
Swing from A to Z

Some Simple Components

By Richard G. Baldwin

baldwin.richard@iname.com

Java Programming, Lecture Notes # 1005

July 31, 2000

 Preface

 Introduction

 Sample Program

 Interesting Code Fragments

 Summary

 Complete Program Listing

Preface

This series of lessons entitled "Swing from A to Z" discusses the capabilities and features of

Swing in quite a lot of detail.

For persons who need details

This series is intended for those persons who need to understand Swing at a detailed level. It is

recommended that in addition to studying this set of lessons, you also study my earlier lessons

having the following titles:

 The AWT and Swing, A Preview

 Swing and the Delegation Event Model

 Swing, New Event Types in Swing

 Swing, Understanding getContentPane() and other JFrame Layers

 The Swing Package, A Preview of Pluggable Look and Feel

 Swing, Hidden Buttons with Icons, Icon Images, Borders, Tool Tips, Nested Buttons, and

Other Fun Stuff

 Swing, Creating and Using Trees

 Swing, Custom Rendering of Tree Nodes

 Swing, Simplified Lists in Swing

 Swing, Understanding Component MVC Models

 Swing, Custom Rendering of JList Cells

 Swing, Custom List Selection Model for JList Objects

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html

Those lessons will introduce you to the use of Swing while avoiding much of the detail included

in this series.

Introduction

Swing components are beans

Swing components are JavaBean components. When we discuss JavaBean components, we are

usually interested in the interface to those components as determined by the methods, events, and

properties of the bean.

Swing components extend JComponent

Most swing components extend JComponent either directly or indirectly.

JComponent extends Container, which in turn extends Component.

Therefore, most Swing components inherit methods, events, and properties (ME&P) from these

three classes.

Of course, many Swing components supplement these inherited ME&P in the definition of other

classes that extend JComponent.

Understanding Swing components as a group

If you understand the ME&P that Swing components inherit from these three classes, you

already know a lot about a Swing component even before you begin examining it

individually. In other words, we can learn a lot about Swing components by examining the three

classes listed above.

Will examine these classes

The next several lessons will discuss ME&P that apply to a large number of Swing components,

because they are inherited from the classes JComponent, Container, and Component.

Need some components to work with

In order to discuss and illustrate these features of all Swing components, I need to write and

explain simple programs making use of some of the components that inherit those ME&P. In

other words, I need some components to use for illustration.

Purpose of the lesson

The purpose of this lesson is to introduce four fairly simple components that I will use for

illustration purposes in subsequent lessons. Those components are:

 JFrame

 JButton

 JLabel

 JTextField

I will provide a simple application that makes use of these components as "drop in" replacements

for the AWT components having similar names:

 Frame

 Button

 Label

 TextField

Sample Program

The sample program is named Swing11.java. A complete listing of the program is provided in

Figure 8.

A screen shot

A screen shot of the output from the program is shown below.

This output is rendered in the Sun Metal look and feel, which is a special look and feel

developed by Sun specifically for Java.

Although Swing provides a lot of capability for "dressing up" the GUI (such as the addition of

fancy borders on the components), this is a plain vanilla default rendering of the Metal look and

feel.

Four swing components were used

This program places a JButton, a JTextField, and a JLabel in the client area of a JFrame, 300

pixels wide and 100 pixels tall.

The components are placed in the frame using a FlowLayout manager.

Event handling behavior

A single action listener object is registered on both the button and the text field.

If you click on the button, or press the space bar while the button has the focus, the text on the

face of the button is displayed in the label.

If you press the enter key while the text field has the focus, the contents of the text field are

displayed in the label.

If you click the close button in the upper right corner of the JFrame, the program will terminate.

Very similar to an AWT program

As you will see when I discuss the code in the following section, the code to accomplish this is

essentially the same as would be used with a Frame, a Button, a TextField, and a Label with

the AWT.

One major difference

However, there is one difference required by Swing, which I will highlight in my discussion.

Interesting Code Fragments

The first fragment, shown in Figure 1, shows the import directives required for this program. I

used boldface to highlight the directive required for Swing.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

Figure 1

Not the same as the older version

If you compare this with a Swing program written to use the version of Swing that existed prior

to the release of JDK 1.2, you will notice that the import directive is different. Sun changed the

location of the Swing class libraries with the release of JDK 1.2.

The swing components

The fragment in Figure 2 shows the definition of the controlling class. Note that this class

extends JFrame.

class Swing11 extends JFrame
 implements ActionListener{
 JButton jButton = new JButton("JButton");
 JTextField jTextField = new JTextField(
 "JTextField");
 JLabel jLabel = new JLabel("JLabel");

Figure 2

The fragment also declares three reference variables for the types JButton, JTextField, and

JLabel.

New objects of these three classes are instantiated, and references to the objects are assigned to

the reference variables.

Names are similar to AWT components

The names of the Swing classes are the same as the names of corresponding AWT classes

(Frame, Button, TextField, and Label) except that the names of the Swing classes are

prepended with an upper-case J.

Swing provides "drop in" replacements for AWT components

Swing provides a replacement component for all, or at least most, of the components in the AWT

component library. (In a few cases, such as radio buttons, the Swing approach is different from

the AWT approach.) The naming convention involving the prepending of an upper-case "J" to

the AWT class name is used in most cases.

Implements ActionListener

The controlling class in this simple program implements the ActionListener interface.

That means that an object of the controlling class is an action listener that can be registered on

any component that has the ability to multicast action events.

Must define actionPerformed() method

This also means that the controlling class must provide a concrete definition for the method

named actionPerformed(), which is declared in the ActionListener interface.

The constructor

The code fragment in Figure 3 shows the beginning of the constructor for the controlling

class. This code is straightforward.

