
Swing from A to Z: Analyzing Swing Components, Part 3,

Construction

Baldwin has previously introduced you to a very useful program that displays information about

any Java component, including inheritance, interfaces, properties, events, and methods. In this

lesson, Baldwin explains the constructor for the GUI using JFrame, JPanel, JTextArea,

JScrollPane, JTextField, JButton, and JLabel components.

Published: April 9, 2001

By Richard G. Baldwin

Java Programming, Lecture Notes # 1064

 Preface

 Preview

 Introduction

 Sample Program

 Interesting Code Fragments

 Summary

 What's Next

 Complete Program Listing

Preface

This series of lessons entitled Swing from A to Z, discusses the capabilities and features of Swing

in quite a lot of detail. This series is intended for those persons who need to understand Swing at

a detailed level.

This is the third lesson in a miniseries discussing the use of introspection for analyzing Swing

components. The first lesson in this miniseries was entitled Swing from A to Z: Analyzing

Swing Components, Part 1, Concepts. (You will find links to all of the lessons in the miniseries

at the following web site.)

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Recommended supplementary reading

In an earlier lesson entitled Alignment Properties and BoxLayout, Part 1, I recommended a list

of Swing tutorials for you to study prior to embarking on a study of this series of lessons.

Java1060.htm
Java1060.htm
http://www.geocities.com/Athens/7077/scoop/onjava.html

The lessons identified on that list will introduce you to the use of Swing while avoiding much of

the detail included in this series.

Where are the lessons located?

You will find those lessons published at Gamelan.com. However, as of the date of this writing,

Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and sometimes my

lessons are difficult to locate there. You will find a consolidated index at Baldwin's Java

Programming Tutorials.

The index on my site provides links to the lessons at Gamelan.com.

Preview

Lots of documentation is required

You need access to lots of documentation when programming in Java. The lessons in this

miniseries discuss a very useful Java program that serves as a supplement to the Sun

documentation.

A streamlined approach

In this miniseries, I will show you how to write a Java program that provides information about

Swing and AWT components at the click of a button. The program displays:

 Inheritance family tree of the component

 Interfaces implemented by the component

 Properties of the component

 Events multicast by the component

 Public methods exposed by the component

Introspection

I provided quite a lot of background information on introspection in the previous lesson entitled

Swing from A to Z: Analyzing Swing Components, Part 2, GUI Setup. Introspection can be

used to extract information about any class that qualifies as a JavaBeans Component. This

includes all of the Swing and AWT components. It also includes many of the other classes in

the standard library as well.

Program output

Figure 1 is a screen shot showing the program output after you start the program and click the

OK button.

http://gamelan.earthweb.com/dlink.index-jhtml.72.1082.-.43.jhtml
http://www.geocities.com/Athens/7077/scoop/onjava.html
Java1062.htm

Figure 1. Screen shot showing program output.

The previous lesson explained the target class and the ceiling class, which are specified in the

two text fields at the bottom of the GUI.

The program displays five kinds of information for the target class in scrollable panels.

Error messages are displayed in the gray panel at the top of the GUI.

Analysis of a JButton component

The screen shot of Figure 1 displays information about a JButton component, using all of the

superclasses except the Object class.

In the previous lesson, I walked you through the code for this program, up to, but not including

the constructor.

Along the way, I discussed how to combine and use objects of the JTextArea and JScrollPane

classes. These are the white rectangular output panes in the GUI of Figure 1.

I will discuss the constructor in this lesson. Subsequent lessons will explain other aspects of the

program.

Introduction

The Class class and the Introspector class

The previous lesson provided quite a lot of information regarding the use of the Class class and

the Introspector class, and how they are used to achieve the objectives of this program.

The forName() and getBeanInfo() methods

This included a discussion of the forName() method of the Class class, and the getBeanInfo()

method of the Introspector class, both of which are critical to the success of the program.

Superclasses and interfaces

That lesson explained that information about the superclass of a target class and the interfaces

that it implements can be obtained through use of a Class object that represents the target class.

Properties, events, and methods

It also explained that an object of the interface type BeanInfo can be used to obtain other

important information about the properties, events, and methods of a target class.

Sample Program

A complete listing of this program, named Introspect03 is provided near the end of the

lesson. It is provided here so that you can copy, compile, and begin using it even before you

have an opportunity to learn exactly how it works.

