
Swing from A to Z

Properties, Events, and Methods

By Richard G. Baldwin

baldwin.richard@iname.com

Java Programming, Lecture Notes # 1010

August 7, 2000

 Preface

 Introduction

 JavaBean Component Design Patterns

 JComponent Properties

 Container and Component Properties

 Property Names

 JComponent Events

 Container and Component Events

 Exposed Methods of JComponent

 Summary

 Where To From Here?

Preface

This series of lessons entitled Swing from A to Z, discusses the capabilities and features of Swing

in quite a lot of detail. This series is intended for those persons who need to really understand

what Swing is all about.

Recommended supplementary reading

It is recommended that in addition to studying this set of lessons, you also study my earlier

lessons on Swing. A list of some of my Swing lessons can be found in an earlier lesson in this

series. Links to the lessons themselves can be found at Baldwin's Java Programming Tutorials.

The earlier lessons will introduce you to the use of Swing while avoiding much of the detail

included in this series.

Introduction

mailto:baldwin.richard@iname.com
Java1005.htm#titles
http://www.geocities.com/Athens/7077/scoop/onjava.html

One of the most important things that we can do to understand all of Swing is to learn about the

properties, events, and methods that Swing components inherit from the class named

JComponent and its superclasses, Container, Component, and Object.

Apply to Swing components as a group

This is important because most Swing components extend JComponent either directly or

indirectly. Thus, these properties, events, and methods apply to most of the components in

Swing. We can learn about them as a group instead of having to learn about them on an

individual component basis.

Each component can have other properties, events, and methods

In addition, individual Swing components can have other properties, events, and methods

defined in subclasses of JComponent. We will deal with those properties, events, and methods

on an individual component basis later in this series of lessons.

Lesson will identify properties, events, and methods

This lesson will identify the properties, events, and methods that Swing components inherit from

JComponent and its superclasses. Subsequent lessons will discuss and illustrate many of them.

JavaBean Component Design Patterns

We can use JavaBean Component design patterns to identify properties, events, and methods of

Swing components because Swing components are JavaBean Components.

Explained design patterns in earlier lessons

I'm not going to explain design patterns here, because my earlier lessons on JavaBeans provide a

complete explanation of design patterns. Rather, I am simply going to use design patterns to

identify and list the properties, events, and methods of JComponent and its superclasses.

If you are not familiar with Design Patterns in JavaBeans, see my earlier lessons on beans, which

you will find at Baldwin's Java Programming Tutorials.

JComponent Properties

The properties defined in the JComponent class and its superclasses are important because they

define the default behavior and appearance of most Swing components.

Figure 1 shows the accessor methods for the properties that are defined in the JComponent

class.

Properties Defined in JComponent

 AccessibleContext getAccessibleContext()
 float getAlignmentX()
 void setAlignmentX(float alignmentX)
 float getAlignmentY()
 void setAlignmentY(float alignmentY)
 boolean getAutoscrolls()
 void setAutoscrolls(boolean autoscrolls)
 Color getBackground()
 void setBackground(Color bg)
 Border getBorder()
 void setBorder(Border border)
 int getDebugGraphicsOptions()
 void setDebugGraphicsOptions(int debugOptions)
 boolean isDoubleBuffered()
 void setDoubleBuffered(boolean aFlag)
 boolean isEnabled()
 void setEnabled(boolean enabled)
 boolean isFocusCycleRoot()
 boolean isFocusTraversable()
 Font getFont()
 void setFont(Font font)
 Color getForeground()
 void setForeground(Color fg)
 Graphics getGraphics()
 int getHeight()
 Insets getInsets()
 boolean isManagingFocus()
 Dimension getMaximumSize()
 void setMaximumSize(Dimension maximumSize)
 Dimension getMinimumSize()
 void setMinimumSize(Dimension minimumSize)
 Component getNextFocusableComponent()
 void setNextFocusableComponent(Component aComponent)
 boolean isOpaque()
 void setOpaque(boolean isOpaque)
 boolean isOptimizedDrawingEnabled()
 boolean isPaintingTile()
 Dimension getPreferredSize()
 void setPreferredSize(Dimension preferredSize)
 KeyStroke[] getRegisteredKeyStrokes()
 boolean isRequestFocusEnabled()
 void setRequestFocusEnabled(boolean aFlag)
 JRootPane getRootPane()
 String getToolTipText()
 void setToolTipText(String text)
 Container getTopLevelAncestor()
 String getUIClassID()
 boolean isValidateRoot()
 boolean isVisible()
 void setVisible(boolean aFlag)
 Rectangle getVisibleRect()

 int getWidth()
 int getX()
 int getY()

Figure 1

Inherited by most Swing components

The properties in Figure 1 are inherited by most Swing components.

