
Swing from A to Z: Demystifying Glue and Struts, Part 1

Published December 4, 2000

By Richard G. Baldwin

Java Programming, Lecture Notes # 1034

 Preface

 Preview

 Introduction

 Sample Program

 Summary

 What's Next?

Preface

This series of lessons entitled Swing from A to Z, discusses the capabilities and features of Swing

in quite a lot of detail. This series is intended for those persons who need to understand Swing at

a detailed level.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures while you are

reading about them without losing your place.

Recommended supplementary reading

In the lesson entitled Alignment Properties and BoxLayout, Part 1, I recommended a list of

Swing tutorials for you to study prior to embarking on a study of this set of lessons.

The lessons identified on that list will introduce you to the use of Swing while avoiding much of

the detail included in this series.

Where are they located?

You will find those lessons published at Gamelan.com. However, as of the date of this writing,

Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and sometimes my

lessons are difficult to locate there. You will find a consolidated index at Baldwin's Java

Programming Tutorials.

The index on my site provides links to the lessons at Gamelan.com.

mailto:baldwin.richard@iname.com
http://gamelan.earthweb.com/dlink.index-jhtml.72.1082.-.43.jhtml
http://www.geocities.com/Athens/7077/scoop/onjava.html

Preview

In this lesson, I will show you some screen shots from a program that is designed to take the

mystery out of glue and struts. This program doesn't use glue and struts as produced by the

factory methods that were illustrated in the lesson entitled Glue, Struts, and BoxLayout. Instead,

this program makes use of invisible spacer components of my own design that behave similarly

to glue and struts but provide more capability.

Introduction

In the lesson entitled Alignment Properties and BoxLayout, Part 1, I introduced you to the

BoxLayout manager. I will use BoxLayout in the sample program discussed in this lesson.

The mystery of glue and struts

In another lesson entitled Glue, Struts, and BoxLayout, I introduced you to the use of glue and

struts. I don't know about you, but when I first encountered the use of glue and struts, they

seemed pretty mysterious to me. However, we didn't have the tools to take the mystery out of

glue and struts until we studied the size properties in the lesson entitled Minimum, Maximum,

and Preferred Sizes.

My promise to you

In the lesson entitled Minimum, Maximum, and Preferred Sizes, I promised you that this lesson

would take the mystery out of glue and struts. I also promised that we would have some fun in

the process. Hopefully I can keep that promise.

What are minimum, maximum, and preferred sizes?

All components that extend JComponent inherit the following three properties that support the

use of layout managers:

 preferredSize

 minimumSize

 maximumSize

Why are they needed?

Whenever the size of a container changes, the layout manager may use these properties to change

component sizes in accordance with the wishes of the programmer.

Different layout managers do different things

Different layout managers use these properties in different ways. The BoxLayout manager

honors the width dimension of all three properties for components placed on a horizontal

line. (It probably also honors the height dimension for components placed on a vertical line, but

we haven't demonstrated that.)

Sample Program

This sample program, named Swing20 is designed to take the mystery out of glue and struts as

used with BoxLayout. I will show you some screen shots produced by this program in this

lesson, and will get into the details of the code in the next lesson.

Must resize to see the effect

This program illustrates the use of invisible fixed-width and elastic spacers to control the

separation between components. In order to see the effect of the spacers, you must manually

resize the JFrame object to make it larger and smaller.

BoxLayout can be used with many containers

This program also demonstrates that BoxLayout can be used with containers other than Box,

(even containers that might not ordinarily be used for this purpose).

Let's make things interesting

Just to make things interesting, this program places a JButton on the content pane in a JFrame

and uses that JButton as a container for several other components. (You should recall that a

JButton, like most components in Swing, is a container.)

Why use a JButton as a container?

I'm not suggesting that a JButton has any particular usefulness when used as a container in this

fashion. I simply elected to use it to demonstrate that BoxLayout can be used with a variety of

different container types.

A JButton with a BoxLayout manager

The layout manager for the JButton is set to BoxLayout.

BoxLayout allows you to specify whether the components will be arranged on a horizontal line,

or on a vertical line. In this case, a horizontal line placement was specified.

What does it look like?

Three green JButton objects and two yellow JLabel objects were placed in the large JButton as

shown in the screen shot identified as Figure 1.

Figure 1. A screen shot at startup

Also contains invisible spacer components

In addition, several invisible spacers were placed between the buttons and the labels as shown in

Figure 1.

Custom-designed spacers were used

However, in this case, the invisible spacers were not glue and struts as described in the lesson

entitled Glue, Struts, and BoxLayout. Rather, the invisible spacers were custom designed using

two different approaches.

Two of these new spacer types have more capability than the standard glue and struts discussed

in the lesson entitled Glue, Struts, and BoxLayout.

Is this a better alternative?

I'm not necessarily presenting this as a better alternative to glue and struts. Rather, I am

presenting it as a way for you to better understand the inner-workings of glue and struts.

Three different types of spacers

When we get to the program code in the next lesson, you will see that three different types of

spacers were created and used:

 Fixed Spacer

 Elastic Spacer

 Combination Spacer

How do they behave?