Interesting Code Fragments

I will break this program down and discuss it in fragments.

The previous lesson discussed a large number of code fragments containing instance variables

and the main() method. It explained the purpose of most of the instance variables as well as the

behavior of the main() method.

This lesson will discuss the constructor for the controlling class, which is also the constructor for

the GUI.

The controlling class

Just to refresh your memory, Listing 1 shows the declaration for the controlling class. The

controlling class extends JFrame. Therefore, an object of the controlling class is a JFrame

object, and is the GUI for the program.

public class Introspect03

 extends

JFrame{

Listing 1

The constructor

Listing 2 shows the beginning of the constructor for the GUI.

 public Introspect03() {//constructor

 setDefaultCloseOperation(

 JFrame.EXIT_ON_CLOSE);

Listing 2

The setDefaultCloseOperation() method

The boldface statement in Listing 2 shows a capability that was added in JDK 1.3. The method

named setDefaultCloseOperation makes it possible to specify the operation that will be

performed by default when the user initiates a "close" on the JFrame (clicks the X-button in the

upper right, selects Close from the menu produced by the control box in the upper left, or presses

Alt+F4).

As used in this program, the code in Listing 2 causes the program to terminate when the user

initiates a "close" on the JFrame.

Parameters to setDefaultCloseOperation() method

If you use this method, you must specify one of the following choices:

 DO_NOTHING_ON_CLOSE (defined in the interface named WindowConstants,

implemented by JFrame): Don't do anything; require the program to handle the operation

in the windowClosing method of a registered WindowListener object.

 HIDE_ON_CLOSE (defined in the interface named WindowConstants): Automatically

hide the frame after invoking any registered WindowListener objects.

 DISPOSE_ON_CLOSE (defined in the interface named WindowConstants):

Automatically hide and dispose the frame after invoking any registered WindowListener

objects.

 EXIT_ON_CLOSE (defined in JFrame): Exit the application using the System exit

method. Use this only in applications.

defaultCloseOperation is a property

Note that this method is a property setter method. The value of the defaultCloseOperation

property is set to HIDE_ON_CLOSE by default.

Using JDK 1.2

Since this capability was added in JDK 1.3, if you attempt to compile this program with an

earlier version of the JDK and Swing, you will need to remove this statement. In addition, you

will need to handle the termination operation in the windowClosing method of a registered

WindowListener object.

Setting background colors

The code in Listing 3 sets the background color of the JPanel in the Center position of the

JFrame to green, and sets the background color of the JPanel in the South position to yellow.

 outputPanel.setBackground(

 Color.green);

 inputPanel.setBackground(

 Color.yellow);

Listing 3

Placing the output panes

The code in Listing 4 places the five output JScrollPane objects in the JPanel object referred to

by outputPanel in the Center of the JFrame.

 outputPanel.add(inherPane);

 outputPanel.add(intfcsPane);

 outputPanel.add(propsPane);

 outputPanel.add(eventsPane);

 outputPanel.add(methodsPane);

Listing 4

The default layout manager for a JPanel is FlowLayout with center alignment. The

combination of the size of the panel and the sizes of the panes results in the layout shown in

Figure 1. (If you modify the sizes, you will see a different layout.)

Could be larger

I purposely forced this GUI to be rather small to make it fit in this publication format. You may

find it useful to increase the size of the JFrame and the size of each of the JTextField objects in

order to produce larger viewable areas.

Set some default classes

The code in Listing 5 sets default values for the target class and ceiling class that appear when

the GUI first appears on the screen. You may want to remove them entirely, or set them to

different default values.

 targetClass.setText(

 "javax.swing.JButton");

 ceilingClass.setText(

 "java.lang.Object");

Listing 5

Placing the input components

The code in Listing 6 places the two input JTextField objects and the JButton object in the

JPanel object in the South position in the GUI. Again, they are placed according to the default

FlowLayout of the JPanel object.

 inputPanel.add(targetClass);

 inputPanel.add(ceilingClass);

 inputPanel.add(okButton);

Listing 6

Placing panels in the GUI

The code in Listing 7 places the three JPanel objects in the North, Center, and South positions of

the JFrame object, according to the default layout manager, which is BorderLayout.

 getContentPane().add(

 errors,"North");

 getContentPane().add(

 outputPanel,"Center");

 getContentPane().add(

 inputPanel,"South");

Listing 7

Setting GUI properties

The code in Listing 8 sets the values for several properties of the JFrame object.

 setResizable(false);

 setSize(400,520);

 setTitle(

 "Copyright 2000,

R.G.Baldwin");

 setVisible(true);

Listing 8

You might want to note in particular that passing false to the setResizable() method prevents the

user from being able to change the size of the GUI.

