
Swing from A to Z: Analyzing Swing Components, Part 5,

Interfaces

Baldwin has previously introduced you to a very useful program that displays information about

any Java component, including inheritance, interfaces, properties, events, and methods. In this

lesson, Baldwin explains the code that gets, sorts, and displays information about the interfaces

implemented by a component.

Published: April 23, 2001

By Richard G. Baldwin

Java Programming, Lecture Notes # 1068

 Preface

 Preview

 Introduction

 Sample Program

 Interesting Code Fragments

 Summary

 What's Next

 Complete Program Listing

Preface

This series of lessons entitled Swing from A to Z, discusses the capabilities and features of Swing

in quite a lot of detail. This series is intended for those persons who need to understand Swing at

a detailed level.

This is the fifth lesson in a miniseries discussing the use of introspection for analyzing Swing

components. The first lesson in this miniseries was entitled Swing from A to Z: Analyzing

Swing Components, Part 1, Concepts. You will find links to all of the lessons in the miniseries

at the following web site.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Recommended supplementary reading

In an earlier lesson entitled Alignment Properties and BoxLayout, Part 1, I recommended a list

of Swing tutorials for you to study prior to embarking on a study of this series of lessons.

mailto:baldwin.richard@iname.com
Java1060.htm
Java1060.htm
http://www.geocities.com/Athens/7077/scoop/onjava.html

The lessons identified on that list will introduce you to the use of Swing while avoiding much of

the detail included in this series.

Where are the lessons located?

You will find those lessons published at Gamelan.com. However, as of the date of this writing,

Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and sometimes my

lessons are difficult to locate there. You will find a consolidated index at Baldwin's Java

Programming Tutorials.

The index on my site provides links to the lessons at Gamelan.com.

Preview

Streamlined Documentation

The lessons in this miniseries discuss a very useful Java program that serves as a supplement to

the Sun documentation.

I will show you how to write a Java program that provides information about Swing and AWT

components at the click of a button. The program displays:

 Inheritance family tree of the component

 Interfaces implemented by the component

 Properties of the component

 Events multicast by the component

 Public methods exposed by the component

Introspection

Introspection can be used to extract information about any class that qualifies as a JavaBeans

Component. This includes all of the Swing and AWT components. It also includes many of the

other classes in the standard library as well.

Program output

Figure 1 is a screen shot showing the program output after you start the program and click the

OK button.

http://gamelan.earthweb.com/dlink.index-jhtml.72.1082.-.43.jhtml
http://www.geocities.com/Athens/7077/scoop/onjava.html
http://www.geocities.com/Athens/7077/scoop/onjava.html

Figure 1. Screen shot showing program output.

The various parts of this GUI have been explained in the earlier lessons in this miniseries.

Analysis of a JButton component

The screen shot of Figure 1 displays information about a JButton component, using all of the

superclasses except the Object class.

The program code

In the previous lessons, I have walked you through the code for this program, up to, and

including the code that gets and displays the inheritance information in the upper-left pane.

In this lesson, I will discuss the code that gets and displays the sorted interface information

shown in the top right-hand pane of Figure 1.

Along the way, I will show you how to use the sorting capability of the Java class libraries.

Subsequent lessons will explain other aspects of the program.

Introduction

The Class class and the Introspector class

Previous lessons explained the use of the Class class and the Introspector class to achieve the

objectives of this program.

This included a discussion of the forName() and getBeanInfo() methods.

Superclasses and interfaces

It was explained that information about the superclass of a target class and the interfaces that it

implements can be obtained through use of a Class object that represents the target class.

This lesson will use that fact to develop the interface information for the target class.

Properties, events, and methods

Previous lessons also explained that an object of the interface type BeanInfo can be used to

obtain other important information about the properties, events, and methods of a target class.

Sample Program

A complete listing of this program, named Introspect03 is provided near the end of the

lesson. It is provided here so that you can copy, compile, and begin using it even before you

have an opportunity to learn exactly how it works.

Interesting Code Fragments

I will break this program down and discuss it in fragments.

The previous lesson, entitled Swing from A to Z: Analyzing Swing Components, Part 4,

Inheritance discussed the method named doInheritance(). It explained how the program uses

the getSuperclass method of the Class class in a while loop to get and display the family tree for

the target class. That method is invoked in the actionPerformed() event handler for the OK

button in Figure 1.

