
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

JavaBeans, Properties of Beans, Constrained Properties

Java Programming, Lecture Notes # 512, Revised 02/19/98.

 Preface

 Introduction

 Introspection on the Bean Class

 Properties

 Sample Bean Program

o Interesting Code Fragments from the Bean Program

o Program Listing for the Bean Program

 Sample Test Program

o Interesting Code Fragments from the Test Program

o Program Listing for the Test Program

 Review

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

The material in this lesson is extremely important. However, there is simply too much material to

be covered in detail during lecture periods. Therefore, students in Prof. Baldwin's Advanced

Java Programming classes at ACC will be responsible for studying this material on their own,

and bringing any questions regarding the material to class for discussion.

This lesson was originally written on October 19, 1997 using the software and documentation in

the JDK 1.1.3 download package along with the April 97 release of the BDK 1.0 download

package.

Introduction

According to the document from JavaSoft entitled Using the Beans Development Kit 1.0 April

1997 A Tutorial:

An object with constrained properties allows other objects to veto a constrained property value

change. Constrained property listeners can veto a change by throwing a PropertyVetoException.

In this lesson, we will develop and test a bean class, named Beans06, that illustrates the use of

constrained properties.

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/

This bean class is examined with the Introspector and is tested with a test program designed

specifically to exercise the ability of the bean to broadcast an event to a list of registered

VetoableChangeListener objects whenever the value of one of the properties becomes subject

to change.

The bean will also be bound. As such, the test program will also confirm that the bean properly

broadcasts an event to a list of registered PropertyChangeListener objects whenever the value

of one of the properties actually changes.

Introspection on the Bean Class

One way to describe a bean is to describe it from the viewpoint of a Visual Builder Tool (VBT)

using introspection. In an earlier lesson we developed a Java application named Introspect01

that can be used to apply introspection to a bean class and to record the results in a temporary

disk file. The following box shows the results of introspection on the sample bean class that was

developed for this lesson.

Name of bean: Beans06

Class of bean: class Beans06

==== Properties: ====

Name: preferredSize

 Type: class java.awt.Dimension

 Get method: public synchronized java.awt.Dimension

 Beans06.getPreferredSize()

 Set method: null

Name: theColor

 Type: class java.awt.Color

 Get method: public synchronized java.awt.Color

 Beans06.getTheColor()

 Set method: public synchronized void

 Beans06.setTheColor(java.awt.Color)

==== Events: ====

Event Name: vetoableChange

 Add Method: public synchronized void

 Beans06.addVetoableChangeListener(

 java.beans.VetoableChangeListener)

 Remove Method: public synchronized void

 Beans06.removeVetoableChangeListener(

 java.beans.VetoableChangeListener)

 Event Type: vetoableChange

Event Name: propertyChange

 Add Method: public synchronized void

 Beans06.addPropertyChangeListener(

 java.beans.PropertyChangeListener)

 Remove Method: public synchronized void

 Beans06.removePropertyChangeListener(

 java.beans.PropertyChangeListener)

 Event Type: propertyChange

==== Methods: ====

makeRed

removePropertyChangeListener

getTheColor

setTheColor

removeVetoableChangeListener

getPreferredSize

addPropertyChangeListener

makeBlue

addVetoableChangeListener

The primary functional difference between this bean class and bean classes developed in

previous lessons is shown in the highlighted section entitled Events. This section shows the add

and remove methods which provide the ability of the bean to notify a list of

VetoableChangeListener objects whenever one of the properties is subject to change. (Note that

this bean does not notify listeners of changes in the value of the property named preferredSize

but it does notify listeners of changes in the value of the other theColor.)

Properties

As discussed in earlier lessons, Java beans supports four kinds of properties:

 Simple

 Indexed

 Bound

 Constrained

Previous lessons have discussed Simple, Indexed, and Bound properties. This lesson will

concentrate on Constrained properties.

The bean class developed for this lesson has the following property which is both Bound and

Constrained properties:

Name: theColor

 Type: class java.awt.Color

 Get method: public synchronized java.awt.Color

 Beans06.getTheColor()

 Set method: public synchronized void

 Beans06.setTheColor(java.awt.Color)

A single property was included in this bean for simplicity. A subsequent sample program will

illustrate the use of a bean with multiple properties which are both Bound and Constrained.

The bean maintains a list of objects that request to be notified whenever there is a change in the

value of the Bound propertie. It also maintains a list of objects that request to be notified

whenever a property value is subject to change. This is often referred to as registering listener

objects to receive an event.

Objects that request to be added to the first list mentioned above must be of a class that

implements the PropertyChangeListener interface and defines the propertyChange() method

that is declared in that interface.

Objects that request to be added to the second list must be of a class tha timplements the

VetoableChangeListener interface and defines the vetoableChange() method that is declared in

that interface.

Whenever the value of the property becomes subject to change, a vetoableChange() event is

broadcast to all of the registered VetoableChangeListener objects. Those objects can either

accept the change or veto it. An object that vetos the change does so by raising an exception.

The event is broadcast by invoking the vetoableChange() method on all of the objects on the

list. When this method is invoked on a listener object, an object of type PropertyChangeEvent

is passed as a parameter.

Note that the PropertyChangeEvent object passed as a parameter to the vetoableChange()

method in the listener objects is the same type of object passed to the propertyChange() method

for Bound properties. The object contains the following information:

 Object source, //the bean object in this case

 String propertyName, //the name of the changed property

 Object oldValue, //the old value of the changed property

 Object newValue //the new value of the changed property

As you can see, three of the parameters passed to the propertyChange() method are of type

Object, and one is of type String. The parameters of type Object sometimes need to be

downcast to the correct type to be used in the receiving method.

Notification of the VetoableChangeListener objects takes place before the change in the

property value has occurred.

The following methods are available to extract information from the object passed as a

parameter. These methods are defined by the PropertyChangeEvent class or its superclass,

EventObject:

 public Object getSource();

 public Object getNewValue();

 public Object getOldValue();

 public String getPropertyName;

 public void setPropagationId();

 public Object getPropagationId;

Since the property in this sample program is both Constrained and bound, if the change is not

vetoed (and if it really does represent a change in the value), a propertyChange() event is

broadcast to all of the PropertyChangeListener objects registered on that list.

Sample Bean Program

This program was designed to be compiled and executed under JDK 1.1.3 or later.

This program illustrates the use of beans with a property which is both bound and constrained.

The bean has one property named theColor. Two separate instance variables named oldColor

and newColor are used to maintain the value of the property.

Applying introspection to the bean yields the results shown earlier in this lesson.

The most significant new addition to this bean class is the ability for a listener to veto a proposed

change in the value of a property. When that happens, the proposed new property value is

discarded and the actual property value is not changed.

The following methods:

 setTheColor()

 makeRed()

 makeBlue()

all provide the opportunity for a VetoableChangeListener object to veto a proposed new color

value for the property named theColor.

Each of these methods receives a proposed new color value as a parameter when it is invoked.

The method saves the current value of the property in the instance variable named oldColor.

Then it makes a call to the method named notifyVetoableChange() inside a try block.

The notifyVetoableChange() method broadcasts a vetoableChange() event to all of the

VetoableChangeListener objects that are registered to receive such an event. The broadcast is

accomplished making use of the VetoableChangeSupport class which not only handles the

firing of the event, but does some additional necessary processing as well.

Any listener object that wants to veto the change throws a PropertyVetoException which finds

its way back to method listed above that invoked notifyVetoableChange() in the first place.

When the exception is thrown, it is caught in a catch block. The code in the catch block restores

the property value to its original value and displays the exception. In other words, the proposed

new value is replaced by the value of the property that existed before the proposed new value

was received.

Whether it is vetoed or not, the proposed new value (or the replacement for the proposed new

value) becomes the current value and is used to set the background color of the bean.

The proposed new value is also compared with the value of the property that existed before the

proposed new value was received. If they are different (meaning that an actual property change

has occurred) the notifyPropertyChange() method is invoked to broadcast a propertyChange()

event to all PropertyChangeListener objects registered to receive such an event. If the property

value didn't actually change, the propertyChange() event is not broadcast.