An anonymous action listener

Note that we are still discussing code in the constructor for the GUI.

Listing 9 shows the beginning of an anonymous inner class that registers an anonymous action

listener object on the JButton shown at the bottom of the GUI in Figure 1.

(If you are not familiar with the cryptic syntax of anonymous inner classes, you can find

information on that topic in earlier lessons on my web site.)

 okButton.addActionListener(

 new ActionListener(){

Listing 9

Let me paraphrase the cryptic code in Listing 9 as follows:

This code instantiates an object from an unnamed class, which implements the ActionListener

interface, and registers that object as a listener object on the JButton referred to by the reference

variable named okButton.

The actionPerformed() method

Because this object implements the ActionListener interface, it must provide a concrete

definition of the callback method named actionPerformed(). The code in Listing 10 begins the

definition of that method.

 public void actionPerformed(

 ActionEvent e){

 errors.setText(

 "Errors appear here");

 inher.setText(

 "INHERITANCE\n");

 intfcs.setText(

 "INTERFACES\n");

 props.setText(

 "PROPERTIES\n");

 events.setText(

 "EVENTS\n");

 methods.setText("METHODS\n");

http://www.geocities.com/Athens/7077/scoop/onjava.html

Listing 10

Initializing the output

The actionPerformed() method is invoked whenever the user clicks the OK button on the GUI.

As shown in Listing 10, the first thing that the method does is to reinitialize the text in the gray

error panel and the five output panes. This is in preparation for getting and providing

information in those panes.

Getting a Class object

As I mentioned in an earlier section, a Class object can be used to learn about the superclass of

the class represented by the object, and the interfaces implemented by the class that the object

represents.

Also, a Class object is required as the seed for a BeanInfo object from which other information

about the target class can be obtained.

The code in Listing 11 begins by getting a Class object to represent the target class whose name

has been entered into the input text field by the user.

 try{

 Class targetClassObject =

 Class.forName(

 targetClass.getText());

Listing 11

How do you get a Class object?

There are three ways to get a Class object that represents another class.

The getClass() method

One approach is to invoke the class method named getClass(), which is defined in the class

named Object, passing a reference to an object as a parameter. This method returns a reference

to a Class object that represents the class from which the object parameter was instantiated.

This is not the approach that I used in this program.

Using type.class

A Class object can represent primitive types as well as class types. The following syntax will

get and save a reference to a Class object that represents the primitive int type:

Class targetClassObject = int.class;

This approach can also be used with class types as well. This is not the approach that I used in

this program.

The forName() method

The third approach is to invoke the class method named forName() of the class named Class,

passing the name of the target class as a String parameter. This method returns the Class object

associated with the class or interface with the given string name. This is the approach that I used

in this program.

The code in Listing 11 uses the forName method to get the Class object representing the target

class and stores a reference to that object in the reference variable named targetClassObject.

Using the Class object

Once the Class object is available, it can be used to obtain information about the inheritance

hierarchy and the interfaces implemented by the target class and its superclasses. That is

accomplished in the two method calls shown in Listing 12.

 doInheritance();

 doInterfaces();

Listing 12

I will discuss these two methods in detail in a subsequent lesson.

Getting the BeanInfo object

The code in Listing 13 invokes the getBeanInfo() method of the Introspector class to get a

BeanInfo object. It stores the reference to that object in the reference variable named beanInfo.

beanInfo = Introspector.getBeanInfo(

 targetClassObject,

 Class.forName(

 ceilingClass.getText()));

Listing 13

Two parameters are passed to the getBeanInfo() method in Listing 13. (I colored the first one

blue and the second one red to make them easier to separate visually.)

The target class parameter

The first parameter is a reference to a Class object representing the target class. This object was

instantiated earlier based on the String name of the target class extracted from the input text field

at the lower left of the GUI in Figure 1.

The ceiling class parameter

The second parameter is a reference to a Class object representing the ceiling class. That Class

object is instantiated by the red code in Listing 13. That code gets the String name from the

input text field at the lower right in the GUI, and passes that name to the forName() method to

get a Class object representing the ceiling class.