The actionPerformed() method

The code in Listing 1 is an abbreviated version of the actionPerformed() method. Most of the

code has been deleted because it is not germane to this lesson.

 public void actionPerformed(

 ActionEvent

e){

 //...

 doInheritance();

Java1066.htm
Java1066.htm

 doInterfaces();

Listing 1

The doInterfaces() method

The method named doInterfaces() invoked by the actionPerformed() method is the primary

topic of this lesson.

The purpose of the doInterfaces() method is to get, sort, and display information about the

interfaces implemented by the target class and its superclasses.

Inheriting an interface implementation

Recall that the implementation of an interface is an inherited trait. If the superclass of a target

class implements an interface, then, among other things, a reference to an object of the target

class can be treated as the interface type.

Methodology

In addition to getting and displaying inheritance information, the method named doInheritance()

(discussed in the previous lesson) gets and saves information about the interfaces implemented

by each class in the family tree of the target class. The information saved by the

doInheritance() method provides the starting point for the code in the doInterfaces() method.

The interface information

The interface information is stored in a Vector object referred to by an instance variable named

intfcsVector. Each element in the vector is a reference to an array object containing references

to Class objects. Each Class object referred to by the elements in the array object represents one

of the interfaces implemented by one of the classes in the family tree.

Getting interface names into a sorted array

The code in the doInterfaces() method extracts the references to each of those class objects, gets

the name of the interface represented by each Class object as a String, and stores references to

those strings in a new Vector object.

Then it converts the contents of that Vector into an array of type Object where each element in

the array contains a reference to a String containing the name of an interface.

Following this, a simple version of the class method named sort() of the Arrays class is used to

sort the contents of the array.

Eliminate duplicates and display

After the contents of the array are sorted, a for loop is used to eliminate any duplicate interface

names in the array, and the strings referred to by the elements in the array are appended to the

contents of the JTextArea displayed in the upper-right pane of Figure 1.

Saving the interface information

Listing 2 shows the code in the doInheritance() method that gets and saves the interface

information in the Vector referred to by the instance variable named intfcsVector. As

mentioned above, this information provides the starting point for the method named

doInterfaces().

(The remaining code in the doInheritance() method was deleted from this display because it is

not germane to this lesson.)

 void doInheritance()

 throws ClassNotFoundException{

 //...

 if(theClassObj.getInterfaces()

 != null){

 intfcsVector.add(theClassObj.

 getInterfaces());

 }//end if

 //...

Listing 2

The doInterfaces() method

Listing 3 shows the beginning of the method named doInterfaces(). As mentioned above, the

behavior of this method is the primary topic for this lesson.

 void doInterfaces(){

 Vector interfaceNameVector =

 new

Vector();

Listing 3

The code in Listing 3 above declares a local variable named interfacesNameVector that will be

used to store the names of all the interfaces implemented by the target class and its superclasses.

Getting interface names

The first task of this method is to get the names of each interface implemented by each class in

the family tree as a simple list of strings. This is accomplished by the nested for loops in Listing

4.

 for(int i = 0;

 i < intfcsVector.size();i++){

 Class[] interfaceSet =

 (Class[])intfcsVector.

 elementAt(i);

 for(int j = 0;

 j < interfaceSet.length;j++){

 interfaceNameVector.add(

 interfaceSet[j].getName());

 }//end for loop on j

 }//end for loop on i

Listing 4

The data format

The code in Listing 4 is pretty straightforward once you understand how the data is stored in the

Vector referred to by intfcsVector.

Each element in that vector is a reference to an array containing references to objects of the class

Class. Each of those Class objects represents an interface implemented by one of the classes in

the family tree.

The outer for loop

During each iteration, the outer for loop

 Extracts an element containing a reference to one of those arrays

 Saves the reference in the local variable named interfaceSet

The inner for loop

During each iteration, the inner for loop

 Extracts an element from the array referred to by interfaceSet

 Gets the name of the interface represented by the Class object referred to by that element

(as a String)

 Stores a reference to that String in the Vector referred to by interfaceNameVector

Sorting the interface data

The next task is to sort the strings containing the names of the interfaces into alphabetical

order. This is accomplished by the code in Listing 5.

 Object[] interfaceNameArray =

 interfaceNameVector.toArray();

 Arrays.sort(interfaceNameArray);

Listing 5

Convert from Vector to array

The code in Listing 5 above begins by invoking the toArray() method of the Vector class. This

method returns an array of type Object containing all of the elements in the Vector in the correct

order.

