
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us, 

http://www2.austin.cc.tx.us/baldwin/ 

JavaBeans, Properties of Beans, Bound Properties 

Java Programming, Lecture Notes # 510, Revised 02/19/98.  

 Preface 

 Introduction 

 Introspection on the Bean Class 

 Properties 

 Sample Bean Program 

o Interesting Code Fragments from the Bean Program 

o Program Listing for the Bean Program 

 Sample Test Program 

o Interesting Code Fragments from the Test Program 

o Program Listing for the Test Program 

 Using the PropertyChangeSupport Class 

 Review 

 

Preface 

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for 

knowing and understanding all of the material in this lesson.  

The material in this lesson is extremely important. However, there is simply too much material to 

be covered in detail during lecture periods. Therefore, students in Prof. Baldwin's Advanced 

Java Programming classes at ACC will be responsible for studying this material on their own, 

and bringing any questions regarding the material to class for discussion.  

This lesson was originally written on October 18, 1997 using the software and documentation in 

the JDK 1.1.3 download package along with the April 97 release of the BDK 1.0 download 

package.  

Introduction 

According to the document from JavaSoft entitled Using the Beans Development Kit 1.0 April 

1997 A Tutorial:  

   

A bound property notifies other objects when its value changes. Each time its value is changed, 

the property fires a PropertyChange event which contains the property name, old, and new 

values. Notification granularity is per bean, not per property. 

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/


In this lesson, we will develop and test a bean class, named Beans03, that illustrates the use of 

bound properties.  

This bean class is examined with the Introspector and is tested with a test program designed 

specifically to exercise the ability of the bean to broadcast an event to a list of registered listener 

objects whenever the value of one of the properties changes.  

Introspection on the Bean Class 

One way to describe a bean is to describe it from the viewpoint of a Visual Builder Tool (VBT) 

using introspection. In an earlier lesson we developed a Java application named Introspect01 

that can be used to apply introspection to a bean class and to record the results in a temporary 

disk file. The following box shows the results of introspection on the sample bean class that was 

developed for this lesson.  

   

Name of bean:  Beans03 

Class of bean: class Beans03 

 

==== Properties: ==== 

Name: preferredSize 

 Type:       class java.awt.Dimension 

 Get method: public synchronized java.awt.Dimension  

                                 Beans03.getPreferredSize() 

 Set method: null 

Name: theDate 

 Type:       class java.util.Date 

 Get method: null 

 Set method: public synchronized void  

                         Beans03.setTheDate(java.util.Date) 

Name: theColor 

 Type:       class java.awt.Color 

 Get method: public synchronized java.awt.Color  

                                      Beans03.getTheColor() 

 Set method: public synchronized void  

                        Beans03.setTheColor(java.awt.Color) 

 

==== Events: ==== 

Event Name: propertyChange 

 Add Method:    public synchronized void  

             Beans03.addPropertyChangeListener( 

                         java.beans.PropertyChangeListener) 

 Remove Method: public synchronized void  

             Beans03.removePropertyChangeListener( 

                         java.beans.PropertyChangeListener) 

 Event Type: propertyChange 

 

==== Methods: ==== 

makeRed 

setTheDate 

removePropertyChangeListener 

getTheColor 

setTheColor 



getPreferredSize 

addPropertyChangeListener 

makeBlue 

The primary functional difference between this bean class and bean classes developed in 

previous lessons is shown in the highlighted section entitled Events. This section shows the add 

and remove methods which provide the ability of the bean to notify a list of listener objects 

whenever a change occurs in one of the property values. (Note that this bean does not notify 

listeners of changes in the value of the property named preferredSize but it does notify listeners 

of changes in the values of the other two properties.)  

Properties 

There are four kinds of properties:  

 Simple 

 Indexed 

 Bound 

 Constrained 

A previous lesson discussed Simple and Indexed properties. This lesson will concentrate on 

Bound properties. Constrained properties will be discussed in a future lesson.  

The bean class developed for this lesson has the following Bound properties:  

   

Name: theDate 

 Type:       class java.util.Date 

 Get method: null 

 Set method: public synchronized void  

                         Beans03.setTheDate(java.util.Date) 

Name: theColor 

 Type:       class java.awt.Color 

 Get method: public synchronized java.awt.Color  

                                      Beans03.getTheColor() 

 Set method: public synchronized void  

                        Beans03.setTheColor(java.awt.Color) 

The bean maintains a list of objects that request to be notified whenever there is a change in the 

value of either of the Bound properties. This is often referred to as registering listener objects to 

receive an event.  

Objects that request to be added to the list must be of a class that implements the 

PropertyChangeListener interface and defines the propertyChange() method that is declared 

in that interface.  



Whenever a value is assigned to the instance variables used to maintain these properties 

(regardless of whether or not it is a different value) an event is broadcast to all of the listener 

objects registered on the list.  

The event is broadcast by invoking the propertyChange() method on all of the objects on the 

list. When this method is invoked on a listener object, an object of type PropertyChangeEvent 

is passed as a parameter.  

The PropertyChangeEvent object passed as a parameter to the propertyChange() method in 

the listener objects contains the following information:  

 Object source, //the bean object in this case 

 String propertyName, //the name of the changed property 

 Object oldValue, //the old value of the changed property 

 Object newValue //the new value of the changed property 

As you can see, three of the parameters passed to the propertyChange() method are of type 

Object, and one is of type String. The parameters of type Object sometimes need to be 

downcast to the correct type to be used in the receiving method.  

Notification of the listener objects takes place after the change in the property value has 

occurred. This bean class does not save the old value when it assigns a new value. As a result, it 

passes null as the old value of the changed property because the old value is no longer available 

when the listener objects are notified that a change has occurred.  

The following methods are available to extract information from the object passed as a 

parameter. These methods are defined by the PropertyChangeEvent class or its superclass, 

EventObject:  

 public Object getSource(); 

 public Object getNewValue(); 

 public Object getOldValue(); 

 public String getPropertyName; 

 public void setPropagationId(); 

 public Object getPropagationId; 

The test program (named Beans03Test) used in this lesson to partially test the bean class uses 

the first four of these methods. Apparently the PropagationID is reserved for future use.  

Sample Bean Program 

In this lesson, we will deal with two different programs. One program is a program that creates a 

bean class named Beans03.java.. The other program is a program used to partially test the bean 

named Beans03Test.java. This section deals with the program used to create the bean.  



This program was designed to be compiled and executed under JDK 1.1.3. It was tested using 

JDK 1.1.3 and the Apr97 version of the BDK 1.0 under Win95.  

The purpose of this bean class is to illustrate bound properties.  

This bean contains two bound properties: a Color property named theColor and a Date property 

named theDate. The Date property is a write-only property because no get method is provided 

for this property. (The bean class also contains a read-only property named preferredSize which 

resulted from providing that information for the benefit of the layout manager.)  

Note that as of this writing in October of 1997, this bean class has not been tested in the 

BeanBox. It was tested using the test program named Beans03Test.  

Any of the three methods in the following list can be invoked to assign a new value to the 

property named theColor. Whenever any of these methods are invoked, and after the new value 

is assigned to the property, a PropertyChangeEvent is broadcast to all registered listener 

objects.  

   

setTheColor() 

makeRed() 

makeBlue() 

Only the one method listed below is available to assign a new value to the property named 

theDate. Whenever this method is invoked, a PropertyChangeEvent is broadcast to all 

registered listener objects.  

   

setTheDate() 

With a little extra programming effort, it would have been possible to compare the new values 

being assigned to the properties with the old values and to broadcast events only when the value 

actually changed. This probably would have been more in keeping with the philosophy of a 

PropertyChangeEvent.  

Interesting Code Fragments from the Bean Program 

This bean class contains a number of interesting code fragments. The following fragment shows 

the declaration of two reference variables used to maintain the bound properties and also shows 

the instantiation of a Vector object that is used to maintain the list of registered listener objects.  

   

  //The following instance variables are used to store 

  // property values. 

  protected Color myColor; 

  protected Date myDate; 

   



  //The following Vector is used to maintain a list of  

  // listeners who request to be notified of changes in the 

  // property values. 

  protected Vector propChangeListeners = new Vector(); 

The following set and get methods, used in conjunction with the instance variable named 

myColor constitute a property named theColor. Note in particular the highlighted statement that 

causes a PropertyChangeEvent to be broadcast each time the setTheColor() method is 

invoked.  

   

  

  public synchronized void setTheColor(Color inColor){ 

    myColor = inColor; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    notifyPropertyChange("theColor"); 

  }//end setTheColor() 

 

  public synchronized Color getTheColor(){ 

    return myColor; 

  }//end getTheColor 

The following set method used in conjunction with the instance variable named myDate 

constitutes a write-only property named theDate. Again, note the highlighted statement that 

causes a PropertyChangeEvent to be broadcast each time the setTheDate() method is invoked.  

