclass

As explained in an earlier lesson, if you have a Class object that represents a target class, you

can use that object to obtain another Class object that represents the superclass of the target

object.

The first statement in Listing 7 uses the forName() method of the Class class to get and save a

reference to a Class object that represents the target class whose name is stored in the String

object referred to by theClass.

The second statement in that fragment uses the getSuperclass() method to get and save a

reference to a Class object that represents the superclass of the target class.

 theClassObj = Class.forName(

 theClass);

 theSuperClass = theClassObj.

 getSuperclass();

Listing 7

Interfaces

Once you have a Class object that represents the target class, you can use the method named

getInterfaces() to get a reference to an array of Class objects, each of which represents an

interface implemented by the target class.

Although identification of the interfaces implemented by the target class is not the primary

purpose of this lesson, this information will be needed later in the program. Therefore, the code

in Listing 8 gets and saves that interface information in a Vector object referred to by an

instance variable named intfcsVector.

The use of this information to produce the display shown in the top-left scroll pane of Figure 1

will be discussed in the next lesson.

 if(theClassObj.getInterfaces()

 != null){

 intfcsVector.add(theClassObj.

 getInterfaces());

 }//end if

Listing 8

Note that a class doesn't necessarily implement any interfaces. Therefore, the code in Listing 8

first tests to see if the target class does implement any interfaces before trying to get the

information and save it in the vector.

The superclass name

At this point, the reference variable named theSuperClass contains a reference to a Class object

that represents the superclass of the target class. We need to extract the name of the superclass

from that object. The code in Listing 9 shows how to do this using the getName() method of the

Class class.

 theClass = theSuperClass.

 getName();

 }//end while loop

Listing 9

Make the superclass into a target class

The resulting String is a fully qualified class name for the superclass. This string is assigned to

the variable named theClass causing it to become the target class for the next iteration.

Control then returns to the top of the while loop where the process is repeated unless the name of

the target class is Object. In that event, the loop is terminated and the code in Listing 10 is

executed.

Saving name of Object class

The code in Listing 10 simply adds the name of the Object class to the storage vector so that the

contents of that vector will include the names of all of the classes in the family tree, beginning

with the target class and ending with the class named Object.

 inherVector.add(

 "java.lang.Object");

Listing 10

Display the family tree

The Vector object referred to by inherVector now contains the names of all the classes in the

family tree. However, they are in the reverse of the order in which they need to be displayed.

The inheritance family tree, consisting of the class names in the vector, needs to be displayed in

the JTextArea object referred to by inher. That object is displayed in the upper-left of Figure 1.

Contents of a JTextArea object

A JTextArea object contains a single String object. Therefore, it is necessary to convert the

contents of the storage vector to a String in the correct format, and to store that String in the

JTextArea object. This involves extracting the class names from the storage vector and

appending them to the String contents of the JTextArea object.

Storing the family tree in the JTextArea object

The for loop in Listing 11 extracts the names of the classes from the storage vector referred to by

inherVector in reverse order. It appends those names to the contents of the JTextArea object

referred to by inher.

Because each class in the family tree needs to be displayed on a separate line, the code in Listing

11 also appends newline code between each of the class names.

 for(int i = 0;

 i <

inherVector.size();i++){

 inher.append(

 ((String)inherVector.elementAt(

 inherVector.size() -

(i+1))));

 inher.append("\n");

 }//end for loop

 }//end doInheritance

Listing 11

Downcasting is required

Note that the contents of a Vector object are references to objects stored in the vector as type

Object. Therefore, it is necessary to downcast those references to type String before the strings

to which they refer can be appended to the contents of the JTextArea object.

Summary

I have introduced you to a program that displays information about the following aspects of any

Java class that qualifies as a JavaBeans Component:

 Inheritance family tree of the component

 Interfaces implemented by the component

 Properties of the component

 Events multicast by the component

 Public methods exposed by the component

I have provided background information on Java introspection.

I have explained the use of an anonymous inner class that is used to instantiate an action listener

object and register it on the OK button shown in Figure 1.

I showed how the actionPerformed() method of the action listener object invokes the following

methods to obtain and display the sought-after information about the target component:

 doInheritance()

 doInterfaces()

 doProperties()

 doEvents()

 doMethods()

In this lesson, I explained the doInheritance() method in detail. In the discussion, I showed you

how to use a Class object representing a target class to obtain a Class object representing the

superclass of the target class.

I showed you how to use iteration to obtain the complete family tree of the target class, all the

way up to the class named Object.

I showed you how to display that information in a JTextArea object.

What's Next?

In the next lesson, I will explain how the method named doInterfaces() obtains and displays

interface information about the target class, in alphabetical order, in the upper-right output pane

in Figure 1.

In subsequent lessons, I will provide similar explanations for the other three methods in the

above list.

Complete Program Listing

A complete listing of the program is provided in Listing 12.

/*File Introspect03.java

Copyright 2000, R.G.Baldwin

Produces a GUI that displays

inheritance, interfaces, properties,

events, and methods about components,

or about any class that is a bean.