An important aspect of the behavior of this bean is based on the use of the

fireVetoableChange() method of the VetoableChangeSupport class to actually broadcast the

event. A description of this method follows. Pay particular attention to the behavior of the

method in the circumstance where someone wants to veto the change.

 public void fireVetoableChange(String propertyName,

 Object oldValue,

 Object newValue) throws PropertyVetoException

 Report a vetoable property update to any registered

 listeners. If anyone vetos the change, then fire a new

 event reverting everyone to the old value and then

 rethrow the PropertyVetoException.

 No event is fired if old and new are equal and non-null

 Parameters:

 propertyName - The name of the property that was

 changed.

 oldValue - The old value of the property.

 newValue - The new value of the property.

 Throws: PropertyVetoException

 if the recipient wishes the property change to be

 rolled back.

.

Interesting Code Fragments from the Bean Program

This bean class contains a number of interesting code fragments. The following statements are

used to store the current property value and a proposed new property value. These are

straightforward and the only thing that makes them interesting is the way that they are used later

in dealing with the possibility of a veto.

 protected Color oldColor;

 protected Color newColor;

The following reference variables are used to access the list-maintenance and event-firing

capabilities of the PropertyChangeSupport and VetoableChangeSupport classes. An object of

each of these classes is instantiated in the constructor.

 PropertyChangeSupport changeSupportObj;

 VetoableChangeSupport vetoSupportObj;

This bean is a visible square that is initialized to yellow and can then be changed to red or blue

by invoking methods of the class named makeRed() and makeBlue(). The color can be set to

any color by invoking the setTheColor() method and passing a color in as a parameter. The

following code fragment from the constructor is used to perform the initialization.

 newColor = Color.yellow;

 setBackground(newColor);

As mentioned earlier, objects of the classes PropertyChangeSupport and

VetoableChangeSupport are instantiated in the constructor. These classes can either be

extended or instantiated in order to take advantage of the capabilities that they offer. In this case,

since this bean class already extends another class, it is necessary to instantiate the support

classes as separate objects.

The following code fragment in the constructor performs the required instantiation. The

constructor for these support classes requires an object reference as a parameter. That object

reference is later used to identify the source of events fired by the support objects. In this case,

we pass the this reference in as a parameter to specify the bean as the source of the events.

 changeSupportObj = new PropertyChangeSupport(this);

 vetoSupportObj = new VetoableChangeSupport(this);

In this bean, there are three different methods that can modify the values of the Color property:

 makeRed()

 makeBlue()

 setTheColor()

Each of these methods must deal with the possibility that a VetoableChangeListener object will

veto the proposed change that results from invoking the method. A veto means that the proposed

change must not be implemented.

When a listener object vetos a change, the event-firing mechanism in the support class

automatically fires a second event specifying the old value as the new value. This has the effect

of notifying all of the listener objects that the property value has been rolled back to its previous

value. However, you must provide the code in the bean to actually implement the rollback.

The following method is invoked by all three of the methods listed above to implement the

rollback. A veto occurs when one of the listener objects raises a PropertyVetoException. At the

point where the following method is invoked, the current value of the property has been stored in

the instance variable named oldColor and the proposed new value has been stored in the

instance variable named newColor.

The code in the following method monitors for a veto by enclosing the call to the

notifyVetoableChange() method inside a try block. If a listener object vetos the change, a

PropertyVeotException will be raised and the code in the catch block will be executed.

Otherwise, the code in the catch block will be skipped.

In the case of a veto, the current value is recovered from oldColor and stored in newColor,

thereby replacing the proposed new value with the unchanged current value. From that point

forward, the current value is used in place of the proposed new value because the proposed new

value has been replaced by the current value..

Recall that the property is also bound to support a list of PropertyChangeListener objects who

have registered to be notified whenever the property value actually changes. These listener

objects should not be notified of a proposed change that isn't implemented because of a veto,

because in that case no change actually took place.

An if statement is used to determine if the property value has actually changed, and if so, the

PropertyChangeListener objects are notified. In the case of an actual change in the property

value, the background color of the bean is also changed to reflect the new value. If there was no

actual change, the background color is not changed.

This strategy is implemented by the code in the following method.

 void processTheColors(){

 try{//test to see if anyone vetos the new color

 notifyVetoableChange("theColor");

 }catch(PropertyVetoException exception){

 //Someone vetoed the new color. Don't use newColor.

 newColor = oldColor;// Restore oldColor instead

 //Display the veto exception

 System.out.println(exception);

 }//end catch

 if(!newColor.equals(oldColor)){//if color changed

 this.setBackground(newColor);//display new color

 //notify property listeners of property change

 notifyPropertyChange("theColor");

 }//end if

 }//end process the colors

As a result of the use of design patterms, the following "set" and "get" methods, in conjunction

with the instance variables named oldColor and newColor, constitute a property named

theColor. Note the call to the above method named processTheColors() inside the

setTheColor() method. This call deals with the possibility of a veto of the proposed new Color

value.

 public synchronized void setTheColor(Color inColor){

 oldColor = newColor;//save current color

 newColor = inColor;//proposed new color

 processTheColors();//go process the proposed new color

 }//end setTheColor()

 public synchronized Color getTheColor(){

 return oldColor;

 }//end getTheColor

Because they are public, the following two methods are exposed to the builder tool as accessible

methods. These two methods attempt to change the value of the Color property and are subject

to the possibility of a veto. Note the calls to the processTheColors() method (discussed earlier)

which handles that possibility.

 public synchronized void makeBlue(){

 oldColor = newColor;//save current color

 newColor = Color.blue;//establish proposed new color

 processTheColors();//go process the proposed new color

 }//end makeBlue()

 //--//

 public synchronized void makeRed(){

 oldColor = newColor;//save current color

 newColor = Color.red;//establish proposed new color

 processTheColors();//go process the proposed new color

 }//end makeRed()

The following two methods are used to maintain a list of PropertyChangeListener objects.

These are listener objects that have been registered to be notified whenever there is a change in a

bound property.

Note that unlike a sample program in a previous lesson where we "rolled our own" list-

maintenance capability, these methods simply make use of the corresponding list-maintenance

methods in the previously instantiated object of type PropertyChangeSupport that is referenced

by the reference variable named changeSupportObj. This results in a significant reduction in

programming effort on our part.

 //Add a property change listener object to the list.

 public synchronized void addPropertyChangeListener(

 PropertyChangeListener listener){

 //Pass the task on to the support class method.

 changeSupportObj.addPropertyChangeListener(listener);

 }//end addPropertyChangeListener

 //---//

 //Remove a property change listener from the list.

 public synchronized void removePropertyChangeListener(

 PropertyChangeListener listener){

 //Pass the task on to the support class method.

 changeSupportObj.removePropertyChangeListener(listener);

 }//end removePropertyChangeListener()

The following two methods are used to maintain a list of VetoableChangeListener objects.

These are listener objects that have been registered to be notified whenever there is a proposed

change in a constrained property. These listener objects have the right to veto the proposed

change and prevent it from being implemented.

Similar to the previous discussion, these methods make use of the corresponding list-

maintenance methods in the previously instantiated object of type VetoableChangeSupport that

is referenced by the reference variable named vetoSupportObj. Not having to create our own

list-maintenance code results in a significant reduction in programming effort on our part.

 //Add a vetoable change listener object to the list.

 public synchronized void addVetoableChangeListener(

 VetoableChangeListener listener){

 //Pass the task on to the support class method.

 vetoSupportObj.addVetoableChangeListener(listener);

 }//end addVetoableChangeListener

 //---//

 //Remove a vetoable change listener from the list.

 public synchronized void removeVetoableChangeListener(

 VetoableChangeListener listener){

 //Pass the task on to the support class method.

 vetoSupportObj.removeVetoableChangeListener(listener);

 }//end removeVetoableChangeListener()

The following method is used to notify PropertyChangeListener objects of changes in the

properties. The incoming parameter is the name of the property that has changed. That property

name is encapsulated in the object that is passed when the event is fired, and can be used by the

listener object to differentiate between different bound properties.