   

  public synchronized void setTheDate(Date dateIn){ 

    myDate = dateIn; 

    //notify property listeners of property change 

    notifyPropertyChange("theDate"); 

  }//end setTheDate() 

The following two methods are exposed to the builder tool as accessible methods for switching 

the value of the property named theColor between blue and red. Again, note the highlighted 

statements that cause a PropertyChangeEvent to be broadcast each time either of these methods 

is invoked.  

   

  public synchronized void makeBlue(){ 

    myColor = Color.blue; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    notifyPropertyChange("theColor"); 

  }//end makeBlue() 

 

  public synchronized void makeRed(){ 

    myColor = Color.red; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    notifyPropertyChange("theColor"); 

  }//end makeRed() 

The following two methods are used to maintain a list of registered listener objects who request 

to be notified of changes to the properties, or who request to be removed from the list of 

registered listener objects. These methods are consistent with the behavior of the Delegation 



Event Model operating in a multicast mode.  

   

   

  //Add a property change listener object to the list. 

  public synchronized void addPropertyChangeListener( 

                          PropertyChangeListener listener){ 

    //If the listener is not already registered, add it 

    // to the list. 

    if(!propChangeListeners.contains(listener)){ 

      propChangeListeners.addElement(listener); 

    }//end if 

  }//end addPropertyChangeListener 

  //-----------------------------------------------------// 

   

  //Remove a property change listener from the list. 

  public synchronized void removePropertyChangeListener( 

                          PropertyChangeListener listener){ 

    //If the listener is on the list, remove it 

    if(propChangeListeners.contains(listener)){ 

      propChangeListeners.removeElement(listener); 

    }//end if 

  }//end removePropertyChangeListener 

   

The following method is invoked by several of the methods described above, and is used to 

notify listener objects of changes in the properties. The incoming parameter is the name of the 

property that has changed.  

In this case, there are only two bound properties. The incoming property name is used in a 

decision tree to determine which of the bound properties has changed in order to determine the 

values to be encapsulated in the PropertyChangeEvent object that is passed as a parameter 

when the registered listener objects are notified of the change.  

Note that objects maintained in a Vector object are always of type Object. This leads to the need 

to downcast the objects in the list from Object to PropertyChangeListener.  

   

   

  protected void notifyPropertyChange( 

                                   String changedProperty){ 

    //Instantiate the event object containing information 

    // about the property that has changed. 

    PropertyChangeEvent event; 

    if(changedProperty.compareTo("theColor") == 0) 

      //Change was in theColor property 

      event = new PropertyChangeEvent( 

                        this,changedProperty,null,myColor); 

    else//Change was in the theDate property 

      event = new PropertyChangeEvent( 

                         this,changedProperty,null,myDate); 

     

    //Make a working copy of the list that cannot be  

    // modified while objects on the list are being  



    // notified of the change. 

    Vector tempList; 

    synchronized(this){ 

      tempList = (Vector)propChangeListeners.clone(); 

    }//end synchronized block 

     

    //Notify all listener objects on the list.  Note the 

    // requirement to downcast the objects in the list from 

    // Object to PropertyChangeListener. 

    for(int cnt = 0; cnt < tempList.size();cnt++){ 

      PropertyChangeListener theListener =  

           (PropertyChangeListener)tempList.elementAt(cnt); 

      //Invoke the propertyChange() method on theListener 

      theListener.propertyChange(event); 

    }//end for loop 

  }//end notifyPropertyChange 

}//end class Beans03.java 

A consolidated listing of the entire bean class is provided in the next section.  

Program Listing for the Bean Program 

This section contains a consolidated listing of the bean class.  

   

/*File Beans03.java Copyright 1997, R.G.Baldwin 

This program was designed to be compiled and executed  

under JDK 1.1.3 or later. 

 

The main purpose of this program is to illustrate the use  

of "bound" properties in Beans. 

 

This is a "bean" class that satisfies the interface 

requirements for beans using design patterns. 

 

This bean class has two properties named theColor and  

theDate. 

 

The current value of the property named theColor is stored 

in the instance variable named myColor. 

 

The current value of the property named theDate is stored 

in the instance variable named myDate.  theDate is a 

write-only property because it has a "set" method but does 

not have a "get" method. 

 

The program maintains a list of objects that request to be  

notified whenever there is a change in the value of either 

of the properties.  Whenever the value of either property 

changes, all of the objects on the list are notified of the 

change by invoking their propertyChange() method and  

passing an object of type PropertyChangeEvent as a  

parameter. 

 

Objects that request to be added to the list must be of a 



class that implements the PropertyChangeListener interface 

and defines the propertyChange() method that is declared  

in that interface. 

 

The PropertyChangeEvent object passed as a parameter to the 

propertyChange() method in the listener objects contains  

the following information: 

   

  Object source, //the bean object 

  String propertyName, //the name of the changed property 

  Object oldValue, //the old value of the changed property 

  Object newValue  //the new value of the changed property 

   

This program doesn't save the old value and therefore 

passes null as the old value of the changed property  

because the old value is not available when the listener 

objects are notified. 

   

The following methods are available to extract information 

from the object passed as a parameter.  These methods are 

defined by the PropertyChangeEvent class or its superclass 

named EventObject: 

   

  public Object getSource(); 

  public Object getNewValue(); 

  public Object getOldValue(); 

  public String getPropertyName; 

  public void setPropagationId(); 

  public Object getPropagationId; 

   

Apparently the PropagationID is reserved for future use.   

     

The program was compiled and tested under JDK 1.1.3 

and Win95.  Another program named Beans03Test.java was  

used to test the bean.  It was not tested in the BeanBox. 

//=======================================================// 

*/ 

 

import java.awt.event.*; 

import java.awt.*; 

import java.io.Serializable; 

import java.util.*; 

import java.beans.*; 

//=======================================================// 

//All beans should implement the Serializable interface 

public class Beans03 extends Canvas  

                                   implements Serializable{ 

 

  //The following instance variables are used to store 

  // property values. 

  protected Color myColor; 

  protected Date myDate; 

   

  //The following Vector is used to maintain a list of  

  // listeners who request to be notified of changes in the 

  // property values. 



  protected Vector propChangeListeners = new Vector(); 

  //-----------------------------------------------------// 

   

  public Beans03(){//constructor 

    //This bean is a visible square that is initialized to 

    // yellow and can then be changed to green, red, and 

    // blue by invoking methods of the class. 

    myColor = Color.yellow; 

    setBackground(myColor); 

  }//end constructor 

  //-----------------------------------------------------// 

 

  //This method defines the preferred display size of the  

  // bean object.   

  public synchronized Dimension getPreferredSize(){ 

    return new Dimension(50,50); 

  }//end getPreferredSize() 

  //-----------------------------------------------------// 

 

  //The following "set" and "get" methods in conjunction  

  // with the instance variable named myColor constitute a 

  // property named theColor.   

  public synchronized void setTheColor(Color inColor){ 

    myColor = inColor; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    notifyPropertyChange("theColor"); 

  }//end setTheColor() 

 

  public synchronized Color getTheColor(){ 

    return myColor; 

  }//end getTheColor 

  //-----------------------------------------------------// 

   

  //The following "set" method in conjunction with the  

  // instance variable named myDate constitute a write-only 

  // property named theDate. 

  public synchronized void setTheDate(Date dateIn){ 

    myDate = dateIn; 

    //notify property listeners of property change 

    notifyPropertyChange("theDate"); 

  }//end setTheDate() 

  //-----------------------------------------------------// 

 

  //The following two methods are exposed to the builder  

  // tool as accessible methods.   

  public synchronized void makeBlue(){ 

    myColor = Color.blue; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    notifyPropertyChange("theColor"); 

  }//end makeBlue() 

 

  public synchronized void makeRed(){ 

    myColor = Color.red; 

    this.setBackground(myColor); 



    //notify property listeners of property change 

    notifyPropertyChange("theColor"); 

  }//end makeRed() 

  //-----------------------------------------------------// 

     

  //The following two methods are used to maintain a list 

  // of listener objects who request to be notified of  

  // changes to the properties or who request to be removed 

  // from the list. 

   

  //Add a property change listener object to the list. 

  public synchronized void addPropertyChangeListener( 

                          PropertyChangeListener listener){ 

    //If the listener is not already registered, add it 

    // to the list. 

    if(!propChangeListeners.contains(listener)){ 

      propChangeListeners.addElement(listener); 

    }//end if 

  }//end addPropertyChangeListener 

   

  //Remove a property change listener from the list. 

  public synchronized void removePropertyChangeListener( 

                          PropertyChangeListener listener){ 

    //If the listener is on the list, remove it 

    if(propChangeListeners.contains(listener)){ 

      propChangeListeners.removeElement(listener); 

    }//end if 

  }//end removePropertyChangeListener 

  //-----------------------------------------------------// 

   

  //The following method is used to notify listener  

  // objects of changes in the properties.  The incoming 

  // parameter is the name of the property that has  

  // changed. 

  protected void notifyPropertyChange( 

                                   String changedProperty){ 

    //Instantiate the event object containing information 

    // about the property that has changed. 

