
Swing from A to Z

Transparency and Preferred Size

By Richard G. Baldwin

Java Programming, Lecture Notes # 1015

August 14, 2000

 Preface

 Introduction

 Sample Program

 Interesting Code Fragments

 Summary

 Complete Program Listing

Preface

This series of lessons entitled Swing from A to Z, discusses the capabilities and features of Swing

in quite a lot of detail. This series is intended for those persons who need to really understand

what Swing is all about.

Recommended supplementary reading

It is recommended that in addition to studying this set of lessons, you also study my earlier

lessons on Swing. A list of some of my Swing lessons can be found in an earlier lesson in this

series. The lessons themselves can be found at Baldwin's Java Programming Tutorials.

The earlier lessons will introduce you to the use of Swing while avoiding much of the detail

included in this series.

Introduction

Properties, events, and methods

In an earlier lesson, I provided lists of properties, events, and methods that are defined in

JComponent and its superclasses: Container, Component, and Object.

Default appearance and behavior

mailto:baldwin.richard@iname.com
Java1005.htm#titles
http://www.geocities.com/Athens/7077/scoop/onjava.html

I explained that because most Swing components extend JComponent either directly or

indirectly, the properties, events, and methods defined in these classes provide the default

appearance and behavior of most of the Swing components.

Understanding common properties, events, and methods

I also explained that the next few lessons would concentrate on an understanding of these

common properties, events, and methods in order to provide an overall knowledge of the

appearance and behavior of Swing components.

Will discuss specialized appearance and behavior later

After I have illustrated this common appearance and behavior of Swing components, I will

embark on a study of the additional specialized appearance and behavior associated with

individual components.

What's in this lesson?

This lesson emphasizes an understanding of the opaque and preferredSize properties that are

common to most Swing components.

I will also illustrate several other properties, including the following:

 layout

 background

 foreground

 title

 size

 visible

 text

 contentPane

 source

(Note that not all of these properties are defined in JComponent and its superclasses. Some are

specialized properties of specific Swing components.)

All but contentPane should be familiar

Except for contentPane, none of these properties are peculiar to Swing. They are also commonly

used with the AWT.

Sample Program

The name of the sample program is Swing12. As mentioned above, this program is designed

specifically to illustrate the use and behavior of the opaque and preferredSize properties.

A screen shot

A screen shot of the GUI that is produced when the program is started is shown below.

When the program is started, a JFrame object, about 330 pixels wide, appears on the screen. It

contains a JButton component and a JLabel component in a container being managed by a

FlowLayout manager.

FlowLayout manager

One of the characteristics of the FlowLayout manager is that it attempts to honor the

preferredSize of each component in both the horizontal and vertical dimensions.

Other layout managers don't necessarily honor the preferredSize in either or both

dimensions. Some honor one dimension, others honor the other dimension, and some (such as

GridLayout) don't honor either dimension.

I discuss the behavior of several layout managers in some of my other Tutorials.

Initial states of the label and button

Initially at startup, the label contains blue text on an opaque yellow background as shown in the

above screen shot.

The text showing initially on the face of the button reads "Make Label Transparent."

Click the button

When the button is clicked, the appearance of the GUI changes to that shown below.

Basically, two things happen when the button is clicked.

1. The background of the label becomes transparent, allowing the gray background of the

JFrame object to show through. This is accomplished by setting the opaque property of

the label to false. As a result, the yellow background disappears.

http://www.geocities.com/Athens/7077/scoop/onjava.html

2. The text on the face of the button changes to a shorter text string ("Make Label

Opaque"). However, the size of the button doesn't change. The preferredSize property of

the button is used to cause the size of the button to remain constant regardless of the

length of its text string.

Click the button again

If the button is clicked again, the appearance of the GUI reverts back to its original state.

Successively clicking the button causes the GUI to toggle between these two states.

Interesting Code Fragments

I will discuss the program in fragments. A complete listing of the program is provided in Figure

9 near the end of the lesson.

The controlling class

Figure 1 shows the beginning of the controlling class, along with the declaration and population

of two reference variables, one for the button and one for the label.

class Swing12 extends JFrame{
 JButton button = new JButton(
 "Make Label Transparent");
 JLabel label = new JLabel(
 "A JLabel component");

Figure 1

Extends JFrame

Note that the controlling class extends JFrame. Therefore, an object of the controlling class is a

GUI that can be displayed directly on the desktop.

The main() method

Figure 2 shows the main() method for the application. This method simply instantiates an object

of the controlling class, causing a JFrame object to appear on the screen.

 public static void main(String args[]) {
 new Swing12();
 }//end main()

Figure 2

The constructor

Figure 3 shows the beginning of the constructor. This fragment sets the values of three

properties.

 Swing12(){//constructor

 getContentPane().setLayout(
 new FlowLayout());
 label.setBackground(Color.yellow);
 label.setForeground(Color.blue);

Figure 3

The layout property

First, the code in Figure 3 sets the layout property of the content pane of the JFrame object to

FlowLayout.