Note that this method makes use of the firePropertyChange() method of an object of the

PropertyChangeSupport class to actually fire the event. This eliminates the requirement for us

to write our own code to fire the events to all the objects on the list of registered objects.

 protected void notifyPropertyChange(

 String changedProperty){

 //Pass the task on to the support class method.

 changeSupportObj.firePropertyChange(

 changedProperty,oldColor,newColor);

 }//end notifyPropertyChange()

The following method is used to notify VetoableChangeListener objects of proposed changes

in the property values. The incoming parameter is the name of the property that is proposed to be

changed. This property name is encapsulated in the object that is passed to the listener object

when the event is fired.

This method uses the fireVetoableChange() method of the VetoableChangeSupport class to

actually fire the event. As discussed earlier, the fireVetoableChange() method actually performs

some data processing and does more than simply fire the event. In particular, if the proposed

change is vetoed by a listener object, another round of events is fired to "roll back" the value to

the value of the property before the proposed change.

 protected void notifyVetoableChange(

 String vetoableProperty)

 throws PropertyVetoException{

 //Pass the task on to the support class method.

 vetoSupportObj.fireVetoableChange(

 vetoableProperty,oldColor,newColor);

 }//end notifyVetoableChange()

A consolidated listing of the entire bean class is provided in the next section.

Program Listing for the Bean Program

This section contains a consolidated listing of the bean class.

/*File Beans06.java Copyright 1997, R.G.Baldwin

This program was designed to be compiled and executed

under JDK 1.1.3 or later.

This program illustrates the use of beans with a property

which is both bound and constrained.

The bean has one property named theColor. Two separate

instance variables named oldColor and newColor are used

to maintain the value of the property.

Applying introspection to the bean yields the following:

Name of bean: Beans06

Class of bean: class Beans06

==== Properties: ====

Name: preferredSize

 Type: class java.awt.Dimension

 Get method: public synchronized java.awt.Dimension

 Beans06.getPreferredSize()

 Set method: null

Name: theColor

 Type: class java.awt.Color

 Get method: public synchronized java.awt.Color

 Beans06.getTheColor()

 Set method: public synchronized void

 Beans06.setTheColor(java.awt.Color)

==== Events: ====

Event Name: vetoableChange

 Add Method: public synchronized void

 Beans06.addVetoableChangeListener(

 java.beans.VetoableChangeListener)

 Remove Method: public synchronized void

 Beans06.removeVetoableChangeListener(

 java.beans.VetoableChangeListener)

 Event Type: vetoableChange

Event Name: propertyChange

 Add Method: public synchronized void

 Beans06.addPropertyChangeListener(

 java.beans.PropertyChangeListener)

 Remove Method: public synchronized void

 Beans06.removePropertyChangeListener(

 java.beans.PropertyChangeListener)

 Event Type: propertyChange

==== Methods: ====

makeRed

removePropertyChangeListener

getTheColor

setTheColor

removeVetoableChangeListener

getPreferredSize

addPropertyChangeListener

makeBlue

addVetoableChangeListener

The most significant new addition to this bean class is

the ability for a listener to veto a proposed change in the

value of a property. When that happens, the proposed new

property value is discarded and the actual property value

is not changed.

 The following methods:

 setTheColor()

 makeRed()

 makeBlue()

 all provide the opportunity for a VetoableChangeListener

 object to veto a proposed new color value for the

 property named theColor.

 Each of these methods receives a proposed new color value

 as a parameter when it is invoked. The method saves the

 current value of the property in the instance variable

 named oldColor. Then it makes a call to the method named

 notifyVetoableChange() inside a try block.

 The notifyVetoableChange broadcasts a vetoableChange()

 event to all of the VetoableChangeListener objects that

 are registered to receive such an event. Any listener

 object that wants to veto the change throws a

 PropertyVetoException which finds its way back to method

 listed above that invoked notifyVetoableChange() in the

 first place.

 When the exception is thrown, it is caught in a catch

 block. The code in the catch block restores the

 property value to its original value and displays the

 exception. In other words, the proposed new value is

 replaced by the value of the property before the

 proposed new value was received.

 This proposed new value then becomes the current value

 and is used to set the background color of the bean.

 The proposed new value is also compared with the value

 of the property before the proposed new value was

 received. If they are different, meaning that a

 property change has occurred, the notifyPropertyChange()

 method is invoked to broadcast a propertyChange() event

 to all PropertyChangeListener objects registered to

 receive such an event.

 An important aspect of the behavior of this bean is

 based on the use of the fireVetoableChange() method of

 the VetoableChangeSupport class to actually broadcast

 the event. A description of this method follows. Pay

 particular attention to the behavior of the method in

 the event that someone wants to veto the change.

 public void fireVetoableChange(String propertyName,

 Object oldValue,

 Object newValue) throws PropertyVetoException

 Report a vetoable property update to any registered

 listeners. If anyone vetos the change, then fire a new

 event reverting everyone to the old value and then

 rethrow the PropertyVetoException.

 No event is fired if old and new are equal and non-null

 Parameters:

 propertyName - The name of the property that was

 changed.

 oldValue - The old value of the property.

 newValue - The new value of the property.

 Throws: PropertyVetoException

 if the recipient wishes the property change to be

 rolled back.

//===//

*/

import java.awt.event.*;

import java.awt.*;

import java.io.Serializable;

import java.util.*;

import java.beans.*;

//===//

//All beans should implement the Serializable interface

public class Beans06 extends Canvas

 implements Serializable{

 //The following instance variables are used to store the

 // current property value and a proposed new property

 // value.

 protected Color oldColor;

 protected Color newColor;

 //The following reference variables are used to access

 // the list maintenance and event firing capabilities

 // of the PropertyChangeSupport and VetoableChangeSupport

 // classes. An object of each of these classes is

 // instantiated in the constructor.

 PropertyChangeSupport changeSupportObj;

 VetoableChangeSupport vetoSupportObj;

 //---//

 public Beans06(){//constructor

 //This bean is a visible square that is initialized to

 // yellow and can then be changed to red or blue by

 // invoking methods of the class named makeRed() and

 // makeBlue().

 //The color can be set to any color by invoking the

 // setTheColor() method and passing a color in as a

 // parameter.

 //Initialize the color of the square.

 newColor = Color.yellow;

 setBackground(newColor);

 //Instantiate objects of the support classes to handle

 // list maintenance and event firing tasks. The

 // constructor for these support classes requires this

 // object as the source of the events.

 changeSupportObj = new PropertyChangeSupport(this);

 vetoSupportObj = new VetoableChangeSupport(this);

 }//end constructor

 //---//

 //This method defines the preferred display size of the

 // bean object.

 public synchronized Dimension getPreferredSize(){

 return new Dimension(50,50);

 }//end getPreferredSize()

 //---//

 //This common method is invoked by all three property-

 // changing methods to process the proposed new color.

 void processTheColors(){

 try{//test to see if anyone vetos the new color

 notifyVetoableChange("theColor");

 }catch(PropertyVetoException exception){

 //Someone vetoed the new color. Don't use newColor.

 newColor = oldColor;// Restore oldColor instead

 //Display the veto exception

 System.out.println(exception);

 }//end catch

 if(!newColor.equals(oldColor)){//if color changed

 this.setBackground(newColor);//display new color

 //notify property listeners of property change

 notifyPropertyChange("theColor");

 }//end if

 }//end process the colors

 //---//

 //The following "set" and "get" methods in conjunction

 // with the instance variable named oldColor constitute a

 // property named theColor.

 public synchronized void setTheColor(Color inColor){

 oldColor = newColor;//save current color

 newColor = inColor;//proposed new color

 processTheColors();//go process the proposed new color

 }//end setTheColor()

 public synchronized Color getTheColor(){

 return oldColor;

 }//end getTheColor

 //---//

 //The following two methods are exposed to the builder

 // tool as accessible methods.

 public synchronized void makeBlue(){

 oldColor = newColor;//save current color

 newColor = Color.blue;//establish proposed new color

 processTheColors();//go process the proposed new color

 }//end makeBlue()

 public synchronized void makeRed(){

 oldColor = newColor;//save current color

 newColor = Color.red;//establish proposed new color

 processTheColors();//go process the proposed new color

 }//end makeRed()

 //---//

 //The following two methods are used to maintain a list

 // of PropertyChangeListener objects who request to be

 // added to the list or who request to be removed from

 // the list.