Sort the array

The Arrays class provides about eighteen overloaded versions of class methods named sort()

that can be used to sort the contents of an array object.

The code in Listing 5 above uses one of the simpler versions of the sort() method to sort the

contents of the array into ascending order. When the sort() method returns, the array object

referred to by intrfaceNameArray contains the names of all of the interfaces implemented by all

of the classes in the family tree sorted in ascending order.

Eliminate duplicate names and display

It is possible that two or more of the classes in the family tree may implement the same interface,

resulting in duplicate interface names in the strings referred to by the elements in the array

referred to by interFaceNameArray.

The code in Listing 6 appends the names of each interface to the contents of the JTextArea

referred to by intfcs, eliminating any duplicate names in the process.

 if(interfaceNameArray.length > 0){

 intfcs.append(

 interfaceNameArray[0].

 toString());

 intfcs.append("\n");

 }//end if

 for(int i = 1;

 i < interfaceNameArray.length;

 i++){

 //Eliminate dup interface names

 if(!(interfaceNameArray[i].

 equals(

 interfaceNameArray[i-1]))){

 intfcs.append(

 interfaceNameArray[i].

 toString());

 intfcs.append("\n");

 }//end if

 }//end for loop

 }//end doInterfaces

Listing 6

The resulting contents of the JTextArea are displayed in the upper-right pane in Figure 1.

Summary

In this and the previous lessons, I have introduced you to a program that displays information

about the following aspects of any Java class that qualifies as a JavaBeans Component:

 Inheritance family tree of the component

 Interfaces implemented by the component

 Properties of the component

 Events multicast by the component

 Public methods exposed by the component

I have provided background information on Java introspection.

I have explained the use of an anonymous inner class that is used to instantiate an action listener

object and register it on the OK button shown in Figure 1.

I showed how the actionPerformed() method of the action listener object invokes the following

methods to obtain and display the sought-after information:

 doInheritance()

 doInterfaces()

 doProperties()

 doEvents()

 doMethods()

In this lesson, I explained the doInterfaces() method in detail. In that discussion, I showed you

how to use a simple form of the sort() method of the Arrays class to sort the interface names

into ascending alphabetic order.

I showed you how to eliminate duplicate interface names and how to display the sorted

information in a JTextArea object. That information appears in the upper-right pane of Figure

1.

What's Next?

In the next lesson, I will explain how the method named doProperties() obtains and displays

information about the properties of the target class, in alphabetical order, in the left-center output

pane in Figure 1.

In subsequent lessons, I will provide similar explanations for the other two methods in the above

list.

Complete Program Listing

A complete listing of the program is provided in Listing 7.

/*File Introspect03.java

Copyright 2000, R.G.Baldwin

Produces a GUI that displays

inheritance, interfaces, properties,

events, and methods about components,

or about any class that is a bean.

Requires JDK 1.3 or later. Otherwise,

must service the windowClosing event

to terminate the program.

Tested using JDK 1.3 under WinNT.

**************************************/

import java.io.*;

import java.beans.*;

import java.lang.reflect.*;

import java.util.*;

import java.awt.Color;

import java.awt.event.*;

import javax.swing.*;

public class Introspect03

 extends JFrame{

 private JLabel errors =

 new JLabel("Errors appear here");

 private JPanel outputPanel =

 new JPanel();

 private JPanel inputPanel =

 new JPanel();

 private JTextField targetClass =

 new JTextField(14);

 private JTextField ceilingClass =

 new JTextField(14);

 private JButton okButton =

 new JButton("OK");

 private JTextArea inher = new

 JTextArea("INHERITANCE\n",8,17);

 private JScrollPane inherPane =

 new JScrollPane(inher);

 private JTextArea intfcs = new

 JTextArea("INTERFACES\n",8,17);

 private JScrollPane intfcsPane =

 new JScrollPane(intfcs);

 private JTextArea props = new

 JTextArea("PROPERTIES\n",8,17);

 private JScrollPane propsPane =

 new JScrollPane(props);

 private JTextArea events =

 new JTextArea("EVENTS\n",8,17);

 private JScrollPane eventsPane =

 new JScrollPane(events);

 private JTextArea methods =

 new JTextArea("METHODS\n",8,17);

 private JScrollPane methodsPane =

 new JScrollPane(methods);

 private BeanInfo beanInfo;

 private Vector intfcsVector =

 new Vector();

 public static void main(

 String args[]){

 new Introspect03();

 }//end main

 public Introspect03() {//constructor

 //This require JDK 1.3 or later.