    PropertyChangeEvent event; 

    if(changedProperty.compareTo("theColor") == 0) 

      //Change was in theColor property 

      event = new PropertyChangeEvent( 

                        this,changedProperty,null,myColor); 

    else//Change was in the theDate property 

      event = new PropertyChangeEvent( 

                         this,changedProperty,null,myDate); 

     

    //Make a working copy of the list that cannot be  

    // modified while objects on the list are being  

    // notified of the change. 

    Vector tempList; 

    synchronized(this){ 

      tempList = (Vector)propChangeListeners.clone(); 

    }//end synchronized block 

     

    //Notify all listener objects on the list.  Note the 



    // requirement to cast the objects in the list from 

    // Object to PropertyChangeListener. 

    for(int cnt = 0; cnt < tempList.size();cnt++){ 

      PropertyChangeListener theListener =  

           (PropertyChangeListener)tempList.elementAt(cnt); 

      //Invoke the propertyChange() method on theListener 

      theListener.propertyChange(event); 

    }//end for loop 

  }//end notifyPropertyChange 

}//end class Beans03.java 

//=======================================================// 

Sample Test Program 

A special test program named Beans03Test was written to partially test the class named 

Beans03 with special emphasis on the use of bound properties. The program was tested using 

JDK 1.1.3 under Win95.  

The purpose of this program is to provide the ability to test the bean class named Beans03 in a 

Frame.  

A Beans03 object is placed in the frame along with five buttons. The visual manifestation of the 

bean object is a colored square.  

Two of the buttons exercise the "get" and "set" methods used to get and set the Color value 

stored in the property named theColor.  

One button exercises the "set" method used to set the date and time in a write-only Date property 

named theDate.  

Two of the buttons invoke the makeRed() and makeBlue() methods of the bean which modify 

the value of the property named theColor.  

Two listener objects are instantiated and registered to be notified by the bean whenever there is 

a change in the value of either of the bound properties. Actually the objects are notified 

whenever a value is assigned to the instance variables that maintain the property values 

regardless of whether or not the new value is different from the old value.  

For those cases where information is returned from the bean, it is displayed on the standard 

output device.  

Clicking the button labeled "Set theColor property" produced the following output on the screen. 

As you can see, the two different listener objects were notified of the same change in the 

property named theColor.  

In this case, the value of the theColor property was changed to green as indicated by "g=255". 

The actual color is specified by percentage contributions from red, green, and blue, where the 



maximum contribution of any one of the primary colors is 255 and the minimum contribution is 

0. In this case, both red and blue are showing a contribution of 0.  

The Old property value is shown as null because this particular bean class doesn't save and 

return the value of the property that existed before the change occurred. The event doesn't 

happen until after the change has occurred and the old value is no longer available at that point in 

time.  

   

   

FirstListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=255,b=0] 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=255,b=0] 

Old property value: null   

Clicking the button labeled "Get theColor property" produced the following output on the 

screen. Since this action didn't cause the property values to change, the listener objects 

registered to listen for changes in property values were not notified of this action.  

   

java.awt.Color[r=0,g=255,b=0] 

Clicking the button labeled "Invoke the makeRed Method" produced the following output on the 

screen. Again both listener objects were notified of the change in the property named theColor 

with the new value being red.  

   

FirstListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=255,g=0,b=0] 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=255,g=0,b=0] 

Old property value: null 

Clicking the button labeled "Invoke the makeBlue Method" produced the following output on the 

screen similar to that produced by invoking the makeRed() method described above, except that 



the theColor property was changed to blue.  

   

FirstListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=0,b=255] 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=0,b=255] 

Old property value: null 

Finally, clicking the button labeled "Set theDate property" produced the following output on the 

screen. In this case, both listener objects were notified and the information encapsulated in the 

event object identified the changed property as the property named theDate with a new value as 

shown.  

   

FirstListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theDate 

New property value: Sat Oct 18 10:24:49 CDT 1997 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theDate 

New property value: Sat Oct 18 10:24:49 CDT 1997 

Old property value: null 

Interesting Code Fragments from the Test Program 

Much of the code in this application has been seen many times before in these lessons. In this 

section, we will emphasize the code that is used to test bound properties.  

The beginning of the interesting code appears at the point where we register action listener 

objects for all of the buttons on the test panel. Although this code is straightforward, it will be 

useful to show it here to establish the basis for further discussion.  

   

    

    buttonToSetTheColor.addActionListener( 

                          new SetTheColorListener(myBean)); 

    buttonToGetTheColor.addActionListener( 

                          new GetTheColorListener(myBean)); 

    buttonToInvokeRedMethod.addActionListener( 

                            new RedActionListener(myBean)); 



    buttonToInvokeBlueMethod.addActionListener( 

                           new BlueActionListener(myBean)); 

    buttonToSetTheDate.addActionListener( 

                           new DateActionListener(myBean));  

Next, we instantiate and register two different PropertyChangeListener objects to listen for 

changes in the bean's properties. These are identical objects. We instantiated and registered two 

of them simply to confirm proper operation of the event multicasting capability of the bean.  

   

    MyPropertyChangeListener firstListener =  

                            new MyPropertyChangeListener(); 

    //Store an identifying name in the listener object 

    firstListener.setTheID("FirstListener"); 

    myBean.addPropertyChangeListener(firstListener); 

                            

    MyPropertyChangeListener secondListener =  

                            new MyPropertyChangeListener(); 

    //Store an identifying name in the listener object 

    secondListener.setTheID("SecondListener"); 

    myBean.addPropertyChangeListener(secondListener); 

In its final form, the test program does not test the ability of the bean to remove listener objects 

from the registration list. Two statements are included in the program as comments which can be 

used to test this capability. When one or the other (or both) of the following two statements is 

activated by removing the comment indicator, and the program is recompiled and run, only the 

listener object that was not removed from the list is notified of changes in the values of 

properties in the bean.  

   

//    myBean.removePropertyChangeListener(firstListener); 

//    myBean.removePropertyChangeListener(secondListener); 

An ActionListener object of the following class is registered to respond to Action events on the 

button labeled "setTheDate". When that button is clicked on the test panel, this object invokes 

the setTheDate() method on the bean passing in a new Date object as a parameter.  

   

  

class DateActionListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  DateActionListener(Beans03 inBean){//constructor 

    myBean = inBean;//save a reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    //Store the current date and time in the bean property 

    // named theDate. 



    myBean.setTheDate(new Date()); 

  }//end actionPerformed() 

}//end class DateActionListener 

An ActionListener object of the following class is registered to respond to Action events on the 

button labeled "setTheColor". When that button is clicked on the test panel, the setTheColor() 

method of the bean is invoked to set the theColor property to green.  

   

class SetTheColorListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  SetTheColorListener(Beans03 inBean){//constructor 

    myBean = inBean;//save a reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.setTheColor(Color.green); 

  }//end actionPerformed() 

}//end class SetTheColorListener 

An ActionListener object of the following class is registered to respond to Action events on the 

button labeled "getTheColor". When that button is clicked on the test panel, the getTheColor() 

method of the bean is invoked which returns the current value of the theColor property. The 

code in the object displays that color on the screen.  

   

  

class GetTheColorListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  GetTheColorListener(Beans03 inBean){//constructor 

    myBean = inBean;//save reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    //Display value of the theColor property on the 

    // standard output device. 

    System.out.println(myBean.getTheColor().toString()); 

  }//end actionPerformed() 

}//end class GetTheColorListener 

ActionListener objects of the following two classes are registered to respond to Action events 

on the buttons which invoke the makeRed() and makeBlue() methods of the bean. Clicking the 

corresponding button on the test panel causes one or the other of these objects to invoke the 

method on the bean which in turn causes the theColor property of the bean to be set to either red 

or blue.  

   



class RedActionListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  RedActionListener(Beans03 inBean){//constructor 

    myBean = inBean;//save the reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.makeRed(); 

  }//end actionPerformed() 

}//end class RedActionListener 

//-------------------------------------------------------// 

 

class BlueActionListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  BlueActionListener(Beans03 inBean){//constructor 

    myBean = inBean;//save the reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.makeBlue(); 

  }//end actionPerformed() 

}//end class BlueActionListener 

Two ActionListener objects of the following class are registered to listen for propertyChange 

events which are multicast by the bean. When notified of such changes, code in the 

propertyChange() method of this class extracts and displays information about the 

identification of the listener object, the source of the event (the bean) and the property values. 

Note that this class implements the PropertyChangeListener interface and defines the 

propertyChange() method declared in that interface.  