 //Add a property change listener object to the list.

 public synchronized void addPropertyChangeListener(

 PropertyChangeListener listener){

 //Pass the task on to the support class method.

 changeSupportObj.addPropertyChangeListener(listener);

 }//end addPropertyChangeListener

 //---//

 //Remove a property change listener from the list.

 public synchronized void removePropertyChangeListener(

 PropertyChangeListener listener){

 //Pass the task on to the support class method.

 changeSupportObj.removePropertyChangeListener(listener);

 }//end removePropertyChangeListener()

 //---//

 //The following two methods are used to maintain a list

 // of listener objects who request to be registered

 // as VetoableChangeListener objects, or who request to

 // be removed from the list.

 //Add a vetoable change listener object to the list.

 public synchronized void addVetoableChangeListener(

 VetoableChangeListener listener){

 //Pass the task on to the support class method.

 vetoSupportObj.addVetoableChangeListener(listener);

 }//end addVetoableChangeListener

 //---//

 //Remove a vetoable change listener from the list.

 public synchronized void removeVetoableChangeListener(

 VetoableChangeListener listener){

 //Pass the task on to the support class method.

 vetoSupportObj.removeVetoableChangeListener(listener);

 }//end removeVetoableChangeListener()

 //---//

 //The following method is used to notify listener

 // objects of changes in the properties. The incoming

 // parameter is the name of the property that has

 // changed. Note that this method makes use of the

 // firePropertyChange() method of an object of the

 // PropertyChangeSupport class to actually fire the

 // event.

 protected void notifyPropertyChange(

 String changedProperty){

 //Pass the task on to the support class method.

 changeSupportObj.firePropertyChange(

 changedProperty,oldColor,newColor);

 }//end notifyPropertyChange()

 //---//

 //The following method is used to notify

 // VetoableChangeListener objects of proposed changes in

 // the property values. The incoming parameter is the

 // name of the property that is proposed to be changed.

 // This method uses the fireVetoableChange() method of

 // the VetoableChangeSupport class to actually fire the

 // event. As discussed earlier in this file, the

 // fireVetoableChange method actually performs some data

 // processing and does more than simply fire the event.

 protected void notifyVetoableChange(

 String vetoableProperty)

 throws PropertyVetoException{

 //Pass the task on to the support class method.

 vetoSupportObj.fireVetoableChange(

 vetoableProperty,oldColor,newColor);

 }//end notifyVetoableChange()

}//end class Beans06.java

//===//

Sample Test Program

This program was designed to be compiled and executed under JDK 1.1.3 or later. The purpose

of the program is to test the constrained property aspects of the bean class named Beans06.

This program has been simplified in an attempt to make it understandable. A more realistic and

complex program is provided in the Review section of this lesson.

You will need to refer to the comments in the source code for the Beans06 class to fully

understand how this test program works.

The visual manifestation of the Beans06 bean is a colored square. The bean is placed in a

Frame object by this test program. The square is initially yellow.

The bean has one property named theColor which controls the color of the square.

Two exposed methods of the bean, makeRed() and makeBlue(), can be invoked to change the

color to red or blue.

Invoking the makeRed() or makeBlue() methods changes the value of the property named

theColor which in turn changes the color of the square.

You can also change the value of the property named theColor by invoking the setTheColor()

method. In this case you can pass in any color as a parameter.

The property named theColor is a bound constrained property. The bean supports a multicast

list of PropertyChangeListener objects and also supports a multicast list of

VetoableChangeListener objects.

PropertyChangeListener objects are simply notified whenever a change in a property value

occurs.

VetoableChangeListener objects are notified of a proposedchange in the property value and

have the opportunity to veto the change by raising a PropertyVetoException.

The program begins with the yellow square bean and three Buttons in a Frame on the screen.

The buttons are labeled Red, Green, and Blue.

The Red and Blue buttons invoke the makeRed() and makeBlue() methods discussed above.

The Green button invokes the setTheColor() method causing the color green to be passed in as a

parameter. Therefore, clicking this button will attempt to change the value of the property named

theColor to green.

A listener class is defined which implements both the PropertyChangeListener interface and

the VetoableChangeListener interface. As a result, a listener object of this class can register to

be notified of proposed property changes with veto authority and can also register to be notified

of actual changes.

One such listener object is instantiated and registered to listen for both propertyChange() and

vetoableChange() events.

This object is designed to veto any proposal to change the value of the property to green.

Therefore, if you click the Red button, the square will change to red and the following will

appear on the screen.

Note the use of the r, g, and b in the square brackets to indicate the contribution of each of these

three primary colors to the final color. The maximum contribution of a color is indicated by a

value of 255 while a value of 0 indicates no contribution of that primary color.

Note also that both the VetoableChangeListener object and the PropertyChangeListener

object produce output on the screen. Later we will see that when a proposed change is vetoed,

there is no output from the PropertyChangeListener object, and there are two separate outputs

from the VetoableChangeListener object.

Veto Listener,

New property value: java.awt.Color[r=255,g=0,b=0]

Change Listener,

New property value: java.awt.Color[r=255,g=0,b=0]

If you click the Blue button, the square will change to blue and the following will appear on the

screen.

Veto Listener,

New property value: java.awt.Color[r=0,g=0,b=255]

Change Listener,

New property value: java.awt.Color[r=0,g=0,b=255]

If you click the Green button, the color of the square will not change. The following will appear

on the screen indicating that the proposed new color was vetoed and another event was multicast

which rolled the property value back to its value before the proposed change (which in this case

was blue).

Note that there was no output from the PropertyChangeListener object in this case, because the

proposed change to green was vetoed and there was no actual change in the value of the

property.

Note also that there are two outputs from the VetoableChangeListener object. The first output

indicates the proposed new property value. The second indicates that a second round of events

was fired to roll the property value back to its original value.

The last line in the output was produced by code in the bean proper and was a display of the

contents of the exception object that was instantiated and passed by the listener object that raised

the exception to veto the proposed change.

Veto Listener,

New property value: java.awt.Color[r=0,g=255,b=0]

Veto Listener,

New property value: java.awt.Color[r=0,g=0,b=255]

java.beans.PropertyVetoException: No green allowed

After the veto, if you click on the Red button, the color of the square will change to red in the

normal manner and the following will appear on the screen:

Veto Listener,

New property value: java.awt.Color[r=255,g=0,b=0]

Change Listener,

New property value: java.awt.Color[r=255,g=0,b=0]

In all of the above examples, line breaks were manually inserted in the text to make it fit better in

this format.

Although this sample program was constructed for simplicity having only one property in the

bean and only one listener object, the structure of the Beans06 bean class will support any

number of listener objects in either category.

Obviously the number of properties could also be expanded to a very large number.

These expansions would require more processing on the part of the listener objects. With the

structure being used, every object registered to be notified of proposed changes would be

notified of every proposed change on every property and it may be necessary for the listener

objects to differentiate between the properties in order to decide what to do.

Likewise, every object registered to be notified of actual changes would be notified of every

actual change on every property.

Each notification event contains the name of the property to which the actual or proposed change

applies. The objects could use that information to make decisions on the basis of property names

and proposed changes in property values.

Note that the design pattern specifications for Java beans provide for designing more selective

notification schemes, but they are not being used in this example.

Interesting Code Fragments from the Test Program

This test program places the Beans06 object and several Button objects on a Frame object. The

buttons are used to test the various aspects of the bean.

We're going to skip all the standard stuff that creates the Frame object, adds buttons to the

Frame, instantiates listener objects for the buttons, registers the listener objects for

actionPerformed() events on the buttons, etc.

However, we will highlight the following code fragment that instantiates a Beans06 object and

adds it to the Frame object.

 Beans06 myBean = new Beans06();

 add(myBean);//Add it to the Frame

The following code fragment will instantiate and register an object to listen for proposed and

actual changes in the bean's property. This listener object has the ability to veto proposed

changes.

This dual capability for a single listener object comes about because, as we will see later, the

class of this object named MyPropertyListenerClass implements both the

VetoableChangeListener interface and the PropertyChangeListenerClass. It also defines both

the vetoableChange() and the propertyChange() methods declared in those two interfaces.

 MyPropertyListenerClass myListenerObject =

 new MyPropertyListenerClass();

 myBean.addPropertyChangeListener(myListenerObject);

 myBean.addVetoableChangeListener(myListenerObject);

An object of the following class is instantiated and registered to listen for actionPerformed()

events on the button labeled "setTheColor".