Requires JDK 1.3 or later. Otherwise,

must service the windowClosing event

to terminate the program.

Tested using JDK 1.3 under WinNT.

**************************************/

import java.io.*;

import java.beans.*;

import java.lang.reflect.*;

import java.util.*;

import java.awt.Color;

import java.awt.event.*;

import javax.swing.*;

public class Introspect03

 extends JFrame{

 private JLabel errors =

 new JLabel("Errors appear here");

 private JPanel outputPanel =

 new JPanel();

 private JPanel inputPanel =

 new JPanel();

 private JTextField targetClass =

 new JTextField(14);

 private JTextField ceilingClass =

 new JTextField(14);

 private JButton okButton =

 new JButton("OK");

 private JTextArea inher = new

 JTextArea("INHERITANCE\n",8,17);

 private JScrollPane inherPane =

 new JScrollPane(inher);

 private JTextArea intfcs = new

 JTextArea("INTERFACES\n",8,17);

 private JScrollPane intfcsPane =

 new JScrollPane(intfcs);

 private JTextArea props = new

 JTextArea("PROPERTIES\n",8,17);

 private JScrollPane propsPane =

 new JScrollPane(props);

 private JTextArea events =

 new JTextArea("EVENTS\n",8,17);

 private JScrollPane eventsPane =

 new JScrollPane(events);

 private JTextArea methods =

 new JTextArea("METHODS\n",8,17);

 private JScrollPane methodsPane =

 new JScrollPane(methods);

 private BeanInfo beanInfo;

 private Vector intfcsVector =

 new Vector();

 public static void main(

 String args[]){

 new Introspect03();

 }//end main

 public Introspect03() {//constructor

 //This require JDK 1.3 or later.

 // Otherwise service windowClosing

 // event to terminate the program.

 setDefaultCloseOperation(

 JFrame.EXIT_ON_CLOSE);

 outputPanel.setBackground(

 Color.green);

 inputPanel.setBackground(

 Color.yellow);

 outputPanel.add(inherPane);

 outputPanel.add(intfcsPane);

 outputPanel.add(propsPane);

 outputPanel.add(eventsPane);

 outputPanel.add(methodsPane);

 //Set some default values

 targetClass.setText(

 "javax.swing.JButton");

 ceilingClass.setText(

 "java.lang.Object");

 inputPanel.add(targetClass);

 inputPanel.add(ceilingClass);

 inputPanel.add(okButton);

 getContentPane().add(

 errors,"North");

 getContentPane().add(

 outputPanel,"Center");

 getContentPane().add(

 inputPanel,"South");

 setResizable(false);

 setSize(400,520);

 setTitle(

 "Copyright 2000, R.G.Baldwin");

 setVisible(true);

 //Anonymous inner class to provide

 // event handler for okButton

 okButton.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 errors.setText(

 "Errors appear here");

 inher.setText(

 "INHERITANCE\n");

 intfcs.setText(

 "INTERFACES\n");

 props.setText(

 "PROPERTIES\n");

 events.setText(

 "EVENTS\n");

 methods.setText("METHODS\n");

 try{

 Class targetClassObject =

 Class.forName(

 targetClass.getText());

 doInheritance();

 doInterfaces();

 beanInfo = Introspector.

 getBeanInfo(

 targetClassObject,

 Class.forName(

 ceilingClass.

 getText()));

 doProperties();

 doEvents();

 doMethods();

 }catch(Exception ex){

 errors.setText(

 ex.toString());}

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener

 }//end constructor

 void doInheritance()

 throws ClassNotFoundException{

 //Get and display inheritance

 // hierarchy

 Vector inherVector = new Vector();

 String theClass = targetClass.

 getText();

 Class theClassObj = null;

 Class theSuperClass = null;

 while(!(theClass.equals(

 "java.lang.Object"))){

 inherVector.add(theClass);

 theClassObj = Class.forName(

 theClass);

 theSuperClass = theClassObj.

 getSuperclass();

 //Get and save interfaces to be

 // used later

 if(theClassObj.getInterfaces()

 != null){

 intfcsVector.add(theClassObj.

 getInterfaces());

 }//end if

 theClass = theSuperClass.

 getName();

 }//end while loop

 inherVector.add(

 "java.lang.Object");

 //Display vector contents in

 // reverse order

 for(int i = 0;

 i < inherVector.size();i++){

 inher.append(

 ((String)inherVector.elementAt(

 inherVector.size() - (i+1))));

 inher.append("\n");

 }//end for loop

 }//end doInheritance

 void doInterfaces(){

 Vector interfaceNameVector =

 new Vector();

 //Interface information was stored

 // in intfcsVector earlier.

 for(int i = 0;

 i < intfcsVector.size();i++){

 Class[] interfaceSet =

 (Class[])intfcsVector.

 elementAt(i);

 for(int j = 0;

 j < interfaceSet.length;j++){

 interfaceNameVector.add(

 interfaceSet[j].getName());

 }//end for loop on j

 }//end for loop on i

 Object[] interfaceNameArray =

 interfaceNameVector.toArray();