Some are shown in red

A few of the properties are shown in red in Figure 1. The properties shown in red are not

defined in JComponent, but rather are inherited from the Component class. They are included

in Figure 1 for completeness. In each case, they form the other half of a setter-getter method

pair. (See my earlier lessons on JavaBeans if the setter-getter terminology is new to you.)

Container and Component Properties

Figure 2 shows the accessor methods for the properties defined in the Container and

Component classes that are not overridden in the JComponent class. Container properties are

shown in blue. Component properties are shown in red.

Container and Component Properties Inherited by JComponent

 Color getBackground()
 Rectangle getBounds()
 void setBounds(int x, int y, int width, int height)
 void setBounds(Rectangle r)
 ColorModel getColorModel()
 Component getComponent(int n)
 int getComponentCount()
 ComponentOrientation getComponentOrientation()
 void setComponentOrientation (ComponentOrientation orientation)
 Component[] getComponents()
 Cursor getCursor()
 void setCursor(Cursor cursor)
 boolean isDisplayable()
 DropTarget getDropTarget()
 boolean isEnabled()
 Font getFont()
 Color getForeground()
 boolean isLightweight()
 boolean isShowing()
 void setDropTarget(DropTarget dt)
 FontMetrics getFontMetrics(Font font)
 InputContext getInputContext()

 InputMethodRequests getInputMethodRequests()
 LayoutManager getLayout()
 void setLayout(LayoutManager mgr)
 Locale getLocale()
 void setLocale(Locale l)
 Point getLocation()
 void setLocation(int x, int y)
 void setLocation(Point p)
 Point getLocationOnScreen()
 String getName()
 void setName(String name)
 Container getParent()
 Dimension getSize()
 void setSize(int width, int height)
 void setSize(Dimension d)
 Toolkit getToolkit()
 Object getTreeLock()
 boolean isValid()
 boolean isVisible()

Figure 2

Also inherited by Swing components

Because JComponent extends Container, which extends Component, most of the Swing

components inherit these properties as well. Hence, these properties also define the default

behavior and appearance of most Swing components.

Property Names

Although this isn't too important for this context, it might be useful for you to know how

JavaBean design patterns define the names of properties.

Name is based on name of method

The official name of a property is that portion of the name of the accessor method following set,

get, or is, with the case of the first character changed to lower case. (There are also some special

cases involving upper case and lower case that I won't discuss here.)

A property named visible

For example, the following two accessor methods refer to a property named visible.

 boolean isVisible()
 void setVisible(boolean aFlag)

You can call the first method to read the current value of the property, and you can call the

second method to write a new value into the property.

JComponent Events

Another important aspect of the default behavior of most swing components is the set of standard

event types that they can multicast.

Default event types identified in JComponent and its superclasses

The default event types are defined by the JComponent, Container, and Component

classes. Other event types that are specific to individual Swing components may be defined in

subclasses of JComponent.

Event types match registration methods

We can identify the default event types by identifying the event registration methods in the

JComponent, Container, and Component classes. These registration methods are inherited by

most Swing components.

Registration method names

According to JavaBean design patterns, the type of the event can be identified by the word(s)

appearing between add and Listener in the name of the registration method.

A PropertyChange event

For example, the existence of a registration method named addPropertyChangeListener()

indicates the ability to multicast an event of the PropertyChangeEvent class.

The method name also indicates the availability of an interface named

PropertyChangeListener. This interface must be implemented by classes from which listener

objects for this type of event are instantiated.

JComponent events

Figure 3 shows the event registration methods that are defined in the JComponent class.

Events Defined in the JComponent Class

 addAncestorListener(AncestorListener listener) Registers listener so that it will receive AncestorEvents when it or
any of its ancestors move or are made visible or invisible.

 addPropertyChangeListener (PropertyChangeListener listener) Add a PropertyChangeListener to the listener list.
 addPropertyChangeListener(String propertyName, PropertyChangeListener listener) Add a PropertyChangeListener

for a specific property.
 addVetoableChangeListener (VetoableChangeListener listener) Add a VetoableChangeListener to the listener list.

 removeAncestorListener(AncestorListener listener) Unregisters listener so that it will no longer receive
AncestorEvents

 removePropertyChangeListener (PropertyChangeListener listener) Remove a PropertyChangeListener from the
listener list.

 removePropertyChangeListener(String propertyName, PropertyChangeListener listener) Remove a
PropertyChangeListener for a specific property.

 removeVetoableChangeListener (VetoableChangeListener listener) Remove a VetoableChangeListener from the
listener list.