Using the BeanInfo object

The bean info object is used by the three methods invoked in Listing 14 to get information on

properties, events, and methods, and to display that information in the output panes in the green

area of the GUI in Figure 1.

 doProperties();

 doEvents();

 doMethods();

Listing 14

I will discuss those methods in detail in subsequent lessons.

Displaying errors

You may have noticed that much of the code discussed above is contained in a try-catch block.

The code in Listing 15 catches any exceptions thrown in this block of code and displays a

minimal amount of information about the exception in the gray panel at the top of the GUI in

figure 1.

 }catch(Exception ex){

 errors.setText(

 ex.toString());}

Listing 15

Tidying up

Finally, the code in Listing 16 contains the curly braces, parentheses, and semicolon required to

signal the end of the actionPerformed() method, the ActionListener implementation, and the

addActionListener() method. All of this is a part of the cryptic syntax involving the anonymous

inner listener class.

In addition, Listing 16 contains the curly brace that signals the end of the constructor.

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener

 }//end constructor

Listing 16

Summary

In the lessons in this miniseries, I have introduced you to a very useful program that can be used

to quickly obtain information about the following aspects of any Java class that qualifies as a

JavaBeans component:

 Inheritance family tree of the component

 Interfaces implemented by the component

 Properties of the component

 Events multicast by the component

 Public methods exposed by the component

I have provided screen shots to show you how the program works in practice, and I have

provided a complete listing of the program so that you can begin using it now.

I have provided quite a lot of background information on Java introspection, and have explained

how introspection is used to achieve the objectives of this program.

I have walked you through the early portions of the code, explaining the purpose of a large

number of instance variables and the behavior of the main() method.

Along the way, I discussed how to combine and use objects of the JTextArea and JScrollPane

classes.

In this lesson, I walked you through the constructor and introduced you to the new JDK 1.3

capability provided by the method named setDefaultCloseOperation().

I discussed the actual code that produced the layout and structure of the GUI shown in Figure

1. I also explained the use of an anonymous inner class that is used to instantiate an action

listener object and register it on the OK button shown in Figure 1.

I explained how this listener object invokes the forName() and getBeanInfo() methods that

produce the Class and BeanInfo objects required to achieve the objectives of this program.

I showed how the actionPerformed() method of the action listener object invokes the following

methods to obtain and display the sought-after information about the target component:

 doInheritance()

 doInterfaces()

 doProperties()

 doEvents()

 doMethods()

What's Next?

In the next lesson, I will explain how the method named doInheritance() obtains and displays

inheritance information about the target class in the upper left output pane in Figure 1.

In subsequent lessons, I will provide similar explanations for the other four methods in the above

list.

Complete Program Listing

A complete listing of the program is provided in Listing 17.

/*File Introspect03.java

Copyright 2000, R.G.Baldwin

Produces a GUI that displays

inheritance, interfaces, properties,

events, and methods about components,

or about any class that is a bean.

Requires JDK 1.3 or later. Otherwise,

must service the windowClosing event

to terminate the program.

Tested using JDK 1.3 under WinNT.

**************************************/

import java.io.*;

import java.beans.*;

import java.lang.reflect.*;

import java.util.*;

import java.awt.Color;

import java.awt.event.*;

import javax.swing.*;

public class Introspect03

 extends JFrame{

 private JLabel errors =

 new JLabel("Errors appear here");

 private JPanel outputPanel =

 new JPanel();

 private JPanel inputPanel =

 new JPanel();

 private JTextField targetClass =

 new JTextField(14);

 private JTextField ceilingClass =

 new JTextField(14);

 private JButton okButton =

 new JButton("OK");

 private JTextArea inher = new

 JTextArea("INHERITANCE\n",8,17);

 private JScrollPane inherPane =

 new JScrollPane(inher);

 private JTextArea intfcs = new

 JTextArea("INTERFACES\n",8,17);

 private JScrollPane intfcsPane =

 new JScrollPane(intfcs);

 private JTextArea props = new

 JTextArea("PROPERTIES\n",8,17);

 private JScrollPane propsPane =

 new JScrollPane(props);

 private JTextArea events =

 new JTextArea("EVENTS\n",8,17);

 private JScrollPane eventsPane =

 new JScrollPane(events);

 private JTextArea methods =

 new JTextArea("METHODS\n",8,17);

 private JScrollPane methodsPane =

 new JScrollPane(methods);

 private BeanInfo beanInfo;

 private Vector intfcsVector =

 new Vector();

 public static void main(

 String args[]){

 new Introspect03();

 }//end main

 public Introspect03() {//constructor

 //This require JDK 1.3 or later.