   

  

class MyPropertyChangeListener  

                         implements PropertyChangeListener{ 

  String theID; //store listener object ID here 

   

  void setTheID(String nameIn){ 

    //method to save the ID of the object 

    theID = nameIn; 

  }//end setTheID() 

     

  public void propertyChange(PropertyChangeEvent event){ 

    //Extract and display information about the event 

    System.out.println(theID + " notified of change"); 

    System.out.println("Property change source: "  

                                      + event.getSource()); 

    System.out.println("Property name: "  

                                + event.getPropertyName()); 

    System.out.println("New property value: "  

                                    + event.getNewValue()); 

    System.out.println("Old property value: "  



                                    + event.getOldValue()); 

    System.out.println();//blank line 

  }//end propertyChange() 

}//end MyPropertyChangeListener class 

A consolidated listing of the complete test program is contained in the next section.  

Program Listing for the Test Program 

This section contains a complete listing of the test program written to test the bound property 

behavior of the bean class. The output from running the test is also contained in the listing.  

   

/*File Beans03Test.java Copyright 1997, R.G.Baldwin 

This program was designed to be compiled and executed  

under JDK 1.1.3 or later. 

 

The purpose of this program is to provide the ability to 

test the bean class named Beans03.class in a Frame. 

 

A Beans03 object is placed in the frame along with five  

buttons.  

 

The visual manifestation of the Bean object is a colored  

square. 

 

Two of the buttons exercise the "get" and "set" methods 

used to get and set the color value stored in the property 

named theColor. 

 

One button exercises the "set" method used to set the date 

and time in a write-only property named theDate. 

 

Two of the buttons invoke the makeRed() and makeBlue() 

methods of the Bean which modify the value of the property 

named theColor. 

 

Two listener objects are instantiated and registered to 

be notified by the bean whenever there is a change in the 

value of either of the properties.  Actually the objects 

are notified whenever a value is assigned to the instance 

variables that maintain the property values regardless of 

whether or not the new value is different from the old 

value. 

 

For those cases where information is returned from the  

Bean, it is displayed on the standard output device. 

 

The program was tested using JDK 1.1.3 under Win95.  

 

Clicking the button labeled "Set theColor property"  

produced the following output on the screen.  As you can 

see, the two different listener objects were notified of  

the same change in the property named theColor. In this  



case, the value of theColor property was changed to green. 

   

FirstListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=255,b=0] 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=255,b=0] 

Old property value: null   

   

 

Clicking the button labeled "Get theColor property" 

produced the following output on the screen.  Since  

this action didn't cause the property values to change,  

the listener objects were not notified of the action. 

 

java.awt.Color[r=0,g=255,b=0] 

   

 

Clicking the button labeled "Invoke the makeRed Method" 

produced the following output on the screen. Again both 

listener objects were notified of the change in the  

property named theColor with the new value being red. 

 

FirstListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=255,g=0,b=0] 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=255,g=0,b=0] 

Old property value: null 

   

 

Clicking the button labeled "Invoke the makeBlue Method" 

produced the following output on the screen similar to 

that produced by invoking the makeRed() method described 

above. 

 

FirstListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=0,b=255] 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=0,b=255] 



Old property value: null 

   

 

Finally, clicking the button labeled "Set theDate  

property" produced the following output on the screen. 

In this case, both listener objects were notified and 

the information encapsulated in the event object  

identified the changed property as the property named 

theDate with a new value as shown. 

 

FirstListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theDate 

New property value: Sat Oct 18 10:24:49 CDT 1997 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans03[canvas0,31,33,50x50] 

Property name: theDate 

New property value: Sat Oct 18 10:24:49 CDT 1997 

Old property value: null 

     

*/ 

 

import java.awt.*; 

import java.awt.event.*; 

import java.beans.*; 

import java.util.*; 

//=======================================================// 

public class Beans03Test extends Frame{ 

  public static void main(String[] args){ 

    new Beans03Test(); 

  }//end main 

  //-----------------------------------------------------// 

 

  public Beans03Test(){//constructor 

    setTitle("Copyright 1997, R.G.Baldwin"); 

    setLayout(new FlowLayout()); 

    //instantiate a Bean object 

    Beans03 myBean = new Beans03(); 

    add(myBean);//Add it to the Frame 

     

    //Instantiate several test buttons  

    Button buttonToSetTheColor =  

                       new Button("Set theColor property"); 

    Button buttonToGetTheColor =  

                       new Button("Get theColor property"); 

    Button buttonToInvokeRedMethod =  

                       new Button("Invoke makeRed Method"); 

    Button buttonToInvokeBlueMethod =  

                      new Button("Invoke makeBlue Method"); 

    Button buttonToSetTheDate =  

                        new Button("Set theDate property"); 

                       

    //Add the test buttons to the frame   

    add(buttonToSetTheColor); 



    add(buttonToGetTheColor); 

    add(buttonToInvokeRedMethod); 

    add(buttonToInvokeBlueMethod); 

    add(buttonToSetTheDate); 

     

    //Size the frame and make it visible 

    setSize(250,350); 

    setVisible(true); 

 

    //Register action listener objects for all the test  

    // buttons     

    buttonToSetTheColor.addActionListener( 

                          new SetTheColorListener(myBean)); 

    buttonToGetTheColor.addActionListener( 

                          new GetTheColorListener(myBean)); 

    buttonToInvokeRedMethod.addActionListener( 

                            new RedActionListener(myBean)); 

    buttonToInvokeBlueMethod.addActionListener( 

                           new BlueActionListener(myBean)); 

    buttonToSetTheDate.addActionListener( 

                           new DateActionListener(myBean)); 

                            

    //Instantiate and register two PropertyChangeListener  

    // objects to listen for changes in the bean's  

    // properties. 

    MyPropertyChangeListener firstListener =  

                            new MyPropertyChangeListener(); 

    //Store an identifying name in the listener object 

    firstListener.setTheID("FirstListener"); 

    myBean.addPropertyChangeListener(firstListener); 

                            

    MyPropertyChangeListener secondListener =  

                            new MyPropertyChangeListener(); 

    //Store an identifying name in the listener object 

    secondListener.setTheID("SecondListener"); 

    myBean.addPropertyChangeListener(secondListener); 

     

    //The following statements can be activated to confirm 

    // proper operation of the removePropertyChangeListener 

    // interface of the bean object.  When one or the other 

    // of these statements is activated, and the program is 

    // recompiled, only the other listener object is  

    // notified of changes in the values of properties  

    // in the bean. 

//    myBean.removePropertyChangeListener(firstListener); 

//    myBean.removePropertyChangeListener(secondListener); 

 

    //terminate when Frame is closed     

    this.addWindowListener(new Terminate()); 

  }//end constructor 

}//end class Beans03Test 

//=======================================================// 

//The following class is used to instantiate objects to  

// be registered to listen to one of the buttons on the  

// test panel.  When the setTheDate button is pressed, the  

// theDate property is set to the current date and time. 



class DateActionListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  DateActionListener(Beans03 inBean){//constructor 

    myBean = inBean;//save a reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    //Store the current date and time in the bean property 

    // named theDate. 

    myBean.setTheDate(new Date()); 

  }//end actionPerformed() 

}//end class DateActionListener 

//=======================================================// 

 

//The following two classes are used to instantiate objects 

// to be registered to listen to two of the buttons on the  

// test panel.   

 

// When the setTheColor button is pressed, the theColor  

// property is set to green.  

 

// When the getTheColor button is pressed, the current  

// color is displayed on the standard output device. 

 

class SetTheColorListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  SetTheColorListener(Beans03 inBean){//constructor 

    myBean = inBean;//save a reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.setTheColor(Color.green); 

  }//end actionPerformed() 

}//end class SetTheColorListener 

//-------------------------------------------------------// 

 

class GetTheColorListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  GetTheColorListener(Beans03 inBean){//constructor 

    myBean = inBean;//save reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    //Display value of the theColor property on the 

    // standard output device. 

    System.out.println(myBean.getTheColor().toString()); 

  }//end actionPerformed() 

}//end class GetTheColorListener 

 

//=======================================================// 

//The following two classes are used to instantiate objects 

// to be registered to listen to two of the buttons on the  

// test panel.  When the corresponding the buttons are  



// pressed, these objects invoke methods of the bean under  

// test. The first class invokes the makeRed() method and 

// the second class invokes the makeBlue() method. 