 // Otherwise service windowClosing

 // event to terminate the program.

 setDefaultCloseOperation(

 JFrame.EXIT_ON_CLOSE);

 outputPanel.setBackground(

 Color.green);

 inputPanel.setBackground(

 Color.yellow);

 outputPanel.add(inherPane);

 outputPanel.add(intfcsPane);

 outputPanel.add(propsPane);

 outputPanel.add(eventsPane);

 outputPanel.add(methodsPane);

 //Set some default values

 targetClass.setText(

 "javax.swing.JButton");

 ceilingClass.setText(

 "java.lang.Object");

 inputPanel.add(targetClass);

 inputPanel.add(ceilingClass);

 inputPanel.add(okButton);

 getContentPane().add(

 errors,"North");

 getContentPane().add(

 outputPanel,"Center");

 getContentPane().add(

 inputPanel,"South");

 setResizable(false);

 setSize(400,520);

 setTitle(

 "Copyright 2000, R.G.Baldwin");

 setVisible(true);

 //Anonymous inner class to provide

 // event handler for okButton

 okButton.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 errors.setText(

 "Errors appear here");

 inher.setText(

 "INHERITANCE\n");

 intfcs.setText(

 "INTERFACES\n");

 props.setText(

 "PROPERTIES\n");

 events.setText(

 "EVENTS\n");

 methods.setText("METHODS\n");

 try{

 Class targetClassObject =

 Class.forName(

 targetClass.getText());

 doInheritance();

 doInterfaces();

 beanInfo = Introspector.

 getBeanInfo(

 targetClassObject,

 Class.forName(

 ceilingClass.

 getText()));

 doProperties();

 doEvents();

 doMethods();

 }catch(Exception ex){

 errors.setText(

 ex.toString());}

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener

 }//end constructor

 void doInheritance()

 throws ClassNotFoundException{

 //Get and display inheritance

 // hierarchy

 Vector inherVector = new Vector();

 String theClass = targetClass.

 getText();

 Class theClassObj = null;

 Class theSuperClass = null;

 while(!(theClass.equals(

 "java.lang.Object"))){

 inherVector.add(theClass);

 theClassObj = Class.forName(

 theClass);

 theSuperClass = theClassObj.

 getSuperclass();

 //Get and save interfaces to be

 // used later

 if(theClassObj.getInterfaces()

 != null){

 intfcsVector.add(theClassObj.

 getInterfaces());

 }//end if

 theClass = theSuperClass.

 getName();

 }//end while loop

 inherVector.add(

 "java.lang.Object");

 //Display vector contents in

 // reverse order

 for(int i = 0;

 i < inherVector.size();i++){

 inher.append(

 ((String)inherVector.elementAt(

 inherVector.size() - (i+1))));

 inher.append("\n");

 }//end for loop

 }//end doInheritance

 void doInterfaces(){

 Vector interfaceNameVector =

 new Vector();

 //Interface information was stored

 // in intfcsVector earlier.

 for(int i = 0;

 i < intfcsVector.size();i++){

 Class[] interfaceSet =

 (Class[])intfcsVector.

 elementAt(i);

 for(int j = 0;

 j < interfaceSet.length;j++){

 interfaceNameVector.add(

 interfaceSet[j].getName());

 }//end for loop on j

 }//end for loop on i

 Object[] interfaceNameArray =

 interfaceNameVector.toArray();

 Arrays.sort(interfaceNameArray);

 if(interfaceNameArray.length > 0){

 intfcs.append(

 interfaceNameArray[0].

 toString());

 intfcs.append("\n");

 }//end if

 for(int i = 1;

 i < interfaceNameArray.length;

 i++){

 //Eliminate dup interface names

 if(!(interfaceNameArray[i].

 equals(

 interfaceNameArray[i-1]))){

 intfcs.append(

 interfaceNameArray[i].

 toString());

 intfcs.append("\n");

 }//end if

 }//end for loop

 }//end doInterfaces

 void doProperties(){

 Vector propVector = new Vector();

 PropertyDescriptor[] propDescrip =

 beanInfo.