Figure 3

Because most Swing components extend this class, they are able to multicast events of these

types.

Container and Component Events

Figure 4 shows the event types for which registration methods are defined in the Container and

Component classes.

Events Defined in the Container and Component Classes

 addContainerListener(ContainerListener l) Adds the specified container listener to receive container events from this
container.

 removeContainerListener (ContainerListener l) Removes the specified container listener so it no longer receives
container events from this container.

 addComponentListener(ComponentListener l) Adds the specified component listener to receive component events
from this component.

 addFocusListener(FocusListener l) Adds the specified focus listener to receive focus events from this component
when this component gains input focus.

 addInputMethodListener (InputMethodListener l) Adds the specified input method listener to receive input method
events from this component.

 addKeyListener(KeyListener l) Adds the specified key listener to receive key events from this component.
 addMouseListener(MouseListener l) Adds the specified mouse listener to receive mouse events from this component.
 addMouseMotionListener (MouseMotionListener l) Adds the specified mouse motion listener to receive mouse

motion events from this component.
 removeComponentListener (ComponentListener l) Removes the specified component listener so that it no longer

receives component events from this component.
 removeFocusListener(FocusListener l) Removes the specified focus listener so that it no longer receives focus

events from this component.
 removeInputMethodListener (InputMethodListener l) Removes the specified input method listener so that it no longer

receives input method events from this component.
 removeKeyListener(KeyListener l) Removes the specified key listener so that it no longer receives key events from

this component.
 removeMouseListener(MouseListener l) Removes the specified mouse listener so that it no longer receives mouse

events from this component.
 removeMouseMotionListener (MouseMotionListener l) Removes the specified mouse motion listener so that it no

longer receives mouse motion events from this component.

Figure 4

Because most Swing components extend these classes indirectly, they are able to multicast

events of these types also.

Events defined in the Container class are shown in blue. Events defined in the Component

class are shown in red.

Events familiar to AWT programmers

If you are already familiar with the use of event-driven programming using the Delegation Event

Model and the AWT, you should already be familiar with all but one of these event types. (If

not, see my tutorial lessons on the Delegation Event Model.)

One new event type

The one event type that may not be familiar to you is the InputMethod event.

According to one of my favorite authors, David Flanagan, "Application-level code should never

have to use this class."

He also states "Application-level code should never have to use or implement this interface."

If you would like to know more about his reasoning, see his book entitled Java Foundation

Classes in a Nutshell, published by O'Reilly.

Exposed Methods of JComponent

In addition to the default behavior provided by properties and events, default behavior for many

swing components is also established by the public methods of the JComponent class and its

superclasses.

Swing components have this behavior unless they override

All Swing components that extend JComponent either directly or indirectly will exhibit this

default behavior unless they override the methods to provide behavior that is more appropriate

for those components.

Figure 5 lists the public methods of the class JComponent that are not included in one of the

previous lists. These are the public methods of the JComponent class that are not accessor

methods for properties, and are not registration methods for events.

Public Methods of the JComponent Class

 void addNotify() Notification to this component that it now has a parent component.

 void computeVisibleRect(Rectangle visibleRect) Returns the Component's "visible rect rectangle" - the intersection of
the visible rectangles for this component and all of its ancestors.

 boolean contains(int x, int y) Give the UI delegate an opportunity to define the precise shape of this component for the
sake of mouse processing.

 JToolTip createToolTip() Returns the instance of JToolTip that should be used to display the tooltip.
 void firePropertyChange(String propertyName, boolean oldValue, boolean newValue) Reports a bound property

change.
 void firePropertyChange(String propertyName, byte oldValue, byte newValue) Reports a bound property change.
 void firePropertyChange(String propertyName, char oldValue, char newValue) Reports a bound property change.
 void firePropertyChange(String propertyName, double oldValue, double newValue) Reports a bound property

change.
 void firePropertyChange(String propertyName, float oldValue, float newValue) Reports a bound property change.
 void firePropertyChange(String propertyName, int oldValue, int newValue) Reports a bound property change.
 void firePropertyChange(String propertyName, long oldValue, long newValue) Reports a bound property change.
 void firePropertyChange(String propertyName, short oldValue, short newValue) Reports a bound property change.
 ActionListener getActionForKeyStroke(KeyStroke aKeyStroke) Return the object that will perform the action

