
Swing from A to Z

The border Property

Part 6, The BorderFactory Class

By Richard G. Baldwin

Java Programming, Lecture Notes # 1025

September 25, 2000

 Preface

 Introduction

 Sample Program

 Interesting Code Fragments

 Summary

 Where To From Here?

 Complete Program Listing

Preface

This lesson is Part 6 in a miniseries of several parts designed to illustrate the border property and

the use of that property to construct fancy borders on Swing components.

It is strongly recommended that you study the previous parts beginning with The border

Property, Part 1, EtchedBorder before embarking on this lesson.

I also recommended that in addition to studying this set of lessons, you also study my earlier

lessons on Swing, which are available at Gamelan. A consolidated index to those earlier lessons

is available at my personal web site.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Introduction

The BorderFactory class

mailto:baldwin.richard@iname.com
Java1020.htm
Java1020.htm
http://gamelan.earthweb.com/dlink.index-jhtml.72.1082.-.43.jhtml
http://www.geocities.com/Athens/7077/scoop/onjava.html

This lesson illustrates the use of class methods of the BorderFactory class to create nested

compound borders.

Highlight and shadows

The lesson also illustrates the ability to specify shadow and highlight colors for 3D borders, and

shows how the human eye can be tricked by specifying those colors inappropriately.

Conditioning

In particular, it is suggested that (for persons conditioned to the normal Windows scheme of

displaying 3D components), simply reversing the highlight and shadow colors can cause a

LOWERED component to look like a RAISED component.

Disclaimer

However, since the display of 3D components on a 2D screen is an optical illusion anyway, this

reversal might not have the same effect on all viewers.

Sample Program

The name of the sample program that I will discuss to illustrate the use of the BorderFactory

class is Swing19.

A screen shot

A screen shot of the GUI that is produced when the program is started is shown in Figure 1..

Figure 1A screen shot of Swing19.

Comparison with earlier program

For comparison purposes, the screen shot in Figure 2 shows a similar GUI that was produced in

an earlier lesson by the program named Swing14.

The important thing to pay attention to, and to compare with the screen shot in Figure 1, is the

color of the highlight and shadow on the edges of the components.

Figure 2 A screen shot of Swing14.

Two JLabel objects

Both programs create and display two different JLabel objects, applying a different border style

to each of them.

Differences between the two programs

The primary differences between the two screen shots are:

 In Swing14, the default colors for highlight and shadow were applied to both

components. In Swing19, I specified the highlight and shadow colors as yellow and

black.

 For the top component in Swing19, I (inappropriately) used a bright color (yellow) for

the shadow and a dark color (black) for the highlight. This caused the component to

appear to protrude out of the screen instead of being depressed into the screen, even

though the LOWERED version of a BevelBorder was used.

 The borders on the components in Swing19 were produced using the BorderFactory

class instead of the new operator, but this shouldn't produce any noticeable difference

between the two screen shots.

A side trip into optical illusions

One day several years ago, I was printing some screen shots of Java GUIs produced on my

Windows 95 system. I was watching the paper emerge from the printer, and from my vantage

point, I was viewing the paper upside down.

Buttons were depressed

I noticed that all of the buttons appeared to be depressed into the paper rather than protruding

from the paper.

Suddenly, it dawned on me that I had become conditioned to a specific stimulus just like the

famous scientist's dog that salivated each time the bell rang. (I have forgotten the name of the

famous scientist but I still remember the dog. So much for fame.)

Conditioned by Microsoft Windows

I had become conditioned to respond appropriately to Windows 3D component representations

with highlights and shadows based on a light source coming from the upper left corner of the

screen.

What does the light source do?

A light source at this location would cause the top and the left side of a protruding object to be

brighter than the face of the object. It would also cause the bottom and right side of the object to

be less bright than the face of the object.

An optical illusion

This is an optical illusion that causes a 2D representation to look like a 3D object.

When viewed right side up (after proper conditioning), if the left and top are brighter, the illusion

is that the component is protruding from the surface. However, when viewed upside down, the

illusion is that the component is depressed into the surface.

It usually isn't easy to view the screen upside down, but it is easy to view a hard-copy screen shot

upside down.