 

class RedActionListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  RedActionListener(Beans03 inBean){//constructor 

    myBean = inBean;//save the reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.makeRed(); 

  }//end actionPerformed() 

}//end class RedActionListener 

//-------------------------------------------------------// 

 

class BlueActionListener implements ActionListener{ 

  Beans03 myBean;//save a reference to the bean here 

   

  BlueActionListener(Beans03 inBean){//constructor 

    myBean = inBean;//save the reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.makeBlue(); 

  }//end actionPerformed() 

}//end class BlueActionListener 

//=======================================================// 

 

//The following class is used to instantiate objects that 

// will be bound to the bean in such a way as to be  

// notified of changes in the property values in the bean  

// object.  When notified of such changes, code in the 

// propertyChange() method of this class extracts and 

// displays information about the bean and the properties. 

class MyPropertyChangeListener  

                         implements PropertyChangeListener{ 

  String theID; //store listener object ID here 

   

  void setTheID(String nameIn){ 

    //method to save the ID of the object 

    theID = nameIn; 

  }//end setTheID() 

     

  public void propertyChange(PropertyChangeEvent event){ 

    //Extract and display information about the event 

    System.out.println(theID + " notified of change"); 

    System.out.println("Property change source: "  

                                      + event.getSource()); 

    System.out.println("Property name: "  

                                + event.getPropertyName()); 

    System.out.println("New property value: "  

                                    + event.getNewValue()); 

    System.out.println("Old property value: "  

                                    + event.getOldValue()); 



    System.out.println();//blank line 

  }//end propertyChange() 

}//end MyPropertyChangeListener class 

//=======================================================// 

 

class Terminate extends WindowAdapter{ 

  public void windowClosing(WindowEvent e){ 

    //terminate the program when the window is closed   

    System.exit(0); 

  }//end windowClosing 

}//end class Terminate 

//=======================================================// 

Using the PropertyChangeSupport Class 

Now that you know how to roll your own beans with bound properties, I am going to let you in 

on a secret that can reduce your programming effort a little.  

Java provides the java.beans.PropertyChangeSupport class that can be used to handle the 

maintenance of the registration list as well as the task of firing events to the registered listener 

objects on that list. A description of the constructor and methods of the class is shown below. 

   

Constructor 
public PropertyChangeSupport(Object sourceBean) 

 

Methods                
public synchronized void addPropertyChangeListener( 

                        PropertyChangeListener listener) 

Adds a PropertyChangeListener to the listener list.  

 

Parameters:  

  listener - The PropertyChangeListener to be added  

 

public synchronized void removePropertyChangeListener( 

                       PropertyChangeListener listener) 

Removes a PropertyChangeListener from the listener list.  

 

Parameters:  

  listener - The PropertyChangeListener to be removed  

 

public void firePropertyChange(String propertyName, 

                                Object oldValue, 

                                Object newValue) 

 

Reports a bound property update to any registered  

listeners. No event is fired if old and new are  

equal and non-null.  

 

Parameters:  

  propertyName - The name of the property that was  

                 changed.  



  oldValue - The old value of the property.  

  newValue - The new value of the property.  

As you can see, an object of this class can be used to maintain the registration list and to fire the 

events. This class can be either extended or inherited. In the case of the sample program in this 

section, it is not possible to extend the support class because the bean class already extends the 

Canvas class. Therefore, in this sample program, the support class was instantiated into a 

separate object that is used to handle the list-maintenance and event-firing tasks.  

The requirement to instantiate the support class into a separate object resulted in a small amount 

of extra programming effort. In particular, it was necessary to define add and remove method 

shells for the bean class and then pass the listener object parameters received by those method 

shells to the add and remove methods in the support object. If the bean class extended the 

support class, the add and remove methods of the support class would be inherited into the bean 

class.  

Complete listings of the revised bean class and the corresponding test program follow. Important 

information is included in the comments in these two programs. 

   

/*File Beans05.java Copyright 1997, R.G.Baldwin 

This program was designed to be compiled and executed  

under JDK 1.1.3 or later. 

 

This bean class is designed to replicate the functionality 

of the bean class named Beans04 by making use of the  

support class named java.beans.PropertyChangeSupport to  

reduce the level of programming effort required. 

 

This support class provides  methods for maintaining 

the list of registered PropertyChange listeners and for 

firing events to all of the listener objects on that list, 

thus eliminating the need to code those capabilities by 

hand as was done with Beans04. 

 

The support class can either be extended or instantiated. 

In this case, because this bean class was already 

extending the Canvas class and multiple inheritance is 

not allowed, the support class was instantiated.  This 

made it necessary to do a little extra work in providing 

bean interface methods to add and remove listener objects 

and then to call the corresponding methods in the support 

class object passing the listener references as parameters. 

//=======================================================// 

*/ 

 

import java.awt.event.*; 

import java.awt.*; 

import java.io.Serializable; 

import java.util.*; 

import java.beans.*; 



//=======================================================// 

//All beans should implement the Serializable interface 

public class Beans05 extends Canvas  

                                   implements Serializable{ 

 

  //The following instance variables are used to store 

  // property values. 

  protected Color myColor; 

  protected Date myDate; 

   

  //The following reference variable is used to access 

  // the list maintenance and event firing capabilities 

  // of the PropertyChangeSupport class, an object of 

  // which is instantiated in the constructor.   

  PropertyChangeSupport supportObj; 

  //-----------------------------------------------------// 

   

  public Beans05(){//constructor 

    //This bean is a visible square that is initialized to 

    // yellow and can then be changed to green, red, and 

    // blue by invoking methods of the class. 

 

    myColor = Color.yellow; 

    setBackground(myColor); 

     

    //Instantiate an object of the support class to handle 

    // list maintenance and event firing tasks.  The 

    // constructor requires this object as the source of 

    // the events. 

    supportObj = new PropertyChangeSupport(this); 

  

  }//end constructor 

  //-----------------------------------------------------// 

 

  //This method defines the preferred display size of the  

  // bean object.   

  public synchronized Dimension getPreferredSize(){ 

    return new Dimension(50,50); 

  }//end getPreferredSize() 

  //-----------------------------------------------------// 

 

  //The following "set" and "get" methods in conjunction  

  // with the instance variable named myColor constitute a 

  // property named theColor.   

  public synchronized void setTheColor(Color inColor){ 

    Color oldColor = myColor; 

    myColor = inColor; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    if(!myColor.equals(oldColor)) 

      notifyPropertyChange("theColor"); 

  }//end setTheColor() 

 

  public synchronized Color getTheColor(){ 

    return myColor; 

  }//end getTheColor 



  //-----------------------------------------------------// 

   

  //The following "set" method in conjunction with the  

  // instance variable named myDate constitute a write-only 

  // property named theDate. 

  public synchronized void setTheDate(Date dateIn){ 

    Date oldDate = myDate; 

    myDate = dateIn; 

    //notify property listeners of property change 

    if(!myDate.equals(oldDate)) 

      notifyPropertyChange("theDate"); 

  }//end setTheDate() 

  //-----------------------------------------------------// 

 

  //The following two methods are exposed to the builder  

  // tool as accessible methods.   

  public synchronized void makeBlue(){ 

    Color oldColor = myColor; 

    myColor = Color.blue; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    if(!myColor.equals(oldColor)) 

      notifyPropertyChange("theColor"); 

  }//end makeBlue() 

 

  public synchronized void makeRed(){ 

    Color oldColor = myColor; 

    myColor = Color.red; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    if(!myColor.equals(oldColor)) 

      notifyPropertyChange("theColor"); 

  }//end makeRed() 

  //-----------------------------------------------------// 

     

  //The following two methods are used to maintain a list 

  // of listener objects who request to be notified of  

  // changes to the properties or who request to be removed 

  // from the list.  Note that these two methods do  

  // nothing more than to accept a reference to the 

  // object requesting registration and pass that reference 

  // to the list maintenance facility provided by an object 

  // of the PropertyChangeSupport class. 

   

  //Add a property change listener object to the list. 

  public synchronized void addPropertyChangeListener( 

                          PropertyChangeListener listener){ 

    supportObj.addPropertyChangeListener(listener); 

  }//end addPropertyChangeListener 

 

//-------------------------------------------------------//   

 

  //Remove a property change listener from the list. 

  public synchronized void removePropertyChangeListener( 

                          PropertyChangeListener listener){ 

    supportObj.removePropertyChangeListener(listener); 



  }//end removePropertyChangeListener() 

  //-----------------------------------------------------// 

   

  //The following method is used to notify listener  

  // objects of changes in the properties.  The incoming 

  // parameter is the name of the property that has  

  // changed.  Note that this method makes use of the  

  // event-firing capability of an object of the 

  // PropertyChangeSupport class. 

  protected void notifyPropertyChange( 

                                   String changedProperty){ 

    if(changedProperty.compareTo("theColor") == 0) 

      //Change was in theColor property 

      supportObj.firePropertyChange( 

                             changedProperty,null,myColor); 

    else//Change was in the theDate property 

      supportObj.firePropertyChange( 

                              changedProperty,null,myDate); 

  }//end notifyPropertyChange() 

   

}//end class Beans05.java 

//=======================================================// 

A listing of the test program follows. 