 getPropertyDescriptors();

 for (int i = 0;

 i < propDescrip.length; i++) {

 PropClass propObj =

 new PropClass();

 propObj.setName(propDescrip[i].

 getName());

 propObj.setType("" +

 propDescrip[i].

 getPropertyType());

 propVector.add(propObj);

 }//end for-loop

 Object[] propArray = propVector.

 toArray();

 Arrays.sort(

 propArray,new PropClass());

 for(int i = 0;

 i < propArray.length;i++){

 props.append(propArray[i].

 toString());

 props.append("\n");

 }//end for loop

 }//end doProperties

 void doEvents(){

 Vector eventVector = new Vector();

 EventSetDescriptor[] evSetDescrip

=

 beanInfo.

 getEventSetDescriptors();

 for (int i = 0;

 i < evSetDescrip.length; i++){

 EventClass eventObj =

 new EventClass();

 eventObj.setName(evSetDescrip[i].

 getName());

 MethodDescriptor[] methDescrip =

 evSetDescrip[i].

 getListenerMethodDescriptors();

 for (int j = 0;

 j < methDescrip.length; j++) {

 eventObj.setListenerMethod(

 methDescrip[j].getName());

 }//end for-loop

 eventVector.add(eventObj);

 }//end for-loop

 Object[] eventArray = eventVector.

 toArray();

 Arrays.sort(

 eventArray,new EventClass());

 for(int i = 0;

 i < eventArray.length;i++){

 events.append(eventArray[i].

 toString());

 events.append("\n");

 }//end for loop

 }//end doEvents

 void doMethods(){

 Vector methVector = new Vector();

 MethodDescriptor[] methDescrip =

 beanInfo.getMethodDescriptors();

 for (int i = 0;

 i < methDescrip.length; i++) {

 methVector.add(

 methDescrip[i].getName());

 }//end for-loop

 Object[] methodArray =

 methVector.toArray();

 Arrays.sort(methodArray);

 if(methodArray.length > 0){

 methods.append(

 methodArray[0].toString());

 methods.append("\n");

 }//end if

 for(int i = 1;

 i < methodArray.length;i++){

 //Eliminate dup method names

 if(!(methodArray[i].equals(

 methodArray[i-1]))){

 methods.append(

 methodArray[i].toString());

 methods.append("\n");

 }//end if

 }//end for loop

 }//end doMethods

//===================================//

//This inner class is used to

// encapsulate name and type

// information about properties. It

// also serves as a class from which a

// Comparator object can be

// instantiated to assist in sorting

// by name.

class PropClass implements Comparator{

 private String name;

 private String type;

 public void setName(String name){

 this.name = name;

 }//end setName

 public String getName(){

 return name;

 }//end getName

 public void setType(String type){

 this.type = type;

 }//end setType

 public String toString(){

 return(name + "\n " + type);

 }//end toString

 public int compare(

 Object o1, Object o2){

 return ((PropClass)o1).getName().

 toUpperCase().compareTo(

 ((PropClass)o2).getName().

 toUpperCase());

 }//end compare

 public boolean equals(Object obj){

 return this.getName().equals(

 ((PropClass)obj).getName());

 }//end equals

}//end class PropClass

//===================================//

//This inner class is used to

// encapsulate name and handler

// information about events. It also

// serves as a class from which a

// Comparator object can be

// instantiated to assist in sorting

// by name.

class EventClass implements Comparator{

 private String name;

 private Vector lstnrMethods =

 new Vector();

 public void setName(String name){

 this.name = name;

 }//end setName

 public String getName(){

 return name;

 }//end getName

 public void setListenerMethod(

 String lstnrMethod){

 lstnrMethods.add(lstnrMethod);

 }//end setType

 public String toString(){

 String theString = name;

 for(int i = 0;

 i < lstnrMethods.size();i++){

 theString = theString + "\n " +

 lstnrMethods.elementAt(i);

 }//end for loop

 return theString;

 }//end toString

 public int compare(

 Object o1, Object o2){

 return ((EventClass)o1).getName().

 toUpperCase().compareTo(

 ((EventClass)o2).getName().

 toUpperCase());

 }//end compare

 public boolean equals(Object obj){

 return this.getName().equals(

 ((EventClass)obj).getName());

 }//end equals

}//end EventClass inner class

}//end controlling class Introspect03

Listing 7

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