This layout manager places components in the container from left to right, top to bottom, while

attempting to honor the preferredSize value of each component.

The default preferred size

Each component has a default preferred size, and it differs from one type of component to

another.

The default preferred size for both a JButton and a JLabel is a size that reasonably

accommodates the text showing on the button or on the label.

The preferredSize property is easy to control in Swing

Unlike the AWT, it is possible to modify the preferredSize property of a Swing component

without a requirement to extend the component.

Overriding getPreferredSize() in the AWT

With the AWT, the only way that I have found to control the preferred size of a component is to

extend the component and override the getPreferredSize() method.

By doing that, it is possible to return a value for preferred size that is different from the default

value.

Swing has a preferredSize property

Swing has a setter method for the preferred size property that makes it easy to change the value

of the property.

Changing value may not result in a change in size

Be aware, however, that many layout managers will ignore the value of the preferredSize

property when placing the component in a container.

Transparency is controlled by the opaque property

The transparency, or lack thereof, of the background of a Swing component is controlled by the

value of the opaque property.

If this property has a value of true, the background is opaque (not transparent).

If the value of the property is false, the background is transparent, allowing whatever is behind

the component to show through.

Default values for opaque property

The default value of the opaque property of a Swing JLabel is false.

By default, the background of the label is transparent allowing whatever is behind the JLabel

object to show through.

Text in the label is opaque

Only the text characters are opaque by default.

If the opaque property is set to true, the default background color of the JLabel appears to be

gray, so it still looks to be transparent against a gray container background.

Default transparency for a JButton

On the other hand, the default value of the opaque property of a Swing JButton is true.

When instantiated, the default color of the JButton is gray.

JButton can become transparent

If the value of the opaque property of a JButton is set to false, the background becomes

transparent allowing whatever is behind the button to show through. Only the text and the

border of the button remain opaque.

Make it happen

Figure 4 shows the statement that overrides the default and causes the background of the label to

be opaque when the program starts running.

 label.setOpaque(true);

Figure 4

Typical JavaBeans setter method

This is a typical setter method for a JavaBean property.

The name of the property

Note that the name of the property in this case is opaque with a lower-case "o". (I explained the

property naming conventions of JavaBean properties in an earlier lesson.)

Some ordinary code

The code in Figure 5 is rather ordinary,

 Adding the button and the label to the contentPane of the JFrame object, and

 Setting values for the properties named title, size, and visible.

 getContentPane().add(button);
 getContentPane().add(label);
 setTitle("Copyright 2000, R.G.Baldwin");
 setSize(329,100);
 setVisible(true);

Figure 5

What is getContentPane()?

I explained the requirement to use getContentPane() in an earlier lesson on Swing. You must

invoke this method whenever you need to add a component to a JFrame, or whenever you need

to set the layout manager for a JFrame.

The preferredSize setter method

As I mentioned earlier, unlike the AWT, Swing makes it possible to control the value of the

preferredSize property using an ordinary setter method, as shown in Figure 6.

 button.setPreferredSize(
 button.getSize());

Figure 6

I planned to change the text property value

In this case, I planned to change the value of the text property for the button at runtime. (The text

property controls the string value displayed on the face of the JButton).

Didn't want the size of the button to change

I wanted to make certain that the size of the button did not change when I changed the value of

the text property.

I knew that the initial value of the text property (the text showing on the button at startup)

required more physical space for display than would be required for the display of later values of

the text property.

Used startup button size as preferred size

Therefore, I used the getter method shown in Figure 6 to get the current value of the size

property of the button after the GUI first became visible.

I used that value to set the preferredSize property for the button, causing the actual size of the

button to remain constant from that point forward, even though the value of the text property

changed to a value requiring less physical space for display.

Order of these operations is important

The order of operations was important here. It was necessary to set the visible property of the

JFrame object to true before getting the value of the size property of the button. Until that time,

the getter method for the size property of the button returned zero for both width and

height. Apparently the size property is not set until the GUI is actually rendered on the screen.

An anonymous inner class action listener

This program uses an anonymous inner class, containing an if/else statement, as an action

listener registered on the button. This action listener toggles the GUI between its two states.

The if clause

The first half of that action listener, including the if clause, is shown in Figure 7.

 button.addActionListener(
 new ActionListener(){
 public void actionPerformed(
 ActionEvent e){
 if(label.isOpaque()){
 label.setOpaque(false);
 label.repaint();//render it
 ((JButton)e.getSource()).
 setText("Make Label Opaque");
 }//end if

Figure 7

The else clause is shown later in Figure 8.

Use a getter method of type is...

Now please refer back to the if clause of Figure 7. The code in the actionPerformed() method

of Figure 7 uses label.isOpaque() as the conditional expression in the if statement. This is an

optional form of a getter method that can be used for boolean properties.