When the setTheColor button is pressed, the object invokes the setTheColor() method on the

bean passing in a color parameter of green.

Insofar as the VetoableChangeListener objects are concerned, this represents a proposal to

change the Color property to green. As mentioned previously, this change will be vetoed, but

that is beyond the scope of the code in this class. As far as the methods in this class are

concerned, this is a direct order to set the property value of the property named theColor to a

value representing green.

class SetTheColorListener implements ActionListener{

 Beans06 myBean;//save a reference to the bean here

 SetTheColorListener(Beans06 inBean){//constructor

 myBean = inBean;//save a reference to the bean

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.setTheColor(Color.green);

 }//end actionPerformed()

}//end class SetTheColorListener

The following two classes are used to instantiate objects which are registered to listen to two of

the buttons on the test panel.

When the buttons with the names corresponding to the names of the methods are pressed, these

objects invoke methods of the bean under test.

An object of the first class invokes the makeRed() method and an object of the second class

invokes the makeBlue() method.

As mentioned earlier, these methods attempt to change the value of the property named

theColor. In the large sense, any of the VetoableChangeListener objects have the right to veto

the proposed change. However, as this test program is structured, the change to red or blue is not

vetoed and the change will be implemented causing the color of the rectangle on the Frame

object to change colors.

class RedActionListener implements ActionListener{

 Beans06 myBean;//save a reference to the bean here

 RedActionListener(Beans06 inBean){//constructor

 myBean = inBean;//save the reference to the bean

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.makeRed();

 }//end actionPerformed()

}//end class RedActionListener

//---//

class BlueActionListener implements ActionListener{

 Beans06 myBean;//save a reference to the bean here

 BlueActionListener(Beans06 inBean){//constructor

 myBean = inBean;//save the reference to the bean

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.makeBlue();

 }//end actionPerformed()

}//end class BlueActionListener

The following class is used to instantiate listener objects that may be linked to bound and/or

constrained properties of the bean.

When one of these objects is registered on the bean as a VetoableChangeListener, it will

receive notifications of all the proposed changes to all the constrained properties of the bean.

Once notified, the listener object has the right to veto the proposed change by raising a

PropertyVetoException.

When one of these objects is registered on the bean as a PropertyChangeListener, it will

receive notifications of all actual changes to all of the bound properties of the bean.

When notified of a proposed or actual change, the object displays the actual or proposed new

property value.

When notified of a proposed change, the object has the ability to veto the change by raising a

PropertyVetoException. The design of this class is such that any proposed change to the color

green will be vetoed.

Note that this class implements both the PropertyChangeListener and the

VetoableChangeListener interfaces. This makes it possible for a single object of this class to be

notified both of proposed changes and actual changes to the properties of the bean.

Note that the constructor for the PropertyVetoException thrown by the vetoableChange()

method requires two arguments. The first is a message of type String. The second is the

PropertyChangeEvent object that is passed to the method and which is being vetoed.

In other words, the event describing the property change that is being vetoed is encapsulated

(along with a message) and sent to the catch block that will eventually process the exception.

Note also that the argument that is passed to the vetoableChange() method is of type

PropertyChangeEvent which is the same type that is passed to the propertyChange() method.

In particular, the incoming event type is the same for both event handlers, and there is no such

thing as a VetoableChangeEvent tailored to the vetoableChange() method.

class MyPropertyListenerClass

 implements PropertyChangeListener,VetoableChangeListener{

 public void propertyChange(PropertyChangeEvent event){

 //Extract and display the new value

 System.out.println(

 "Change Listener, New property value: "

 + event.getNewValue());

 }//end propertyChange()

 //---//

 public void vetoableChange(PropertyChangeEvent event)

 throws PropertyVetoException{

 //Extract and display proposed new value

 System.out.println(

 "Veto Listener, New property value: "

 + event.getNewValue());

 //Throw an exception on proposed value of green. This

 // will veto the change.

 if(event.getNewValue().equals(Color.green))

 throw new PropertyVetoException(

 "No green allowed",event);

 }//end vetoableChange()

}//end MyPropertyListenerClass class

A consolidated listing of the complete test program is contained in the next section.

Program Listing for the Test Program

This section contains a complete listing of the test program written to test the bound and

constrained property behavior of the bean class.

/*File Beans06Test.java Copyright 1997, R.G.Baldwin

This program was designed to be compiled and executed

under JDK 1.1.3 or later.

This program is designed to test the constrained property

aspects of the bean class named Beans06.

The program has been simplified as much as possible in an

attempt to make it understandable.

You will need to refer to the comments in the source code

for the Beans06 bean class to fully understand how this

test program works.

The visual manifestation of the Beans06 bean is a colored

square. The bean is placed in a Frame object by this

test program. The square is initially yellow.

The bean has one property named theColor which controls

the color of the square.

Two exposed methods of the bean, makeRed() and makeBlue(),

can be invoked to change the color to red or blue.

Invoking the makeRed() or makeBlue() methods changes the

value of the property named theColor which in turn changes

the color of the square.

You can also change the value of the property named

theColor by invoking the setTheColor() method. In this

case you can pass in any color as a parameter.

The property named theColor is a bound constrained

property. The bean supports a multicast list of

PropertyChangeListener objects and also supports a

multicast list of VetoableChangeListener objects.

PropertyChangeListener objects are simply notified

whenever a change in a property value occurs.

VetoableChangeListener objects are notified of a proposed

change in the property value and have the opportunity to

veto the change by raising a PropertyVetoException.

The program begins with the yellow square bean and three

buttons in a frame on the screen. The buttons are labeled

Red, Green, and Blue.

The Red and Blue buttons invoke the makeRed() and

makeBlue() methods discussed above.

The Green button invokes the setTheColor() method causing

the color green to be passed in as a parameter.

Therefore, clicking this button will attempt to change the

value of the property named theColor to green.

A listener class is defined which implements both the

PropertyChangeListener interface and the

VetoableChangeListener interface. As a result, a listener

object of this class can register to be notified of

proposed property changes with veto authority and can also

register to be notified of actual changes.

One such listener object is instantiated and registered

to listen for both propertyChange() and vetoableChange()

events.

This object is designed to veto any proposal to change the

value of the property to green.

Therefore, if you click the Red button, the square will

turn to red and the following will appear on the screen:

Veto Listener,

New property value: java.awt.Color[r=255,g=0,b=0]

Change Listener,

New property value: java.awt.Color[r=255,g=0,b=0]

If you click the Blue button, the square will change to

blue and the following will appear on the screen.

Veto Listener,

New property value: java.awt.Color[r=0,g=0,b=255]

Change Listener,

New property value: java.awt.Color[r=0,g=0,b=255]

If you click the Green button, the color of the square

will not change. The following will appear on the

screen indicating that the proposed new color was vetoed

and another event was multicast which rolled the property

value back to its value before the proposed change.

Veto Listener,

New property value: java.awt.Color[r=0,g=255,b=0]

Veto Listener,

New property value: java.awt.Color[r=0,g=0,b=255]

java.beans.PropertyVetoException: No green allowed

If you then click on the Red button, the color of the

square will change to red and the following will appear

on the screen:

Veto Listener,

New property value: java.awt.Color[r=255,g=0,b=0]

Change Listener,

New property value: java.awt.Color[r=255,g=0,b=0]

In all of the above examples, line breaks were manually

inserted in the text to make it fit better in this format.

Although this sample program was constructed for

simplicity having only one property in the bean and one

listener object, the structure of the Beans06 bean class

will support any number of listener objects in either

category.

Obviously the number of properties could also be expanded

to a very large number. This would require more

processing on the part of the objects. With the

structure being used, every object registered to be

notified of proposed changes would be notified of every

proposed change on every property. Likewise, every object

registered to be notified of actual changes would be

notified of every actual change on every property.

Each notification event contains the name of the property

to which the actual or proposed change applies. The

objects would have to use that information to make

decisions on the basis of property names and proposed

changes in property values.