   

/*File Beans05Test.java Copyright 1997, R.G.Baldwin 

This program was designed to be compiled and executed  

under JDK 1.1.3 or later. 

 

The purpose of this program is to provide the ability to 

test the bean class named Beans05.class in a Frame. 

 

See the comments in the file named Beans05.java to  

understand how this test program and the bean differ from  

the test program named Beans04Test and its corresponding  

bean. 

 

Briefly, this pair of programs replicates the Beans04 

pair in functionality.  However, Beans05 uses a support 

class named java.beans.PropertyChangedSupport to reduce 

the programming effort required for the bean. 

 

See the program named Beans04Test for an operational  

description of this program along with sample output 

produced by the program. 

*/ 

 

import java.awt.*; 

import java.awt.event.*; 

import java.beans.*; 

import java.util.*; 

//=======================================================// 

public class Beans05Test extends Frame{ 



  public static void main(String[] args){ 

    new Beans05Test(); 

  }//end main 

  //-----------------------------------------------------// 

 

  public Beans05Test(){//constructor 

    setTitle("Copyright 1997, R.G.Baldwin"); 

    setLayout(new FlowLayout()); 

    //instantiate a Bean object 

    Beans05 myBean = new Beans05(); 

    add(myBean);//Add it to the Frame 

     

    //Instantiate several test buttons  

    Button buttonToSetTheColor =  

                       new Button("Set theColor property"); 

    Button buttonToGetTheColor =  

                       new Button("Get theColor property"); 

    Button buttonToInvokeRedMethod =  

                       new Button("Invoke makeRed Method"); 

    Button buttonToInvokeBlueMethod =  

                      new Button("Invoke makeBlue Method"); 

    Button buttonToSetTheDate =  

                        new Button("Set theDate property"); 

                       

    //Add the test buttons to the frame   

    add(buttonToSetTheColor); 

    add(buttonToGetTheColor); 

    add(buttonToInvokeRedMethod); 

    add(buttonToInvokeBlueMethod); 

    add(buttonToSetTheDate); 

     

    //Size the frame and make it visible 

    setSize(250,350); 

    setVisible(true); 

 

    //Register action listener objects for all the test  

    // buttons     

    buttonToSetTheColor.addActionListener( 

                          new SetTheColorListener(myBean)); 

    buttonToGetTheColor.addActionListener( 

                          new GetTheColorListener(myBean)); 

    buttonToInvokeRedMethod.addActionListener( 

                            new RedActionListener(myBean)); 

    buttonToInvokeBlueMethod.addActionListener( 

                           new BlueActionListener(myBean)); 

    buttonToSetTheDate.addActionListener( 

                           new DateActionListener(myBean)); 

                            

    //Instantiate and register two PropertyChangeListener  

    // objects to listen for changes in the bean's  

    // properties. 

    MyPropertyChangeListener firstListener =  

                            new MyPropertyChangeListener(); 

    //Store an identifying name in the listener object 

    firstListener.setTheID("FirstListener"); 

    myBean.addPropertyChangeListener(firstListener); 



                            

    MyPropertyChangeListener secondListener =  

                            new MyPropertyChangeListener(); 

    //Store an identifying name in the listener object 

    secondListener.setTheID("SecondListener"); 

    myBean.addPropertyChangeListener(secondListener); 

     

    //The following statements can be activated to confirm 

    // proper operation of the removePropertyChangeListener 

    // interface of the bean object.  When one or the other 

    // of these statements is activated, and the program is 

    // recompiled, only the other listener object is  

    // notified of changes in the values of properties  

    // in the bean. 

//    myBean.removePropertyChangeListener(firstListener); 

//    myBean.removePropertyChangeListener(secondListener); 

 

    //terminate when Frame is closed     

    this.addWindowListener(new Terminate()); 

  }//end constructor 

}//end class Beans05Test 

//=======================================================// 

//The following class is used to instantiate objects to  

// be registered to listen to one of the buttons on the  

// test panel.  When the setTheDate button is pressed, the  

// theDate property is set to the current date and time. 

class DateActionListener implements ActionListener{ 

  Beans05 myBean;//save a reference to the bean here 

   

  DateActionListener(Beans05 inBean){//constructor 

    myBean = inBean;//save a reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    //Store the current date and time in the bean property 

    // named theDate. 

    myBean.setTheDate(new Date()); 

  }//end actionPerformed() 

}//end class DateActionListener 

//=======================================================// 

 

//The following two classes are used to instantiate objects 

// to be registered to listen to two of the buttons on the  

// test panel.   

 

// When the setTheColor button is pressed, the theColor  

// property is set to green.  

 

// When the getTheColor button is pressed, the current  

// color is displayed on the standard output device. 

 

class SetTheColorListener implements ActionListener{ 

  Beans05 myBean;//save a reference to the bean here 

   

  SetTheColorListener(Beans05 inBean){//constructor 

    myBean = inBean;//save a reference to the bean 



  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.setTheColor(Color.green); 

  }//end actionPerformed() 

}//end class SetTheColorListener 

//-------------------------------------------------------// 

 

class GetTheColorListener implements ActionListener{ 

  Beans05 myBean;//save a reference to the bean here 

   

  GetTheColorListener(Beans05 inBean){//constructor 

    myBean = inBean;//save reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    //Display value of the theColor property on the 

    // standard output device. 

    System.out.println(myBean.getTheColor().toString()); 

  }//end actionPerformed() 

}//end class GetTheColorListener 

 

//=======================================================// 

//The following two classes are used to instantiate objects 

// to be registered to listen to two of the buttons on the  

// test panel.  When the corresponding the buttons are  

// pressed, these objects invoke methods of the bean under  

// test. The first class invokes the makeRed() method and 

// the second class invokes the makeBlue() method. 

 

class RedActionListener implements ActionListener{ 

  Beans05 myBean;//save a reference to the bean here 

   

  RedActionListener(Beans05 inBean){//constructor 

    myBean = inBean;//save the reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.makeRed(); 

  }//end actionPerformed() 

}//end class RedActionListener 

//-------------------------------------------------------// 

 

class BlueActionListener implements ActionListener{ 

  Beans05 myBean;//save a reference to the bean here 

   

  BlueActionListener(Beans05 inBean){//constructor 

    myBean = inBean;//save the reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.makeBlue(); 

  }//end actionPerformed() 

}//end class BlueActionListener 

//=======================================================// 

 



//The following class is used to instantiate objects that 

// will be bound to the bean in such a way as to be  

// notified of changes in the property values in the bean  

// object.  When notified of such changes, code in the 

// propertyChange() method of this class extracts and 

// displays information about the bean and the properties. 

class MyPropertyChangeListener  

                         implements PropertyChangeListener{ 

  String theID; //store listener object ID here 

   

  void setTheID(String nameIn){ 

    //method to save the ID of the object 

    theID = nameIn; 

  }//end setTheID() 

     

  public void propertyChange(PropertyChangeEvent event){ 

    //Extract and display information about the event 

    System.out.println(theID + " notified of change"); 

    System.out.println("Property change source: "  

                                      + event.getSource()); 

    System.out.println("Property name: "  

                                + event.getPropertyName()); 

    System.out.println("New property value: "  

                                    + event.getNewValue()); 

    System.out.println("Old property value: "  

                                    + event.getOldValue()); 

    System.out.println();//blank line 

  }//end propertyChange() 

}//end MyPropertyChangeListener class 

//=======================================================// 

 

class Terminate extends WindowAdapter{ 

  public void windowClosing(WindowEvent e){ 

    //terminate the program when the window is closed   

    System.exit(0); 

  }//end windowClosing 

}//end class Terminate 

//=======================================================// 

. 

Review 

Q - The bean class named Beans03 broadcasts a PropertyChangeEvent whenever a new value 

is assigned to one of the instance variables used to maintain the bound property values regardless 

of whether the new value is different from, or the same as the old value.  

Without viewing the following solution, upgrade that bean class to produce a new bean class that 

will broadcast a PropertyChangeEvent only if the new value is different from the old value.  

Provide a bean test program to demonstrate proper operation of the new bean class.  



A - See the following bean program and test program.  

Bean program follows: 
   

/*File Beans04.java Copyright 1997, R.G.Baldwin 

This program was designed to be compiled and executed  

under JDK 1.1.3 or later. 

 

The bean class named Beans03 broadcasts a PropertyChange 

Event whenever a new value is assigned to one of the  

instance variables used to maintain the property values 

regardless of whether the new value is different from, or 

the same as the old value. 

 

Upgrade that bean class to produce a new bean class that 

will refrain from broadcasting a PropertyChangeEvent if 

the new value is the same as the old value. 

 

Provide a bean test program to demonstrate proper operation 

of the new bean class. 

 

The main purpose of this program is to illustrate the use  

of "bound" properties in Beans. 