 Arrays.sort(interfaceNameArray);

 if(interfaceNameArray.length > 0){

 intfcs.append(

 interfaceNameArray[0].

 toString());

 intfcs.append("\n");

 }//end if

 for(int i = 1;

 i < interfaceNameArray.length;

 i++){

 //Eliminate dup interface names

 if(!(interfaceNameArray[i].

 equals(

 interfaceNameArray[i-1]))){

 intfcs.append(

 interfaceNameArray[i].

 toString());

 intfcs.append("\n");

 }//end if

 }//end for loop

 }//end doInterfaces

 void doProperties(){

 Vector propVector = new Vector();

 PropertyDescriptor[] propDescrip =

 beanInfo.

 getPropertyDescriptors();

 for (int i = 0;

 i < propDescrip.length; i++) {

 PropClass propObj =

 new PropClass();

 propObj.setName(propDescrip[i].

 getName());

 propObj.setType("" +

 propDescrip[i].

 getPropertyType());

 propVector.add(propObj);

 }//end for-loop

 Object[] propArray = propVector.

 toArray();

 Arrays.sort(

 propArray,new PropClass());

 for(int i = 0;

 i < propArray.length;i++){

 props.append(propArray[i].

 toString());

 props.append("\n");

 }//end for loop

 }//end doProperties

 void doEvents(){

 Vector eventVector = new Vector();

 EventSetDescriptor[] evSetDescrip

=

 beanInfo.

 getEventSetDescriptors();

 for (int i = 0;

 i < evSetDescrip.length; i++){

 EventClass eventObj =

 new EventClass();

 eventObj.setName(evSetDescrip[i].

 getName());

 MethodDescriptor[] methDescrip =

 evSetDescrip[i].

 getListenerMethodDescriptors();

 for (int j = 0;

 j < methDescrip.length; j++) {

 eventObj.setListenerMethod(

 methDescrip[j].getName());

 }//end for-loop

 eventVector.add(eventObj);

 }//end for-loop

 Object[] eventArray = eventVector.

 toArray();

 Arrays.sort(

 eventArray,new EventClass());

 for(int i = 0;

 i < eventArray.length;i++){

 events.append(eventArray[i].

 toString());

 events.append("\n");

 }//end for loop

 }//end doEvents

 void doMethods(){

 Vector methVector = new Vector();

 MethodDescriptor[] methDescrip =

 beanInfo.getMethodDescriptors();

 for (int i = 0;

 i < methDescrip.length; i++) {

 methVector.add(

 methDescrip[i].getName());

 }//end for-loop

 Object[] methodArray =

 methVector.toArray();

 Arrays.sort(methodArray);

 if(methodArray.length > 0){

 methods.append(

 methodArray[0].toString());

 methods.append("\n");

 }//end if

 for(int i = 1;

 i < methodArray.length;i++){

 //Eliminate dup method names

 if(!(methodArray[i].equals(

 methodArray[i-1]))){

 methods.append(

 methodArray[i].toString());

 methods.append("\n");

 }//end if

 }//end for loop

 }//end doMethods

//===================================//

//This inner class is used to

// encapsulate name and type

// information about properties. It

// also serves as a class from which a

// Comparator object can be

// instantiated to assist in sorting

// by name.

class PropClass implements Comparator{

 private String name;

 private String type;

 public void setName(String name){

 this.name = name;

 }//end setName

 public String getName(){

 return name;

 }//end getName

 public void setType(String type){

 this.type = type;

 }//end setType

 public String toString(){

 return(name + "\n " + type);

 }//end toString

 public int compare(

 Object o1, Object o2){

 return ((PropClass)o1).getName().

 toUpperCase().compareTo(

 ((PropClass)o2).getName().

 toUpperCase());

 }//end compare

 public boolean equals(Object obj){

 return this.getName().equals(

 ((PropClass)obj).getName());

 }//end equals

}//end class PropClass

//===================================//

//This inner class is used to

// encapsulate name and handler

// information about events. It also

// serves as a class from which a

// Comparator object can be

// instantiated to assist in sorting

// by name.

class EventClass implements Comparator{

 private String name;

 private Vector lstnrMethods =

 new Vector();

 public void setName(String name){

 this.name = name;

 }//end setName

 public String getName(){

 return name;

 }//end getName

 public void setListenerMethod(

 String lstnrMethod){

 lstnrMethods.add(lstnrMethod);

 }//end setType

 public String toString(){

 String theString = name;

 for(int i = 0;

 i < lstnrMethods.size();i++){

 theString = theString + "\n " +

 lstnrMethods.elementAt(i);

 }//end for loop

 return theString;

 }//end toString

 public int compare(

 Object o1, Object o2){

 return ((EventClass)o1).getName().

 toUpperCase().compareTo(

 ((EventClass)o2).getName().

 toUpperCase());

 }//end compare

 public boolean equals(Object obj){

 return this.getName().equals(

 ((EventClass)obj).getName());

 }//end equals

}//end EventClass inner class

}//end controlling class Introspect03

Listing 12

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com