===*/

import java.awt.*;

import java.awt.event.*;

import java.beans.*;

import java.util.*;

//===//

public class Beans06Test extends Frame{

 public static void main(String[] args){

 new Beans06Test();

 }//end main

 //---//

 public Beans06Test(){//constructor

 setTitle("Copyright 1997, R.G.Baldwin");

 setLayout(new FlowLayout());

 //instantiate a Bean object

 Beans06 myBean = new Beans06();

 add(myBean);//Add it to the Frame

 //Instantiate several test buttons

 Button buttonToSetTheColor = new Button("Green");

 Button buttonToInvokeRedMethod = new Button("Red");

 Button buttonToInvokeBlueMethod = new Button("Blue");

 //Add the test buttons to the frame

 add(buttonToInvokeRedMethod);

 add(buttonToSetTheColor);

 add(buttonToInvokeBlueMethod);

 //Size the frame and make it visible

 setSize(250,350);

 setVisible(true);

 //Register action listener objects for all the test

 // buttons

 buttonToSetTheColor.addActionListener(

 new SetTheColorListener(myBean));

 buttonToInvokeRedMethod.addActionListener(

 new RedActionListener(myBean));

 buttonToInvokeBlueMethod.addActionListener(

 new BlueActionListener(myBean));

 //Instantiate and register an object to listen for

 // proposed and actual changes in the bean's property.

 // This listener object has the ability to veto

 // proposed changes.

 MyPropertyListenerClass myListenerObject =

 new MyPropertyListenerClass();

 myBean.addPropertyChangeListener(myListenerObject);

 myBean.addVetoableChangeListener(myListenerObject);

 //Terminate program when Frame is closed

 this.addWindowListener(new Terminate());

 }//end constructor

}//end class Beans06Test

//===//

//An object of this class is instantiated and registered

// to listen for actionPerformed() events on the button

// labeled "setTheColor".

// When the setTheColor button is pressed, the object

// invokes the setTheColor() method on the bean passing in

// a color parameter of green.

class SetTheColorListener implements ActionListener{

 Beans06 myBean;//save a reference to the bean here

 SetTheColorListener(Beans06 inBean){//constructor

 myBean = inBean;//save a reference to the bean

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.setTheColor(Color.green);

 }//end actionPerformed()

}//end class SetTheColorListener

//---//

//The following two classes are used to instantiate objects

// which are registered to listen to two of the buttons on

// the test panel. When the corresponding buttons are

// pressed, these objects invoke methods of the bean under

// test. The first class invokes the makeRed() method and

// the second class invokes the makeBlue() method.

class RedActionListener implements ActionListener{

 Beans06 myBean;//save a reference to the bean here

 RedActionListener(Beans06 inBean){//constructor

 myBean = inBean;//save the reference to the bean

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.makeRed();

 }//end actionPerformed()

}//end class RedActionListener

//---//

class BlueActionListener implements ActionListener{

 Beans06 myBean;//save a reference to the bean here

 BlueActionListener(Beans06 inBean){//constructor

 myBean = inBean;//save the reference to the bean

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.makeBlue();

 }//end actionPerformed()

}//end class BlueActionListener

//===//

//The following class is used to instantiate objects that

// will be bound to the bean in such a way as to be

// notified of proposed changes and actual changes in the

// property values in the bean object.

//When notified of a proposed or actual change, the object

// displays the actual or proposed new property value.

//When notified of a proposed change, the object has the

// ability to veto the change by raising a

// PropertyVetoException. The design of this class is

// such that any proposed change to the color green will

// vetoed.

class MyPropertyListenerClass

 implements PropertyChangeListener,VetoableChangeListener{

 public void propertyChange(PropertyChangeEvent event){

 //Extract and display the new value

 System.out.println(

 "Change Listener, New property value: "

 + event.getNewValue());

 }//end propertyChange()

 public void vetoableChange(PropertyChangeEvent event)

 throws PropertyVetoException{

 //Extract and display proposed new value

 System.out.println(

 "Veto Listener, New property value: "

 + event.getNewValue());

 //Throw an exception on proposed value of green. This

 // will veto the change.

 if(event.getNewValue().equals(Color.green))

 throw new PropertyVetoException(

 "No green allowed",event);

 }//end vetoableChange()

}//end MyPropertyListenerClass class

//===//

class Terminate extends WindowAdapter{

 public void windowClosing(WindowEvent e){

 //terminate the program when the window is closed

 System.exit(0);

 }//end windowClosing

}//end class Terminate

//===//

.

Review

Q - Without viewing the following solution, upgrade the programs named Beans06.java and

Beans06Test.java to demonstrate the use of multiple constrained and bound properties in the

bean and the use of multiple listener objects which implement the VetoableChangeListener and

PropertyChangeListener interfaces in the test program.

Cause your bean to appear on the screen as a colored rectangle containing a date and time.

Provide a Color property to control the background color of the rectangle. Provide a Date

property to control the date and time that is displayed in the rectangle. Make both of the

properties bound and constrained.

Design one of your VetoableChangeListener objects to veto proposed property changes which

would otherwise cause the rectangle to be green. Design the other VetoableChangeListener

object to veto proposed property changes that would cause the rectangle to be orange.

Demonstrate that other colors are allowed.

Provide buttons on your test panel which will attempt to cause the color of the rectangle to be

red, green, blue, or orange.

Also provide a button on your test panel that will set the current date and time in the Date

property.

Provide an output on the standard output device whenever the colors green or orange are vetoed,

identifying the reason for the veto and the object that raised the veto.

Provide an output on the standard output device whenever the value of a property actually

changes, identifying the new value of the property, and the identification of the listener object

that recognized the change.

A - See the following bean program and test program.

Bean program follows:

/*File Beans07.java Copyright 1997, R.G.Baldwin

This program was designed to be compiled and executed

under JDK 1.1.3 or later.

This program illustrates the use of beans with multiple

properties which are both bound and constrained.

This bean appears on the screen as a colored rectangle

containing a date and time. The color as well as the date

and time are based on the current values of corresponding

properties.

The bean has a Color property named theColor and a Date

property named theDate. Both of these properties are bound

and constrained.

The bean has a property named preferredSize that is

neither bound nor constrained

This bean supports propertyChange and vetoableChange

notification lists for the property values. Other

objects can register to be notified of a proposed change

in property values and can veto the change. A proposed

change that is vetoed does not take place. Other

objects can also register to be notified of actual

changes in property values.

A description of the bean as determined by the program

named Introspect01 follows:

Name of bean: Beans07

Class of bean: class Beans07

==== Properties: ====

Name: preferredSize

 Type: class java.awt.Dimension

 Get method: public synchronized java.awt.Dimension

 Beans07.getPreferredSize()

 Set method: null

Name: theDate

 Type: class java.util.Date

 Get method: null

 Set method: public synchronized void

 Beans07.setTheDate(java.util.Date)

Name: theColor

 Type: class java.awt.Color

 Get method: null

 Set method: public synchronized void

 Beans07.setTheColor(java.awt.Color)

==== Events: ====

Event Name: vetoableChange

 Add Method: public synchronized void

 Beans07.addVetoableChangeListener(

 java.beans.VetoableChangeListener)

 Remove Method: public synchronized void

 Beans07.removeVetoableChangeListener(

 java.beans.VetoableChangeListener)

 Event Type: vetoableChange

Event Name: propertyChange

 Add Method: public synchronized void

 Beans07.addPropertyChangeListener(

 java.beans.PropertyChangeListener)

 Remove Method: public synchronized void

 Beans07.removePropertyChangeListener(

 java.beans.PropertyChangeListener)

 Event Type: propertyChange

==== Methods: ====

setTheDate

removePropertyChangeListener

setTheColor

removeVetoableChangeListener

getPreferredSize

addPropertyChangeListener

addVetoableChangeListener

 The following methods:

 setTheColor()

 setTheDate()

 both provide the opportunity for a

 VetoableChangeListener object to veto a proposed new

 value for the property.

 Each of these methods receives a proposed property value

 as a parameter when it is invoked. The method saves the

 current value of the property in an instance variable

 named old_____. Then it makes a call to the method

 named notifyVetoableChange() inside a try block.

 notifyVetoableChange() broadcasts a vetoableChange()

 event to all of the VetoableChangeListener objects that

 are registered to receive such an event. Any listener

 object that wants to veto the change throws a

 PropertyVetoException which finds its way back to the

 method listed above that invoked notifyVetoableChange()

 in the first place.