Toggle the value of the opaque property

If the conditional expression returns true, the value of the opaque property of the label is set to

false, causing the background of the label to become transparent (not opaque).

Request a repaint for the label

The repaint() method is used to send a message to the operating system asking it to render the

new transparent representation of the area of the screen occupied by the label.

Get a reference to the button

Then the getSource() method of the incoming ActionEvent object is used to get a reference to

the JButton component that fired the event.

Modify the value of the text property

This reference is used to modify the value of the text property of the button.

Downcast is necessary

Note that it is necessary to downcast the reference to the source of the event before accessing the

text property. The getSource() method returns a reference to the source of the event as type

Object.

Text on button is automatically repainted

It is interesting to note that the text on the face of the button is automatically repainted without

the necessity of a call to repaint(). However, it is necessary to call repaint() to cause the

background of the label to be repainted.

I'm sure that there is a rule for this somewhere, but I haven't found it yet.

The else clause

Figure 8 shows the else clause of the if/else statement. This clause is executed if the value of the

opaque property is false (meaning that the background of the label is transparent).

 else{//if it is not opaque
 label.setOpaque(true);
 label.repaint();//render it

 ((JButton)e.getSource()).
 setText("Make Label Transparent");
 }//end else
 }//end actionPerformed
 }//end ActionListener
);//end addActionListener

Figure 8

Reverse the previous action

The code in Figure 8 reverses the action of the if clause in Figure 7, returning the values of the

opaque property of the label and the text property of the button to their original values.

Toggle each time the button is clicked

The effect is to cause the GUI to toggle back and forth between two states each time the button is

clicked.

The remaining code

The remaining code, which you can view in Figure 9, is uninteresting. It consists simply of an

anonymous inner class used to terminate the program when the user closes the JFrame object.

Summary

The purpose

The primary purpose of this lesson was to illustrate the use of the opaque and preferredSize

properties of Swing components.

Using the opaque property

I have illustrated how to use the opaque property to control the background transparency of a

JLabel object.

The approach used here should work with any Swing component that supports transparency.

Using the preferredSize property

I have also illustrated how to use the preferredSize property to control the size of a JButton

object.

This approach should also work with any Swing component that supports the preferredSize

property.

Layout manager may not cooperate

Note, however, that even though a Swing component may support the preferredSize property, the

layout property of the container that contains that component may specify a layout manager that

won't honor the preferred size even if the component supports it.

For example, the GridLayout manager doesn't support the preferred size in either

dimension. Rather, all components in a GridLayout are rendered the same size regardless of

their preferred size.

Several other properties were illustrated

In the process of illustrating the use of the opaque and preferredSize properties, I have illustrated

several other properties as well.

Complete Program Listing

Figure 9 contains a complete listing of the program discussed in this lesson.

/*File Swing12
Rev 3/28/00
Copyright 2000, R.G.Baldwin

Illustrates the manipulation of several
properties of a JLabel and a JButton under
program control. Primary properties
manipulated are:

opaque (transparency)
preferredSize

Other properties manipulated are:

layout
background
foreground
title
size
visible
text
contentPane
source

Tested using JDK 1.2.2 under WinNT 4.0 WkStn
**********************************/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;//jdk 1.2 version

class Swing12 extends JFrame{
 JButton button = new JButton(
 "Make Label Transparent");
 JLabel label = new JLabel(
 "A JLabel component");
 //---------------------------------------//

 public static void main(String args[]) {
 new Swing12();

 }//end main()
 //---------------------------------------//

 Swing12(){//constructor

 getContentPane().setLayout(
 new FlowLayout());
 label.setBackground(Color.yellow);
 label.setForeground(Color.blue);
 //Default is transparent
 label.setOpaque(true);

 getContentPane().add(button);
 getContentPane().add(label);
 setTitle("Copyright 2000, R.G.Baldwin");
 setSize(329,100);
 setVisible(true);

 //Cause the button to stay the same
 // size when its text changes
 button.setPreferredSize(
 button.getSize());

 //.....................................//
 //Anonymous action listener class
 button.addActionListener(
 new ActionListener(){
 public void actionPerformed(
 ActionEvent e){
 if(label.isOpaque()){
 label.setOpaque(false);
 label.repaint();//render it
 ((JButton)e.getSource()).
 setText("Make Label Opaque");
 }//end if
 else{//if it is not opaque
 label.setOpaque(true);
 label.repaint();//render it
 ((JButton)e.getSource()).
 setText(
 "Make Label Transparent");
 }//end else
 }//end actionPerformed
 }//end ActionListener
);//end addActionListener

 //.....................................//
 //Anonymous inner terminator class
 this.addWindowListener(
 new WindowAdapter(){
 public void windowClosing(
 WindowEvent e){
 System.exit(0);
 }//end windowClosing()
 }//end WindowAdapter
);//end addWindowListener
 }//end constructor

 //---------------------------------------//
}//end class Swing12

Figure 9

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