 // Otherwise service windowClosing

 // event to terminate the program.

 setDefaultCloseOperation(

 JFrame.EXIT_ON_CLOSE);

 outputPanel.setBackground(

 Color.green);

 inputPanel.setBackground(

 Color.yellow);

 outputPanel.add(inherPane);

 outputPanel.add(intfcsPane);

 outputPanel.add(propsPane);

 outputPanel.add(eventsPane);

 outputPanel.add(methodsPane);

 //Set some default values

 targetClass.setText(

 "javax.swing.JButton");

 ceilingClass.setText(

 "java.lang.Object");

 inputPanel.add(targetClass);

 inputPanel.add(ceilingClass);

 inputPanel.add(okButton);

 getContentPane().add(

 errors,"North");

 getContentPane().add(

 outputPanel,"Center");

 getContentPane().add(

 inputPanel,"South");

 setResizable(false);

 setSize(400,520);

 setTitle(

 "Copyright 2000, R.G.Baldwin");

 setVisible(true);

 //Anonymous inner class to provide

 // event handler for okButton

 okButton.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 errors.setText(

 "Errors appear here");

 inher.setText(

 "INHERITANCE\n");

 intfcs.setText(

 "INTERFACES\n");

 props.setText(

 "PROPERTIES\n");

 events.setText(

 "EVENTS\n");

 methods.setText("METHODS\n");

 try{

 Class targetClassObject =

 Class.forName(

 targetClass.getText());

 doInheritance();

 doInterfaces();

 beanInfo = Introspector.

 getBeanInfo(

 targetClassObject,

 Class.forName(

 ceilingClass.

 getText()));

 doProperties();

 doEvents();

 doMethods();

 }catch(Exception ex){

 errors.setText(

 ex.toString());}

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener

 }//end constructor

 void doInheritance()

 throws ClassNotFoundException{

 //Get and display inheritance

 // hierarchy

 Vector inherVector = new Vector();

 String theClass = targetClass.

 getText();

 Class theClassObj = null;

 Class theSuperClass = null;

 while(!(theClass.equals(

 "java.lang.Object"))){

 inherVector.add(theClass);

 theClassObj = Class.forName(

 theClass);

 theSuperClass = theClassObj.

 getSuperclass();

 //Get and save interfaces to be

 // used later

 if(theClassObj.getInterfaces()

 != null){

 intfcsVector.add(theClassObj.

 getInterfaces());

 }//end if

 theClass = theSuperClass.

 getName();

 }//end while loop

 inherVector.add(

 "java.lang.Object");

 //Display vector contents in

 // reverse order

 for(int i = 0;

 i < inherVector.size();i++){

 inher.append(

 ((String)inherVector.elementAt(

 inherVector.size() - (i+1))));

 inher.append("\n");

 }//end for loop

 }//end doInheritance

 void doInterfaces(){

 Vector interfaceNameVector =

 new Vector();

 //Interface information was stored

 // in intfcsVector earlier.

 for(int i = 0;

 i < intfcsVector.size();i++){

 Class[] interfaceSet =

 (Class[])intfcsVector.

 elementAt(i);

 for(int j = 0;

 j < interfaceSet.length;j++){

 interfaceNameVector.add(

 interfaceSet[j].getName());

 }//end for loop on j

 }//end for loop on i

 Object[] interfaceNameArray =

 interfaceNameVector.toArray();

 Arrays.sort(interfaceNameArray);

 if(interfaceNameArray.length > 0){

 intfcs.append(

 interfaceNameArray[0].

 toString());

 intfcs.append("\n");

 }//end if

 for(int i = 1;

 i < interfaceNameArray.length;

 i++){

 //Eliminate dup interface names

 if(!(interfaceNameArray[i].

 equals(

 interfaceNameArray[i-1]))){

 intfcs.append(

 interfaceNameArray[i].

 toString());

 intfcs.append("\n");

 }//end if

 }//end for loop

 }//end doInterfaces

 void doProperties(){

 Vector propVector = new Vector();

 PropertyDescriptor[] propDescrip =

 beanInfo.