 When the exception is thrown, it is caught in a catch

 block. The code in the catch block restores the

 property value to its original value. In other words,

 theproposed new value is discarded and replaced by the

 value of the property before the proposed new value

 was received.

 This proposed new value then becomes the current value

 and is used to set the background color of the bean

 or to set the new date and time.

 The proposed new value is also compared with the value

 of the property before the proposed new value was

 received. If they are different, meaning that a

 property change has occurred, the notifyPropertyChange()

 method is invoked to broadcase a propertyChange() event

 to all PropertyChangeListener objects registered to

 receive such an event.

 An important aspect of the behavior of this bean is

 based on the use of the fireVetoableChange() method of

 the VetoableChangeSupport class to actually broadcast

 the event. A description of this method follows.

 Note in particular the behavior of this method when

 someone vetos the change.

 public void fireVetoableChange(String propertyName,

 Object oldValue,

 Object newValue) throws PropertyVetoException

 Report a vetoable property update to any registered

 listeners. If anyone vetos the change, then fire a

 new event reverting everyone to the old value and

 then rethrow the PropertyVetoException.

 No event is fired if old and new are equal and

 non-null

 Parameters:

 propertyName - The name of the property that was

 changed.

 oldValue - The old value of the property.

 newValue - The new value of the property.

 Throws: PropertyVetoException

 if the recipient wishes the property change to be

 rolled back.

Additional comments describing the bean are scattered

throughout the code.

This bean was tested using the test program named

Beans07Test using JDK 1.1.3 under Win95.

//===//

*/

import java.awt.event.*;

import java.awt.*;

import java.io.Serializable;

import java.util.*;

import java.beans.*;

//===//

//All beans should implement the Serializable interface

public class Beans07 extends Label

 implements Serializable{

 //The following instance variables are used to store the

 // current property value and proposed new property

 // value for both the Color and Date properties.

 protected Color oldColor;

 protected Color newColor;

 protected Date oldDate;

 protected Date newDate;

 //The following reference variables are used to access

 // the list maintenance and event firing capabilities

 // of the PropertyChangeSupport and VetoableChangeSupport

 // classs. An object of each of these classes is

 // instantiated in the constructor.

 PropertyChangeSupport changeSupportObj;

 VetoableChangeSupport vetoSupportObj;

 //---//

 public Beans07(){//constructor

 //Initialize the property values and the display

 newColor = Color.yellow;

 setBackground(newColor);

 newDate = new Date();

 setText(newDate.toString());

 //Instantiate objects of the support classes to handle

 // list maintenance and event firing tasks. The

 // constructor for the support classes requires this

 // object as a paremeter. The parameter is used as the

 // source of the events when they are fired.

 changeSupportObj = new PropertyChangeSupport(this);

 vetoSupportObj = new VetoableChangeSupport(this);

 }//end constructor

 //---//

 //This method defines the preferred display size of the

 // bean object.

 public synchronized Dimension getPreferredSize(){

 return new Dimension(200,50);

 }//end getPreferredSize()

 //---//

 //The following "set" method in conjunction with the

 // instance variables named oldColor and newColor

 // constitute a write-only property named theColor.

 public synchronized void setTheColor(Color inColor){

 oldColor = newColor;//save current color

 newColor = inColor;//proposed new color

 try{//test to see if anyone vetos the new color

 notifyVetoableChange("theColor");

 }catch(PropertyVetoException exception){

 //Someone vetoed the new color. Don't use newColor.

 newColor = oldColor;// Restore oldColor instead

 }//end catch

 if(!newColor.equals(oldColor)){//if color changed

 this.setBackground(newColor);//display new color

 //notify property listeners of property change

 notifyPropertyChange("theColor");

 }//end if

 }//end setTheColor()

 //---//

 //The following "set" method in conjunction with the

 // instance variables named oldDate and newDate

 // constitute a write-only property named theDate.

 public synchronized void setTheDate(Date inDate){

 oldDate = newDate;//save current date

 newDate = inDate;//proposed new date

 try{//test to see if anyone vetos the new date

 notifyVetoableChange("theDate");

 }catch(PropertyVetoException exception){

 //Someone vetoed the new date. Don't use newDate.

 newDate = oldDate;// Restore oldDate instead

 //Display the veto exception

 System.out.println(exception.getMessage());

 }//end catch

 if(!newDate.equals(oldDate)){//if date changed

 this.setText(newDate.toString());//display new date

 //notify property listeners of property change

 notifyPropertyChange("theDate");

 }//end if

 }//end setTheColor()

 //---//

 //The following two methods are used to maintain a list

 // of listener objects who request to be registered as

 // PropertyChangeListener objects, or who request to be

 // removed from the list.

 //Add a property change listener object to the list.

 public synchronized void addPropertyChangeListener(

 PropertyChangeListener listener){

 //Pass the task to the support class.

 changeSupportObj.addPropertyChangeListener(listener);

 }//end addPropertyChangeListener

 //---//

 //Remove a property change listener from the list.

 public synchronized void removePropertyChangeListener(

 PropertyChangeListener listener){

 //Pass the task to the support class.

 changeSupportObj.

 removePropertyChangeListener(listener);

 }//end removePropertyChangeListener()

 //---//

 //The following two methods are used to maintain a list

 // of listener objects who request to be registered

 // as VetoableChangeListener objects, or who request to

 // be removed from the list.

 //Add a vetoable change listener object to the list.

 public synchronized void addVetoableChangeListener(

 VetoableChangeListener listener){

 //Pass the task to the support class.

 vetoSupportObj.addVetoableChangeListener(listener);

 }//end addVetoableChangeListener

 //---//

 //Remove a vetoable change listener from the list.

 public synchronized void removeVetoableChangeListener(

 VetoableChangeListener listener){

 //Pass the task to the support class.

 vetoSupportObj.removeVetoableChangeListener(listener);

 }//end removeVetoableChangeListener()

 //---//

 //The following method is used to notify

 // PropertyChangeListener objects of changes in the

 // properties. The incoming parameter is the name of the

 // property that has changed.

 protected void notifyPropertyChange(

 String changedProperty){

 if(changedProperty.compareTo("theColor") == 0)

 //TheColor property has changed, pass color info

 changeSupportObj.firePropertyChange(

 changedProperty,oldColor,newColor);

 else //TheDate property has changed, pass date info

 changeSupportObj.firePropertyChange(

 changedProperty,oldDate,newDate);

 }//end notifyPropertyChange()

 //---//

 //The following method is used to notify

 // VetoableChangeListener objects of proposed changes in

 // the property values. The incoming parameter is the

 // name of the property that is proposed to be changed.

 // This method uses the fireVetoableChange() method of

 // the VetoableChangeSupport class to actually fire the

 // event. As discussed earlier in this file, the

 // fireVetoableChange method actually performs some data

 // processing and does more than simply fire the event.

 // In the event of a veto, it fires a second event with

 // the value of the property that existed prior to the

 // proposed change.

 protected void notifyVetoableChange(

 String vetoableProperty)

 throws PropertyVetoException{

 if(vetoableProperty.compareTo("theColor") == 0)

 //theColor property is proposed to be changed

 vetoSupportObj.fireVetoableChange(

 vetoableProperty,oldColor,newColor);

 else //theDate property is proposed to be changed

 vetoSupportObj.fireVetoableChange(

 vetoableProperty,oldDate,newDate);

 }//end notifyVetoableChange()

}//end class Beans07.java

//===//

Test program follows:

/*File Beans07Test.java Copyright 1997, R.G.Baldwin

This program was designed to be compiled and executed

under JDK 1.1.3 or later.

This program is designed to test the constrained property

aspects of the bean class named Beans07 for multiple

properties and multiple listener objects.

You will need to refer to the comments in the source code

for the Beans07 bean class to fully understand how this

test program works.

The visual manifestation of the Beans07 bean is a colored

rectangle with a date and time displayed in the rectangle.

The bean is placed in a Frame object by this test program.

The rectangle is initially yellow.

The bean has two bound and constrained properties named

theColor and theDate which control the color of the

rectangle and the date and time displayed in the rectangle.

You can change the color of the rectangle by invoking the

setTheColor() method on the bean and passing in a Color as

a parameter.

You can change the date and time displayed in the

rectangle by invoking the setTheDate() method on the bean

and passing a Date object as a parameter.

