
Swing from A to Z

The border Property

Part 5, Nested Compound Borders

By Richard G. Baldwin

Java Programming, Lecture Notes # 1024

September 18, 2000

 Preface

 Introduction

 Sample Program

 Interesting Code Fragments

 Summary

 Where to from Here?

 Complete Program Listing

Preface

This lesson is Part 5 in a miniseries of several parts designed to illustrate the border property and

the use of that property to construct fancy borders on Swing components.

I recommend that you study previous lessons on the border property beginning with The border

Property, Part 1 before embarking on this lesson.

I also recommended that in addition to studying this set of lessons, you also study my earlier

lessons on Swing, which are available at Gamelan. A consolidated index to those earlier lessons

is available at my personal web site.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Introduction

This lesson illustrates the use of nested compound borders.

mailto:baldwin.richard@iname.com
Java1020.htm
Java1020.htm
http://gamelan.earthweb.com/dlink.index-jhtml.72.1082.-.43.jhtml
http://www.geocities.com/Athens/7077/scoop/onjava.html

Sample Program

A screen shot

The name of the sample program that I will discuss to illustrate nested compound borders is

Swing14.

A screen shot of the GUI that is produced by that program is shown in Figure 1.

Figure 1 Two JLabel objects

The program creates and displays two different JLabel objects, applying a different border style

to each of them.

Interesting Code Fragments

I will discuss the program in fragments. A complete listing of the program is provided in Listing

4 near the end of this listing

This program is very similar to the program named Swing13 that I discussed in detail in the first

four parts of this miniseries. Therefore, I will skip those parts of the program that were

discussed in the previous lessons

The top Swing component

Listing 1 shows the code fragment that prepares the border for the top Swing component in the

screen shot of Figure 1.

 CompoundBorder theBorder =
 new CompoundBorder(
 new BevelBorder(BevelBorder.LOWERED),
 new CompoundBorder(
 new MatteBorder(19,19,19,19,
 Color.blue),
 new EmptyBorder(5,5,5,5)));

Listing 1

A CompoundBorder object

This statement instantiates an object of the CompoundBorder class, which will be used as the

border for a JLabel object.

The constructor

The constructor for CompoundBorder requires two parameters, each of which must be

references to Border objects (Border is an interface).

The code fragment in Listing 1 shows the first parameter in red, and shows the second parameter

in green. I did this to make them easier to separate visually.

The outside border

The first parameter, or outside border, is a LOWERED BeveledBorder object. This causes the

blue area in the screen shot of Figure 1 to appear to be depressed into the surface of the JFrame.

The inside border

The second parameter, or inside border, is itself a reference to a CompoundBorder

object. Thus, a CompoundBorder is nested inside of another CompoundBorder. The

constructor for this object also requires two parameters.

A MatteBorder object

The first parameter to the constructor for the nested CompoundBorder object is a reference to a

solid blue MatteBorder object. This is what produces the blue area in the screen shot.

An EmptyBorder object

The second parameter to the nested CompoundBorder object is a reference to an EmptyBorder

object. This produces a blank margin five pixels in width between the original JLabel object

and the solid blue matte border.

Adding the component to the contentPane

Listing 2 shows the invocation of the makeLabel() method that applies the Border object

constructed above to a JLabel object and adds it to the contentPane for later rendering. (See

Part 1 of this miniseries on borders for an explanation of this method.)

 getContentPane().add(makeLabel(
 "Nested CompoundBorder",theBorder));

Listing 2

The bottom component

Listing 3 shows the code fragment that prepares the border for the bottom component in the

screen shot.

 theBorder = new CompoundBorder(
 new BevelBorder(BevelBorder.RAISED),
 new CompoundBorder(new MatteBorder(
 19,19,19,19,Color.blue),
 new EmptyBorder(5,5,5,5)));

Listing 3

This fragment is the same as the one for the top component, except that this fragment uses a

RAISED BevelBorder for the outside border instead of a LOWERED BevelBorder.

Summary

In this miniseries on borders, I have introduced you to each of the standard Border classes, and

have illustrated one or more variations on each of them.

I have also pointed out that compound borders can be nested to produce very complex borders,

and have illustrated two different nested compound borders.

I have mentioned that if the standard borders won't fulfill your needs, you can define your own

class that implements the Border interface and use an object of that class for your custom

border.

Where To From Here?

I have one more topic to cover before I leave this miniseries on borders: the BorderFactory

class. I will cover that topic in the next lesson.

Complete Program Listing

A complete listing of the program is shown in Listing 4.

/*File Swing14
Rev 3/30/00
Copyright 2000, R.G.Baldwin

Illustrates nesting of CompoundBorder
objects. This program creates and
displays two different border styles
constructed by nesting CompoundBorder
objects.

Tested using JDK 1.2.2 under WinNT 4.0 WkStn

***/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

class Swing14 extends JFrame{

 //---------------------------------------//

 public static void main(String args[]) {
 new Swing14();
 }//end main()
 //---------------------------------------//

 //The purpose of this method is to create
 // and return an opaque pink JLabel with
 // a border. The text content of the
 // lable is provided as the first
 // parameter. The border type is provided
 // as the second parameter. When the
 // label is displayed, the left and top
 // insets are displayed following the
 // text content of the label.
 JLabel makeLabel(
 String content,Border borderType){

 JLabel label = new JLabel();
 label.setBorder(borderType);
 label.setOpaque(true);
 label.setBackground(Color.pink);

 label.setText(content + ","
 +label.getInsets().left + ","
 +label.getInsets().top);

 return label;

 }//end makeLabel()
 //---------------------------------------//

 Swing14(){//constructor

 getContentPane().setLayout(
 new FlowLayout());

 CompoundBorder theBorder =
 new CompoundBorder(
 new BevelBorder(BevelBorder.LOWERED),
 new CompoundBorder(
 new MatteBorder(19,19,19,19,
 Color.blue),new EmptyBorder(
 5,5,5,5)));

 getContentPane().add(makeLabel(
 "Nested CompoundBorder",theBorder));

 theBorder = new CompoundBorder(
 new BevelBorder(BevelBorder.RAISED),
 new CompoundBorder(new MatteBorder(
 19,19,19,19,Color.blue),
 new EmptyBorder(5,5,5,5)));

 getContentPane().add(makeLabel(

 "Nested CompoundBorder",theBorder));

 setTitle("Copyright 2000, R.G.Baldwin");
 setSize(329,200);
 setVisible(true);

 //.....................................//
 //Anonymous inner terminator class
 this.addWindowListener(
 new WindowAdapter(){
 public void windowClosing(
 WindowEvent e){
 System.exit(0);
 }//end windowClosing()
 }//end WindowAdapter
);//end addWindowListener
 //.....................................//

 }//end constructor

}//end class Swing14

Listing 4

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