 Swing11(){//constructor
 jButton.addActionListener(this);
 jTextField.addActionListener(this);

Figure 3

Registering action listeners on sources

In this code, the object of the controlling class (this) is registered as an action listener on the

button and on the text field.

When do action events occur?

The button multicasts an action event when it is clicked with the mouse, or when the space bar is

pressed while the button has the focus.

The text field multicasts an action event when the Enter key is pressed while the text field has

the focus.

The one difference relative to AWT

The fragment in Figure 4 shows the only thing that is different between this Swing program and

a similar program that could be written using the corresponding components from the AWT.

 getContentPane().setLayout(
 new FlowLayout());
 getContentPane().add(jButton);
 getContentPane().add(jTextField);
 getContentPane().add(jLabel);
 setTitle("Copyright 2000, R.G.Baldwin");
 setSize(300,100);
 setVisible(true);

Figure 4

The AWT version

When programming with the AWT, to add a component to a Frame, or to set the layout manager

on a Frame, you simply invoke either the add() method or the setLayout() method on a

reference to the Frame object.

The Swing version

However, to add a component to a JFrame, or to set the layout manager on the JFrame object,

you must first invoke getContentPane() on a reference to the JFrame object.

Why getContentPane()

This has to do with the fact that with a Frame in AWT, every child of the Frame is located on

the same layer.

However, with Swing and the JFrame, you can place components on any one of about 65,000

different layers (getContentPane() represents only one of those layers).

Move components between layers at runtime

In addition, you can move components from one layer to another at runtime. If the components

overlap, those components on the layers with higher numbers will cover the components on

layers with lower numbers.

See an earlier tutorial for details

I discuss this in detail in the tutorial lesson entitled "Swing, Understanding getContentPane()

and other JFrame Layers", so I won't discuss it further here. Just remember that you need to do

it.

An anonymous inner class

The fragment in Figure 5 is an anonymous inner class that causes the program to terminate when

the user presses the close button on the JFrame. There is nothing about this that is peculiar to

Swing, so I won't discuss it further here. (Note that JDK 1.3 provides another approach to

terminating the program when the user presses the close button on the JFrame, but the code in

Figure 5 works with JDK 1.3 as well.)

 this.addWindowListener(
 new WindowAdapter(){
 public void windowClosing(
 WindowEvent e){
 System.exit(0);
 }//end windowClosing()
 }//end WindowAdapter
);//end addWindowListener
 }//end constructor

Figure 5

The main() method

The code in Figure 6 is a plain vanilla main() method that instantiates an object of the

controlling class, causing the GUI to appear on the screen. Again, there is nothing special about

this, so I won't discuss it further.

 public static void main(String args[]) {
 new Swing11();
 }//end main()

Figure 6

The action event handler

Finally, the code in Figure 7 is the actionPerformed() method that is invoked whenever an

action event occurs on either the button or on the text field. This is plain vanilla Delegation

Event Model material, so I won't discuss it further.

http://www.geocities.com/Athens/7077/scoop/onjava.html
http://www.geocities.com/Athens/7077/scoop/onjava.html

 public void actionPerformed(ActionEvent e){
 jLabel.setText(e.getActionCommand());
 }//end actionPerformed

}//end class Swing11

Figure 7

Summary

If you are familiar with event driven programming using the Delegation Event Model with the

AWT, but you are not familiar with Swing, you should have seen only one thing that might be

new to you.

getContentPane() is peculiar to Swing

The only thing about this program that should have been new to you is the requirement to use

getContentPane() whenever you need to add a component to the JFrame object, or you need to

set a layout manager on the JFrame object.

Otherwise, this program looks just like an AWT program with new names for the classes from

which the button, text field, and label are instantiated.

The purpose of the lesson

The purpose of this lesson was not to teach you anything significantly new. Rather, it was

simply to introduce you to the use of Swing JFrame, JButton, JTextField, and JLabel in place

of AWT Frame, Button, TextField, and Label.

Will use these components for illustration of Swing features

As mentioned earlier, I will use these components in the next few lessons as I explain some of

the methods, events, and properties that Swing components inherit from the JComponent,

Container, and Component classes.

Complete Program Listing

A complete listing of the program is provided in Figure 8.

/*File Swing11
Rev 3/26/00
Copyright 2000, R.G.Baldwin

Illustrates very simple use of JButton,
JTextField, and JLabel.

Tested using JDK 1.2.2 under WinNT 4.0 WkStn

**********************************/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;//jdk 1.2 version

class Swing11 extends JFrame
 implements ActionListener{
 JButton jButton = new JButton("JButton");
 JTextField jTextField = new JTextField(
 "JTextField");
 JLabel jLabel = new JLabel("JLabel");

 //---------------------------------------//
 Swing11(){//constructor
 jButton.addActionListener(this);
 jTextField.addActionListener(this);

 getContentPane().setLayout(
 new FlowLayout());
 getContentPane().add(jButton);
 getContentPane().add(jTextField);
 getContentPane().add(jLabel);
 setTitle("Copyright 2000, R.G.Baldwin");
 setSize(300,100);
 setVisible(true);

 //.....................................//
 //Anonymous inner terminator class
 this.addWindowListener(
 new WindowAdapter(){
 public void windowClosing(
 WindowEvent e){
 System.exit(0);
 }//end windowClosing()
 }//end WindowAdapter
);//end addWindowListener
 }//end constructor

 //---------------------------------------//
 public static void main(String args[]) {
 new Swing11();
 }//end main()

 //---------------------------------------//
 public void actionPerformed(ActionEvent e){
 jLabel.setText(e.getActionCommand());
 }//end actionPerformed
 //---------------------------------------//
}//end class Swing11

Figure 8

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

mailto:baldwin.richard@iname.com

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