The bean supports a multicast list of

PropertyChangeListener objects and also supports a

multicast list of VetoableChangeListener objects for both

of the bound and constrained properties.

PropertyChangeListener objects are simply notified

whenever a change in a property value occurs.

VetoableChangeListener objects are notified of a proposed

change in the property value and have the opportunity to

veto the change by raising a PropertyVetoException.

This program begins with a yellow rectangular bean

containing a date and time along with five buttons in a

frame on the screen. The buttons are labeled Red, Green,

Blue, Orange, and Date.

Clicking one of the buttons with a color label causes the

setTheColor() method to be invoked on the bean with the

indicated color being passed in as a parameter.

Clicking the date button causes the setTheDate() method to

be invoked on the bean, passing in a Date object containing

the current date and time.

A listener class is defined which implements both the

PropertyChangeListener interface and the

VetoableChangeListener interface. As a result, a listener

object of this class can register to be notified of

proposed property changes with veto authority and can also

register to be notified of actual changes.

The constructor for this listener class also allows a

String object and a Color value to be passed in as a

parameter.

The String object is used as an identifier when information

about the listener object is displayed.

The Color value is used to establish a color that will be

vetoed by the listener object.

Two such listener objects are instantiated and registered

to listen for both propertyChange() and vetoableChange()

events.

One object is named Joe and will veto attempts to change

the Color property to green.

The other object is named Tom and will veto attempts to

change the Color property to orange.

If you click the Red button, the rectangle will change to

red and the following will appear on the screen:

Joe Change Listener

 New property value: java.awt.Color[r=255,g=0,b=0]

Tom Change Listener

 New property value: java.awt.Color[r=255,g=0,b=0]

If you click the Green button, the color of the rectangle

will not change. The following will appear on the screen

indicating that the proposed new color was vetoed.

Joe vetos java.awt.Color[r=0,g=255,b=0]

If you click the Blue button, the rectangle will change to

blue and the following will appear on the screen.

Joe Change Listener

 New property value: java.awt.Color[r=0,g=0,b=255]

Tom Change Listener

 New property value: java.awt.Color[r=0,g=0,b=255]

If you click the Orange button, the color of the rectangle

will not change. The following will appear on the screen

indicating that the proposed new color was vetoed.

Tom vetos java.awt.Color[r=255,g=200,b=0]

If you then click on the Red button, the color of the

rectangle will change to red and the following will appear

on the screen:

Joe Change Listener

 New property value: java.awt.Color[r=255,g=0,b=0]

Tom Change Listener

 New property value: java.awt.Color[r=255,g=0,b=0]

If you click on the Date button, the new date and time will

appear in the colored rectangle and the following will

appear on the screen:

Joe Change Listener

 New property value: Sun Oct 19 15:14:07 CDT 1997

Tom Change Listener

 New property value: Sun Oct 19 15:14:07 CDT 1997

===*/

import java.awt.*;

import java.awt.event.*;

import java.beans.*;

import java.util.*;

//===//

public class Beans07Test extends Frame{

 public static void main(String[] args){

 new Beans07Test();

 }//end main

 //---//

 public Beans07Test(){//constructor

 setTitle("Copyright 1997, R.G.Baldwin");

 setLayout(new FlowLayout());

 //instantiate a Bean object

 Beans07 myBean = new Beans07();

 add(myBean);//Add it to the Frame

 //Instantiate several test buttons

 Button buttonToSetToGreen = new Button("Green");

 Button buttonToSetToRed = new Button("Red");

 Button buttonToSetToBlue = new Button("Blue");

 Button buttonToSetToOrange = new Button("Orange");

 Button buttonToSetTheDate = new Button("Date");

 //Add the test buttons to the frame

 add(buttonToSetToRed);

 add(buttonToSetToGreen);

 add(buttonToSetToBlue);

 add(buttonToSetToOrange);

 add(buttonToSetTheDate);

 //Size the frame and make it visible

 setSize(250,350);

 setVisible(true);

 //Register action listener objects for all the test

 // buttons

 buttonToSetToGreen.addActionListener(

 new SetTheColorListener(myBean,Color.green));

 buttonToSetToRed.addActionListener(

 new SetTheColorListener(myBean,Color.red));

 buttonToSetToBlue.addActionListener(

 new SetTheColorListener(myBean,Color.blue));

 buttonToSetToOrange.addActionListener(

 new SetTheColorListener(myBean,Color.orange));

 buttonToSetTheDate.addActionListener(

 new SetTheDateListener(myBean));

 //Instantiate and register objects to listen for

 // proposed and actual changes in the bean's property

 // values. These listener objects havethe ability to

 // veto proposed changes.

 //This object is named Joe and vetos the green color

 MyPropertyListenerClass joeListenerObject =

 new MyPropertyListenerClass("Joe",Color.green);

 myBean.addPropertyChangeListener(joeListenerObject);

 myBean.addVetoableChangeListener(joeListenerObject);

 //This object is named Tom and vetos the orange color

 MyPropertyListenerClass tomListenerObject =

 new MyPropertyListenerClass("Tom",Color.orange);

 myBean.addPropertyChangeListener(tomListenerObject);

 myBean.addVetoableChangeListener(tomListenerObject);

 //Terminate program when Frame is closed

 this.addWindowListener(new Terminate());

 }//end constructor

}//end class Beans07Test

//===//

//An object of this class will invoke the setTheColor()

// method on the bean passing a specified color as a

// parameter. The specified color is passed as a parameter

// to the constructor of this class.

class SetTheColorListener implements ActionListener{

 Beans07 myBean;//save a reference to the bean here

 Color colorToSet;//save the new color here

 //constructor

 SetTheColorListener(Beans07 inBean,Color inColor){

 myBean = inBean;//save a reference to the bean

 colorToSet = inColor;//save the new color

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.setTheColor(colorToSet);

 }//end actionPerformed()

}//end class SetTheColorListener

//===//

//An object of this class will invoke the setTheDate()

// method on the bean passing a Date object as a parameter.

// The date object is constructed to contain the current

// date and time.

class SetTheDateListener implements ActionListener{

 Beans07 myBean;//save a reference to the bean here

 //constructor

 SetTheDateListener(Beans07 inBean){

 myBean = inBean;//save a reference to the bean

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.setTheDate(new Date());

 }//end actionPerformed()

}//end class SetTheDateListener

//===//

//The following class is used to instantiate objects that

// will be bound to the bean in such a way as to be

// notified of proposed changes and actual changes in the

// property values in the bean object.

//When notified of a proposed or actual change, the object

// displays the actual or proposed new property value.

//When notified of a proposed change, the object has the

// ability to veto the change by raising a

// PropertyVetoException.

//The constructor for this class accepts a String object

// and a Color parameter as incoming parameters. The

// String is used to identify the object when information

// is displayed. The Color parameter specifies a color

// that will be vetoed by the object if an attempt is

// made to change the Color property of the bean to that

// Color value.

//Note that this class implements PropertyChangeListener

// and VetoableChangeListener

class MyPropertyListenerClass

 implements PropertyChangeListener,VetoableChangeListener{

 String objID; //store the object ID here

 Color vetoColor; //store the color to be vetoed here

 //constructor

 MyPropertyListenerClass(String idIn,Color vetoColorIn){

 objID = idIn;//save the object ID

 vetoColor = vetoColorIn;//save the veto color

 }//end constructor

 public void propertyChange(PropertyChangeEvent event){

 //Extract and display the new value

 System.out.println(

 objID + " Change Listener\n New property value: "

 + event.getNewValue());

 }//end propertyChange()

 public void vetoableChange(PropertyChangeEvent event)

 throws PropertyVetoException{

 if(event.getNewValue() == vetoColor){//test for veto

 System.out.println(

 objID + " vetos " + event.getNewValue());

 //Throw an exception on proposed change. This will

 // veto the change.

 throw new PropertyVetoException("VETO",event);

 }//end if

 }//end vetoableChange()

}//end MyPropertyListenerClass class

//===//

class Terminate extends WindowAdapter{

 public void windowClosing(WindowEvent e){

 //terminate the program when the window is closed

 System.exit(0);

 }//end windowClosing

}//end class Terminate

//===//

.

-end-