The fixed spacers behave in a manner very similar to struts when used with BoxLayout.

The elastic spacers behave like glue, except that you can specify the maximum amount of

"stretch". When the elastic spacers hit that limit, they won't stretch any more.

The combination spacers combine the behavior of fixed spacers and elastic spacers in a single

spacer object.

Fixed width spacers having different widths

Now, please refer back to Figure 1. This is the image that first appears on the screen when you

start the program (before any manual resizing takes place).

Space increases from left to right

Note that each pair of components is separated by progressively more space moving from left to

right across the image. The components were separated by fixed-width spacers having the

following widths: 3, 4, 5, and 6 pixels.

What if you make it narrower?

Now refer to Figure 2. This screen shot shows the behavior of the BoxLayout manager with this

set of components when the width of the container is manually decreased.

Figure 2. A screen shot after making the Frame narrower.

Spaces don't decrease

As you would expect from your studies on glue and struts, since the invisible spacers between

the button and label components have a fixed width, the space between them doesn't decrease.

Right-most component gets clipped

Rather, the visible components remain the same distance apart, and the right-most component

gets clipped when the container is no longer wide enough to accommodate the total width of the

buttons, the labels, and the fixed-width spacers.

An interesting effect

There is one interesting aspect of Figure 2 that you may have noticed. Even though the large

JButton object is the actual container, it appears that the right-most component is not clipped at

the "edge" of the large JButton. Rather, it is clipped at the edge of the client area of the

JFrame.

An artifact of the 3D rendering

This is an artifact of the three-dimensional rendering of the large JButton. The outer edge of the

JButton is at the inner edge of the client area of the JFrame (inside its borders). All of the

decorations that cause the JButton to exhibit the optical illusion of being three-dimensional are

inside its outer edges.

Clipped at the actual outer edge

The right-most component is clipped at the actual outer edge of the JButton, but this is beyond

the "apparent" edge of the three-dimensional representation of the JButton.

Can demonstrate using Metal look and feel

You can demonstrate this by modifying the program (discussed in a subsequent lesson) to cause

it to use a Metal look and feel instead of a Windows look and feel. A JButton in the Metal look

and feel has very little three-dimensional decoration, and the clipping location appears closer to

where you would expect to see it.

What if you increase the width?

The screen shot in Figure 3 shows what happens when you increase the width of the JFrame,

and hence increase the width of the large JButton serving as a container for the other

components.

Figure 3. A screen shot after making the Frame wider.

Elastic spacers were used

Elastic spacers were inserted on both sides of the button labeled b2, and on the left side of the

button labeled b3.

Can only stretch so far

However, unlike glue, these spacers have an upper limit on their elasticity.

Going from left to right, the upper limit is: 6, 12, and 24 pixels respectively.

The maximum stretch limits

In other words, the first elastic spacer on the left is allowed to stretch to a maximum width of six

pixels. Each of the other elastic spacers is allowed to stretch twice as far as the elastic spacer to

its left.

As you can see in Figure 3, the space between each pair of components is approximately (but not

exactly) twice the width of the space to its left. (I will have more to say about this in the next

lesson.)

What about the big space on the right?

I did not insert a spacer on the right-hand side of b3. However, the space on the right-hand side

of b3 is the largest of all. Furthermore, it continues to grow as the width of the JFrame

continues to increase. This indicates that the elastic spacers have all reached their limit. The

remaining required space is being provided on the right end of the line by the BoxLayout

manager.

A single combination spacer

When we get to a discussion of the program code, you will see that a single spacer of the

Combination Spacer type was inserted to the left of the button labeled b3. This single spacer

component had a fixed minimum width of six pixels and a maximum width of 24 pixels.

A single fixed spacer

A single fixed-width spacer component (without an Elastic Spacer) was inserted to the right of

the button labeled b1. This component had a fixed width of three pixels. Hence, the space

between b1 and L1 did not increase when the width of the JFrame was manually increased.

Two pairs of spacers

A pair of spacers was inserted on each side of the button labeled b2. Each pair consisted of one

spacer of the Fixed Spacer type and one spacer of the Elastic Spacer type.

The widths of the Fixed Spacers were 4 and 5 pixels respectively.

The maximum widths of the Elastic Spacers were 6 and 12 pixels respectively.

Elastic spacers have zero minimum width

In all cases, the minimum width of the elastic spacers was zero pixels.

Summary

In this lesson, I have shown you some screen shots from a program that is designed to take the

mystery out of glue and struts. This program doesn't use glue and struts as produced by the

factory methods that were illustrated in the lesson entitled Glue, Struts, and BoxLayout.

Instead, this program makes use of invisible spacer components of my own design that behave

similarly to glue and struts but provide more capability. I am hopeful that an examination of the

code for these spacers will serve to make the behavior of glue and struts more understandable.

What's Next?

In the next lesson, I will introduce you to the actual code that was used to produce the screen

shots that were shown in this lesson. In that lesson, you will learn how to design your own

invisible spacer components using two different approaches.

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