Another way to destroy the illusion

Another way to destroy the illusion is to switch the brightness of the colors used for highlight

and shadow, as illustrated in the previous screen shot of the top component for the program

named Swing19.

Interesting Code Fragments

I will discuss the program named Swing19 in fragments. A complete listing of the program is

shown in Listing 4 near the end of the lesson.

Will skip material discussed earlier

Swing19 is very similar to the program named Swing14 that I discussed in detail in an earlier

lesson. Therefore, I will skip those parts of the program that were discussed in the previous

lesson.

The top Swing component

Listing 1 shows the code fragment that prepares the border for the top Swing component in the

screen shot for Swing19.

 CompoundBorder theBorder =
 BorderFactory.createCompoundBorder(
 BorderFactory.createBevelBorder(
 BevelBorder.LOWERED,
 Color.black,Color.yellow),
 BorderFactory.createCompoundBorder(
 BorderFactory.createMatteBorder(
 19,19,19,19,Color.blue),
 BorderFactory.createEmptyBorder(
 5,5,5,5)));

Listing 1

This statement creates an object of the CompoundBorder class, which will be used later as the

border for a JLabel object. (The portion of the statement that is highlighted in red will be

discussed later.)

A CompoundBorder object

The programs in earlier lessons created borders using statements incorporating the new operator,

such as the following:

new CompoundBorder(new BevelBorder(...

Swing19 uses factory methods

However, Swing19 doesn't use the new operator to instantiate Border objects. Instead, it

invokes factory methods with names like createCompoundBorder() to instantiate and return

references to Border objects. These factory methods are class methods of the BorderFactory

class.

What does Sun have to say?

Here is what Sun has to say about the BorderFactory class.

Factory class for vending standard Border objects.
Wherever possible, this factory will hand out
references to shared Border instances.

What does Flanagan have to say?

Here is what David Flanagan has to say about the BorderFactory class in his excellent book,

Java Foundation Classes in a Nutshell.

The static methods of this class return various
types of Border objects. These methods may
return previously created shared objects, making
their use more memory-efficient than creating
unshared Border objects with the new operator.

The bottom line on BorderFactory

So, the bottom line seems to be that you can create your Border objects in either of two ways

 Using the new operator with the constructor for a specific Border class.

 Using the factory method of the BorderFactory class for the type of border that you

need.

The use of the factory methods of the BorderFactory class may produce more memory-efficient

programs.

Highlights and shadows

One of the constructors for the BevelBorder class is as follows. Here, we are interested mainly

in the parameters.

public BevelBorder(int bevelType,
 Color highlight,
 Color shadow)

Creates a bevel border with the specified type,
highlight and shadow colors.
 Parameters:
 bevelType - the type of bevel for the border
 highlight - the color to use for the bevel
highlight
 shadow - the color to use for the bevel
shadow

(This constructor is mirrored in the factory method for an object of the BevelBorder class.)

Parameters specify highlight and shadow colors

As you can see, the second parameter is the highlight color and the third parameter is the shadow

color. Normally, we would expect the highlight to be brighter than the shadow.

What happens if you switch them?

A portion of the previous code fragment is repeated in Listing 2. (This is the portion that is

highlighted in red in Listing 1.)

 BorderFactory.createBevelBorder(
 BevelBorder.LOWERED,
 Color.black,Color.yellow),

Listing 2

As you can see, this fragment requests a LOWERED BevelBorder object with a black highlight

and a yellow shadow (the shadow was purposely made brighter than the highlight).

Optical illusion is reversed

The result is to reverse the optical illusion, causing the component to appear to be RAISED

instead of LOWERED (see the top component in Figure 1, which shows a screen shot for

Swing19).

(As mentioned earlier, since this is an optical illusion anyway, it may not appear the same to all

observers.)

The bottom component

Listing 3 shows the code fragment that prepares the border for the bottom component in the

screen shot for Swing19 (see Figure 1).

 theBorder =
 BorderFactory.createCompoundBorder(
 BorderFactory.createBevelBorder(
 BevelBorder.RAISED,
 Color.yellow,Color.black),
 BorderFactory.createCompoundBorder(
 BorderFactory.createMatteBorder(
 19,19,19,19,Color.blue),
 BorderFactory.createEmptyBorder(
 5,5,5,5)));

Listing 3

In this case, I caused the highlight (yellow) to be brighter than the shadow (black) so that the

resulting component appeared to be RAISED as specified.