 

This is a "bean" class that satisfies the interface 

requirements for beans using design patterns. 

 

This bean class has two properties named theColor and  

theDate. 

 

The current value of the property named theColor is stored 

in the instance variable named myColor. 

 

The current value of the property named theDate is stored 

in the instance variable named myDate.  theDate is a 

write-only property because it has a "set" method but does 

not have a "get" method. 

 

The program maintains a list of objects that request to be  

 

notified whenever there is a change in the value of either 

of the properties.  Whenever the value of either property 

changes, all of the objects on the list are notified of the 

change by invoking their propertyChange() method and  

passing an object of type PropertyChangeEvent as a  

parameter. 

 

Objects that request to be added to the list must be of a 

class that implements the PropertyChangeListener interface 

and defines the propertyChange() method that is declared  

in that interface. 

 

The PropertyChangeEvent object passed as a parameter to the 

propertyChange() method in the listener objects contains  



the following information: 

   

  Object source, //the bean object 

  String propertyName, //the name of the changed property 

  Object oldValue, //the old value of the changed property 

  Object newValue  //the new value of the changed property 

   

This program doesn't save the old value and therefore 

passes null as the old value of the changed property  

because the old value is not available when the listener 

objects are notified. 

   

The following methods are available to extract information 

from the object passed as a parameter.  These methods are 

defined by the PropertyChangeEvent class or its superclass 

named EventObject: 

   

  public Object getSource(); 

  public Object getNewValue(); 

  public Object getOldValue(); 

  public String getPropertyName; 

  public void setPropagationId(); 

  public Object getPropagationId; 

   

Apparently the PropagationID is reserved for future use.   

     

The program was compiled and tested under JDK 1.1.3 

and Win95.  Another program named Beans03Test.java was  

used to test the bean.  It was not tested in the BeanBox. 

//=======================================================// 

*/ 

 

import java.awt.event.*; 

import java.awt.*; 

import java.io.Serializable; 

import java.util.*; 

import java.beans.*; 

//=======================================================// 

//All beans should implement the Serializable interface 

public class Beans04 extends Canvas  

                                   implements Serializable{ 

 

  //The following instance variables are used to store 

  // property values. 

  protected Color myColor; 

  protected Date myDate; 

   

  //The following vector is used to maintain a list of  

  // listeners who request to be notified of changes in the 

  // property values. 

  protected Vector propChangeListeners = new Vector(); 

  //-----------------------------------------------------// 

   

  public Beans04(){//constructor 

    //This bean is a visible square that is initialized to 

    // yellow and can then be changed to green, red, and 



    // blue by invoking methods of the class. 

    myColor = Color.yellow; 

    setBackground(myColor); 

  }//end constructor 

  //-----------------------------------------------------// 

 

  //This method defines the preferred display size of the  

  // bean object.   

  public synchronized Dimension getPreferredSize(){ 

    return new Dimension(50,50); 

  }//end getPreferredSize() 

  //-----------------------------------------------------// 

 

  //The following "set" and "get" methods in conjunction  

  // with the instance variable named myColor constitute a 

  // property named theColor.   

  public synchronized void setTheColor(Color inColor){ 

    Color oldColor = myColor; 

    myColor = inColor; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    if(!myColor.equals(oldColor)) 

      notifyPropertyChange("theColor"); 

  }//end setTheColor() 

 

  public synchronized Color getTheColor(){ 

    return myColor; 

  }//end getTheColor 

  //-----------------------------------------------------// 

   

  //The following "set" method in conjunction with the  

  // instance variable named myDate constitute a write-only 

  // property named theDate. 

  public synchronized void setTheDate(Date dateIn){ 

    Date oldDate = myDate; 

    myDate = dateIn; 

    //notify property listeners of property change 

    if(!myDate.equals(oldDate)) 

      notifyPropertyChange("theDate"); 

  }//end setTheDate() 

  //-----------------------------------------------------// 

 

  //The following two methods are exposed to the builder  

  // tool as accessible methods.   

  public synchronized void makeBlue(){ 

    Color oldColor = myColor; 

    myColor = Color.blue; 

    this.setBackground(myColor); 

    //notify property listeners of property change 

    if(!myColor.equals(oldColor)) 

      notifyPropertyChange("theColor"); 

  }//end makeBlue() 

 

  public synchronized void makeRed(){ 

    Color oldColor = myColor; 

    myColor = Color.red; 



    this.setBackground(myColor); 

    //notify property listeners of property change 

    if(!myColor.equals(oldColor)) 

      notifyPropertyChange("theColor"); 

  }//end makeRed() 

  //-----------------------------------------------------// 

     

  //The following two methods are used to maintain a list 

  // of listener objects who request to be notified of  

  // changes to the properties or who request to be removed 

  // from the list. 

   

  //Add a property change listener object to the list. 

  public synchronized void addPropertyChangeListener( 

                          PropertyChangeListener listener){ 

    //If the listener is not already registered, add it 

    // to the list. 

    if(!propChangeListeners.contains(listener)){ 

      propChangeListeners.addElement(listener); 

    }//end if 

  }//end addPropertyChangeListener 

   

  //Remove a property change listener from the list. 

  public synchronized void removePropertyChangeListener( 

                          PropertyChangeListener listener){ 

    //If the listener is on the list, remove it 

    if(propChangeListeners.contains(listener)){ 

      propChangeListeners.removeElement(listener); 

    }//end if 

  }//end removePropertyChangeListener 

  //-----------------------------------------------------// 

   

  //The following method is used to notify listener  

  // objects of changes in the properties.  The incoming 

  // parameter is the name of the property that has  

  // changed. 

  protected void notifyPropertyChange( 

                                   String changedProperty){ 

    //Instantiate the event object containing information 

    // about the property that has changed. 

    PropertyChangeEvent event; 

    if(changedProperty.compareTo("theColor") == 0) 

      //Change was in theColor property 

      event = new PropertyChangeEvent( 

                        this,changedProperty,null,myColor); 

    else//Change was in the theDate property 

      event = new PropertyChangeEvent( 

                         this,changedProperty,null,myDate); 

     

    //Make a working copy of the list that cannot be  

    // modified while objects on the list are being  

    // notified of the change. 

    Vector tempList; 

    synchronized(this){ 

      tempList = (Vector)propChangeListeners.clone(); 

    }//end synchronized block 



     

    //Notify all listener objects on the list.  Note the 

    // requirement to cast the objects in the list from 

    // Object to PropertyChangeListener. 

    for(int cnt = 0; cnt < tempList.size();cnt++){ 

      PropertyChangeListener theListener =  

           (PropertyChangeListener)tempList.elementAt(cnt); 

      //Invoke the propertyChange() method on theListener 

      theListener.propertyChange(event); 

    }//end for loop 

  }//end notifyPropertyChange 

}//end class Beans04.java 

//=======================================================// 

Test program follows: 
   

/*File Beans04Test.java Copyright 1997, R.G.Baldwin 

This program was designed to be compiled and executed  

under JDK 1.1.3 or later. 

 

The purpose of this program is to provide the ability to 

test the bean class named Beans04.class in a Frame. 

 

A Beans04 object is placed in the frame along with five  

buttons.  

 

The visual manifestation of the Bean object is a colored  

square. 

 

Two of the buttons exercise the "get" and "set" methods 

used to get and set the color value stored in the property 

named theColor. 

 

One button exercises the "set" method used to set the date 

and time in a write-only property named theDate. 

 

Two of the buttons invoke the makeRed() and makeBlue() 

methods of the Bean which modify the value of the property 

named theColor. 

 

Two listener objects are instantiated and registered to 

be notified by the bean whenever there is a change in the 

value of either of the properties.  

 

For those cases where information is returned from the  

Bean, it is displayed on the standard output device. 

 

The program was tested using JDK 1.1.3 under Win95.  

 

Clicking the button labeled "Set theColor property"  

produced the following output on the screen.  As you can 

see, the two different listener objects were notified of  

the same change in the property named theColor. In this  

case, the value of theColor property was changed to green. 



   

FirstListener notified of change 

Property change source: Beans04[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=255,b=0] 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans04[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=255,b=0] 

Old property value: null   

 

As discussed below regarding the makeRed() method,  

clicking the button labeled "Set theColor property" 

several times in succession produces only the single  

output shown above. 

 

 

Clicking the button labeled "Get theColor property" 

produced the following output on the screen.  Since  

this action didn't cause the property values to change,  

the listener objects were not notified of the action. 

 

java.awt.Color[r=0,g=255,b=0] 

   

 

Clicking the button labeled "Invoke the makeRed Method" 

produced the following output on the screen. Again both 

listener objects were notified of the change in the  

property named theColor with the new value being red. 