 getPropertyDescriptors();

 for (int i = 0;

 i < propDescrip.length; i++) {

 PropClass propObj =

 new PropClass();

 propObj.setName(propDescrip[i].

 getName());

 propObj.setType("" +

 propDescrip[i].

 getPropertyType());

 propVector.add(propObj);

 }//end for-loop

 Object[] propArray = propVector.

 toArray();

 Arrays.sort(

 propArray,new PropClass());

 for(int i = 0;

 i < propArray.length;i++){

 props.append(propArray[i].

 toString());

 props.append("\n");

 }//end for loop

 }//end doProperties

 void doEvents(){

 Vector eventVector = new Vector();

 EventSetDescriptor[] evSetDescrip =

 beanInfo.

 getEventSetDescriptors();

 for (int i = 0;

 i < evSetDescrip.length; i++){

 EventClass eventObj =

 new EventClass();

 eventObj.setName(evSetDescrip[i].

 getName());

 MethodDescriptor[] methDescrip =

 evSetDescrip[i].

 getListenerMethodDescriptors();

 for (int j = 0;

 j < methDescrip.length; j++) {

 eventObj.setListenerMethod(

 methDescrip[j].getName());

 }//end for-loop

 eventVector.add(eventObj);

 }//end for-loop

 Object[] eventArray = eventVector.

 toArray();

 Arrays.sort(

 eventArray,new EventClass());

 for(int i = 0;

 i < eventArray.length;i++){

 events.append(eventArray[i].

 toString());

 events.append("\n");

 }//end for loop

 }//end doEvents

 void doMethods(){

 Vector methVector = new Vector();

 MethodDescriptor[] methDescrip =

 beanInfo.getMethodDescriptors();

 for (int i = 0;

 i < methDescrip.length; i++) {

 methVector.add(

 methDescrip[i].getName());

 }//end for-loop

 Object[] methodArray =

 methVector.toArray();

 Arrays.sort(methodArray);

 if(methodArray.length > 0){

 methods.append(

 methodArray[0].toString());

 methods.append("\n");

 }//end if

 for(int i = 1;

 i < methodArray.length;i++){

 //Eliminate dup method names

 if(!(methodArray[i].equals(

 methodArray[i-1]))){

 methods.append(

 methodArray[i].toString());

 methods.append("\n");

 }//end if

 }//end for loop

 }//end doMethods

//===================================//

//This inner class is used to

// encapsulate name and type

// information about properties. It

// also serves as a class from which a

// Comparator object can be

// instantiated to assist in sorting

// by name.

class PropClass implements Comparator{

 private String name;

 private String type;

 public void setName(String name){

 this.name = name;

 }//end setName

 public String getName(){

 return name;

 }//end getName

 public void setType(String type){

 this.type = type;

 }//end setType

 public String toString(){

 return(name + "\n " + type);

 }//end toString

 public int compare(

 Object o1, Object o2){

 return ((PropClass)o1).getName().

 toUpperCase().compareTo(

 ((PropClass)o2).getName().

 toUpperCase());

 }//end compare

 public boolean equals(Object obj){

 return this.getName().equals(

 ((PropClass)obj).getName());

 }//end equals

}//end class PropClass

//===================================//

//This inner class is used to

// encapsulate name and handler

// information about events. It also

// serves as a class from which a

// Comparator object can be

// instantiated to assist in sorting

// by name.

class EventClass implements Comparator{

 private String name;

 private Vector lstnrMethods =

 new Vector();

 public void setName(String name){

 this.name = name;

 }//end setName

 public String getName(){

 return name;

 }//end getName

 public void setListenerMethod(

 String lstnrMethod){

 lstnrMethods.add(lstnrMethod);

 }//end setType

 public String toString(){

 String theString = name;

 for(int i = 0;

 i < lstnrMethods.size();i++){

 theString = theString + "\n " +

 lstnrMethods.elementAt(i);

 }//end for loop

 return theString;

 }//end toString

 public int compare(

 Object o1, Object o2){

 return ((EventClass)o1).getName().

 toUpperCase().compareTo(

 ((EventClass)o2).getName().

 toUpperCase());

 }//end compare

 public boolean equals(Object obj){

 return this.getName().equals(

 ((EventClass)obj).getName());

 }//end equals

}//end EventClass inner class

}//end controlling class Introspect03

Listing 17

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