registered for a given keystroke.
 Rectangle getBounds(Rectangle rv) Store the bounds of this component into "return value" rv and return rv.
 Object getClientProperty(Object key) Returns the value of the property with the specified key.
 int getConditionForKeyStroke(KeyStroke aKeyStroke) Return the condition that determines whether a registered

action occurs in response to the specified keystroke.
 Insets getInsets(Insets insets) Returns an Insets object containing this component's inset values.
 Point getLocation(Point rv) Store the x,y origin of this component into "return value" rv and return rv.
 Dimension getSize(Dimension rv) Store the width/height of this component into "return value" rv and return rv.
 Point getToolTipLocation(MouseEvent event) Return the tooltip location in the receiving component coordinate

system If null is returned, Swing will choose a location.
 String getToolTipText(MouseEvent event) Returns the string to be used as the tooltip for event.
 void grabFocus() Set the focus on the receiving component.
 boolean hasFocus() Returns true if this Component has the keyboard focus.
 static boolean isLightweightComponent(Component c) Returns true if this component is a lightweight, i.e.
 void paintImmediately(int x, int y, int w, int h) Paint the specified region in this component and all of its descendants

that overlap the region, immediately.
 void paintImmediately(Rectangle r) Paint the specified region now.
 void putClientProperty(Object key, Object value) Add an arbitrary key/value "client property" to this component.
 void registerKeyboardAction(ActionListener anAction, KeyStroke aKeyStroke, int aCondition) Calls

registerKeyboardAction(ActionListener,String, KeyStroke, condition) with a null command.
 void registerKeyboardAction(ActionListener anAction, String aCommand, KeyStroke aKeyStroke, int aCondition)

Register a new keyboard action.
 void removeNotify() Notification to this component that it no longer has a parent component.
 void repaint(long tm, int x, int y, int width, int height) Adds the specified region to the dirty region list if the component

is showing.
 void repaint(Rectangle r) Adds the specified region to the dirty region list if the component is showing.
 boolean requestDefaultFocus() Request the focus for the component that should have the focus by default.
 void requestFocus() Set focus on the receiving component if isRequestFocusEnabled returns true
 void resetKeyboardActions() Unregister all keyboard actions
 void reshape(int x, int y, int w, int h) Moves and resizes this component.
 void revalidate() Support for deferred automatic layout.
 void scrollRectToVisible(Rectangle aRect) Forwards the scrollRectToVisible() message to the JComponent's parent.
 void unregisterKeyboardAction(KeyStroke aKeyStroke) Unregister a keyboard action.
 void update(Graphics g) Calls paint(g).
 void updateUI() Resets the UI property to a value from the current look and feel.

Figure 5

Exposed methods

Many Swing components expose the methods in Figure 5 to the outside world as a result of

extending the JComponent class.

JavaBean introspection

For example, these are the methods that a JavaBeans introspection process (based on design

patterns) would consider available for invocation by other beans.

Some are overridden methods

Some of the methods in Figure 5 are overridden versions of methods originally defined in

Container, Component, or Object. They have been overridden to cause their behavior to be

more appropriate for Swing components.

Others are new methods

Other methods in Figure 5 are new methods designed to provide new behavior for Swing

components.

Some will be overridden later

Some of the methods in Figure 5 are overridden further down the inheritance hierarchy in the

classes from which specific Swing components are instantiated. In those cases, they are

overridden to make the behavior more appropriate for those specific components.

Those not overridden define default behavior

However, many of them are not overridden, and those that are not overridden define default

behavior for many Swing components.

Numerous other methods are inherited also

There are numerous other methods that Swing components inherit from Container, Component,

and Object and expose to the outside world. However, since they are not specific to Swing, I

haven't listed them here.

Summary

The primary purpose of this lesson has been to provide reference information in summary form

on Swing properties, events, and methods.

Will use in subsequent lessons

This information will be used in subsequent lessons that discuss appearance and behavior that is

common to many Swing components.

Useful to understand common behavior

It is useful to understand the appearance and behavior that is common to many Swing

components before getting into the details of appearance and behavior that are specific to

individual components.

Learning the common behaviors first can greatly accelerate the learning process.

Sun documentation is the final authority

Please note that all of this information was extracted from the documentation for JDK 1.2.2 from

Sun.

Extracting the information was a tedious process, and it is possible that I may have made some

mistakes.

In the event of any conflict between what I have presented here and the Sun documentation, you

should consider the Sun documentation to be the final authority.

Where To From Here?

The next several lessons will discuss and illustrate some of the common Swing properties,

events, and methods listed above.

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com