 

FirstListener notified of change 

Property change source: Beans04[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=255,g=0,b=0] 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans04[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=255,g=0,b=0] 

Old property value: null 

 

 

Clicking the button labeled "Invoke the makeRed Method" 

several times in succession produces only the single  

output shown above.  The Beans04 class only broadcasts an  

event when the value of the property changes to a new 

value, and "changing" the property to the same value 

as before does not cause it to broadcast an event. 

   

 

Clicking the button labeled "Invoke the makeBlue Method" 

produced the following output on the screen similar to 

that produced by invoking the makeRed() method described 



above. 

 

FirstListener notified of change 

Property change source: Beans04[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=0,b=255] 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans04[canvas0,31,33,50x50] 

Property name: theColor 

New property value: java.awt.Color[r=0,g=0,b=255] 

Old property value: null 

 

 

As discussed above with regard to the makeRed method, 

clicking the "Invoke the makeBlue Method" several times 

in succession produces only the single output shown 

above.   

 

 

Finally, clicking the button labeled "Set theDate  

property" produced the following output on the screen. 

In this case, both listener objects were notified and 

the information encapsulated in the event object  

identified the changed property as the property named 

theDate with a new value as shown. 

 

FirstListener notified of change 

Property change source: Beans04[canvas0,31,33,50x50] 

Property name: theDate 

New property value: Sat Oct 18 10:24:49 CDT 1997 

Old property value: null 

 

SecondListener notified of change 

Property change source: Beans04[canvas0,31,33,50x50] 

Property name: theDate 

New property value: Sat Oct 18 10:24:49 CDT 1997 

Old property value: null 

 

Unlike the previous discussions involving the theColor 

property, each time you click the "Set theDate property" 

button, a new output will be produced.  This is because 

the date information being stored in the theDate property 

also includes the time and the time always changes  

between successive clicks on the button.     

*/ 

 

import java.awt.*; 

import java.awt.event.*; 

import java.beans.*; 

import java.util.*; 

//=======================================================// 

public class Beans04Test extends Frame{ 

  public static void main(String[] args){ 

    new Beans04Test(); 



  }//end main 

  //-----------------------------------------------------// 

 

  public Beans04Test(){//constructor 

    setTitle("Copyright 1997, R.G.Baldwin"); 

    setLayout(new FlowLayout()); 

    //instantiate a Bean object 

    Beans04 myBean = new Beans04(); 

    add(myBean);//Add it to the Frame 

     

    //Instantiate several test buttons  

    Button buttonToSetTheColor =  

                       new Button("Set theColor property"); 

    Button buttonToGetTheColor =  

                       new Button("Get theColor property"); 

    Button buttonToInvokeRedMethod =  

                       new Button("Invoke makeRed Method"); 

    Button buttonToInvokeBlueMethod =  

                      new Button("Invoke makeBlue Method"); 

    Button buttonToSetTheDate =  

                        new Button("Set theDate property"); 

                       

    //Add the test buttons to the frame   

    add(buttonToSetTheColor); 

    add(buttonToGetTheColor); 

    add(buttonToInvokeRedMethod); 

    add(buttonToInvokeBlueMethod); 

    add(buttonToSetTheDate); 

     

    //Size the frame and make it visible 

    setSize(250,350); 

    setVisible(true); 

 

    //Register action listener objects for all the test  

    // buttons     

    buttonToSetTheColor.addActionListener( 

                          new SetTheColorListener(myBean)); 

    buttonToGetTheColor.addActionListener( 

                          new GetTheColorListener(myBean)); 

    buttonToInvokeRedMethod.addActionListener( 

                            new RedActionListener(myBean)); 

    buttonToInvokeBlueMethod.addActionListener( 

                           new BlueActionListener(myBean)); 

    buttonToSetTheDate.addActionListener( 

                           new DateActionListener(myBean)); 

                            

    //Instantiate and register two PropertyChangeListener  

    // objects to listen for changes in the bean's  

    // properties. 

    MyPropertyChangeListener firstListener =  

                            new MyPropertyChangeListener(); 

    //Store an identifying name in the listener object 

    firstListener.setTheID("FirstListener"); 

    myBean.addPropertyChangeListener(firstListener); 

                            

    MyPropertyChangeListener secondListener =  



                            new MyPropertyChangeListener(); 

    //Store an identifying name in the listener object 

    secondListener.setTheID("SecondListener"); 

    myBean.addPropertyChangeListener(secondListener); 

     

    //The following statements can be activated to confirm 

    // proper operation of the removePropertyChangeListener 

    // interface of the bean object.  When one or the other 

    // of these statements is activated, and the program is 

    // recompiled, only the other listener object is  

    // notified of changes in the values of properties  

    // in the bean. 

//    myBean.removePropertyChangeListener(firstListener); 

//    myBean.removePropertyChangeListener(secondListener); 

 

    //terminate when Frame is closed     

    this.addWindowListener(new Terminate()); 

  }//end constructor 

}//end class Beans04Test 

 

//=======================================================// 

//The following class is used to instantiate objects to  

// be registered to listen to one of the buttons on the  

// test panel.  When the setTheDate button is pressed, the  

// theDate property is set to the current date and time. 

class DateActionListener implements ActionListener{ 

  Beans04 myBean;//save a reference to the bean here 

   

  DateActionListener(Beans04 inBean){//constructor 

    myBean = inBean;//save a reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    //Store the current date and time in the bean property 

    // named theDate. 

    myBean.setTheDate(new Date()); 

  }//end actionPerformed() 

}//end class DateActionListener 

//=======================================================// 

 

//The following two classes are used to instantiate objects 

// to be registered to listen to two of the buttons on the  

// test panel.   

 

// When the setTheColor button is pressed, the theColor  

// property is set to green.  

 

// When the getTheColor button is pressed, the current  

// color is displayed on the standard output device. 

 

class SetTheColorListener implements ActionListener{ 

  Beans04 myBean;//save a reference to the bean here 

   

  SetTheColorListener(Beans04 inBean){//constructor 

    myBean = inBean;//save a reference to the bean 

  }//end constructor 



   

  public void actionPerformed(ActionEvent e){ 

    myBean.setTheColor(Color.green); 

  }//end actionPerformed() 

}//end class SetTheColorListener 

//-------------------------------------------------------// 

 

class GetTheColorListener implements ActionListener{ 

  Beans04 myBean;//save a reference to the bean here 

   

  GetTheColorListener(Beans04 inBean){//constructor 

    myBean = inBean;//save reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    //Display value of the theColor property on the 

    // standard output device. 

    System.out.println(myBean.getTheColor().toString()); 

  }//end actionPerformed() 

}//end class GetTheColorListener 

 

//=======================================================// 

//The following two classes are used to instantiate objects 

// to be registered to listen to two of the buttons on the  

// test panel.  When the corresponding the buttons are  

// pressed, these objects invoke methods of the bean under  

// test. The first class invokes the makeRed() method and 

// the second class invokes the makeBlue() method. 

 

class RedActionListener implements ActionListener{ 

  Beans04 myBean;//save a reference to the bean here 

   

  RedActionListener(Beans04 inBean){//constructor 

    myBean = inBean;//save the reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.makeRed(); 

  }//end actionPerformed() 

}//end class RedActionListener 

//-------------------------------------------------------// 

 

class BlueActionListener implements ActionListener{ 

  Beans04 myBean;//save a reference to the bean here 

   

  BlueActionListener(Beans04 inBean){//constructor 

    myBean = inBean;//save the reference to the bean 

  }//end constructor 

   

  public void actionPerformed(ActionEvent e){ 

    myBean.makeBlue(); 

  }//end actionPerformed() 

}//end class BlueActionListener 

//=======================================================// 

 

//The following class is used to instantiate objects that 



// will be bound to the bean in such a way as to be  

// notified of changes in the property values in the bean  

// object.  When notified of such changes, code in the 

// propertyChange() method of this class extracts and 

// displays information about the bean and the properties. 

class MyPropertyChangeListener  

                         implements PropertyChangeListener{ 

  String theID; //store listener object ID here 

   

  void setTheID(String nameIn){ 

    //method to save the ID of the object 

    theID = nameIn; 

  }//end setTheID() 

     

  public void propertyChange(PropertyChangeEvent event){ 

    //Extract and display information about the event 

    System.out.println(theID + " notified of change"); 

    System.out.println("Property change source: "  

                                      + event.getSource()); 

    System.out.println("Property name: "  

                                + event.getPropertyName()); 

    System.out.println("New property value: "  

                                    + event.getNewValue()); 

    System.out.println("Old property value: "  

                                    + event.getOldValue()); 

    System.out.println();//blank line 

  }//end propertyChange() 

}//end MyPropertyChangeListener class 

//=======================================================// 

 

class Terminate extends WindowAdapter{ 

  public void windowClosing(WindowEvent e){ 

    //terminate the program when the window is closed   

    System.exit(0); 

  }//end windowClosing 

}//end class Terminate 

//=======================================================// 

.  

-end- 