Top and bottom components look alike

Going back to the screen shot, the top component with reversed highlight and shadow looks just

like the bottom component with proper highlight and shadow. The moral to the story is, be

careful when you specify highlight and shadow colors.

Summary

The factory methods of the BorderFactory class can be used to produce Border objects that are

shared, and therefore can be more memory-efficient than their counterparts instantiated using the

new operator.

You can specify the highlight and shadow colors for various Border objects. However, you

need to be careful when you do. Otherwise, you may spoil the 3D optical illusion for many

observers.

Where To From Here?

That completes our miniseries on the border property. In the next lesson, I will begin a

discussion of the alignment property.

Complete Program Listing

A complete listing of the program is shown in Listing 4.

/*File Swing19
Rev 3/30/00
Copyright 2000, R.G.Baldwin

Illustrates the use of the BorderFactory
class for nesting of CompoundBorder
objects. This program creates and
displays two different border styles.

Borders created using BorderFactory are
shared among objects. That is the advantage
of using the factory method.

Also illustrates specifying the highlight
and shadow colors for a BevelBorder and,
just for fun, shows that simply reversing
the two (making the shadow light and the
highlight dark) reverses the optical
illusion and causes a LOWERED 3-D component
to appear to be RAISED. This illustrates
how we have become conditioned to having
the light source at the upper left. The
reversal of the two colors would be correct
for a LOWERED 3-D component if the light
source were at the bottom right.

Tested using JDK 1.2.2 under WinNT 4.0 WkStn
**********************************/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

class Swing19 extends JFrame{

 //---------------------------------------//

 public static void main(String args[]) {
 new Swing19();
 }//end main()
 //---------------------------------------//

 //The purpose of this method is to create
 // and return an opaque pink JLabel with
 // a border. The text content of the

 // lable is provided as the first
 // parameter. The border type is provided
 // as the second parameter. When the
 // label is displayed, the left and top
 // insets are displayed following the
 // text content of the label.
 JLabel makeLabel(
 String content,Border borderType){

 JLabel label = new JLabel();
 label.setBorder(borderType);
 label.setOpaque(true);
 label.setBackground(Color.pink);

 label.setText(content + ","
 +label.getInsets().left + ","
 +label.getInsets().top);

 return label;

 }//end makeLabel()
 //---------------------------------------//

 Swing19(){//constructor

 getContentPane().setLayout(
 new FlowLayout());

 CompoundBorder theBorder =
 BorderFactory.createCompoundBorder(
 BorderFactory.createBevelBorder(
 BevelBorder.LOWERED,Color.black,
 Color.yellow),
 BorderFactory.createCompoundBorder(
 BorderFactory.createMatteBorder(
 19,19,19,19,Color.blue),
 BorderFactory.createEmptyBorder(
 5,5,5,5)));

 getContentPane().add(makeLabel(
 "Nested CompoundBorder",theBorder));

 theBorder =
 BorderFactory.createCompoundBorder(
 BorderFactory.createBevelBorder(
 BevelBorder.RAISED,Color.yellow,
 Color.black),
 BorderFactory.createCompoundBorder(
 BorderFactory.createMatteBorder(
 19,19,19,19,Color.blue),
 BorderFactory.createEmptyBorder(
 5,5,5,5)));

 getContentPane().add(makeLabel(
 "Nested CompoundBorder",theBorder));

 setTitle("Copyright 2000, R.G.Baldwin");
 setSize(329,200);
 setVisible(true);

 //.....................................//
 //Anonymous inner terminator class
 this.addWindowListener(
 new WindowAdapter(){
 public void windowClosing(
 WindowEvent e){
 System.exit(0);

 }//end windowClosing()
 }//end WindowAdapter
);//end addWindowListener
 //.....................................//

 }//end constructor

}//end class Swing19

Listing 4

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

