
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

JavaBeans, Introspection

Java Programming, Lecture Notes # 506, Revised 02/18/98.

 Preface

 Introduction

 The Need for Introspection

 Design Patterns, General

 Design Patterns for Properties

o Simple properties

o Boolean Properties

o Indexed Properties

 Design Patterns for Events

o Multicast Events

o Unicast Events

 Design Patterns for Methods

 Explicit Specification

 Analyzing a Bean

 Capitalization Rules

 Sample Program

o Interesting Code Fragments

o Program Listing

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

JDK 1.1 was released on February 18, 1997 and JDK 1.1.1 was released on March 27, 1997.

This lesson was originally written on April 10, 1997 using the software and documentation in the

JDK 1.1.1 download package along with the April 97 release of the BDK 1.0 download package.

Introduction

The JavaBeans APIs include the following class:

java.beans.Introspector.

This class provides a standard way for visual builder tools to learn about the properties, events,

and methods of a target Bean's class.

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/

The Introspector class contains two overloaded versions of a single method that can be used to

analyze the target bean's class and superclasses looking either for explicit or implicit

information. The information discovered is used to build and return an object of type BeanInfo

that describes the target bean. Once the object of type BeanInfo is available, a variety of methods

are available to extract specific information about the bean from that object.

The programmer can elect provide explicit information about a bean or can rely on automatic

low-level reflection and the recognition of design patterns. The explicit approach will be briefly

covered here, and discussed in more detail in a subsequent lesson.

The methods of the Introspector class use low-level reflection techniques in the analysis of the

bean. Low-level reflection techniques were studied in an earlier lesson.

The primary method of the Introspector class used to analyze a bean is the getBeanInfo()

method. Simply put, this method takes a target Class object as a parameter and returns a

BeanInfo object containing information about the target class. The BeanInfo class contains a

number of methods that can be used to extract the different elements of information from the

BeanInfo object.

There are two versions of the getBeanInfo() method. The method which accepts only one

parameter returns information about the target class and all its superclasses.

Another version accepts a second Class object as a parameter and uses that class as a ceiling for

introspection up the inheritance hierarchy. For example, if this second class is the direct

superclass of the primary target class, only information about the primary target class is returned.

The Need for Introspection

Builder environments, and some runtime situations need to identify the properties, events, and

methods that a bean supports. This process is called introspection.

One of the goals of the Java designers was to avoid the requirement for the use of a separate

specification language for defining the behavior of a bean. Their goal was to make its behavior

completely specifiable in Java.

According to JavaSoft:

"A key goal of Java Beans is to make it very easy to write simple components and to provide

default implementations for most common tasks."

Therefore, they have worked to make it possible to introspect on simple beans without requiring

a lot of extra effort on the part of the component developer. At the same time, they have also

worked to provide the component developer with an alternative approach that provides full and

precise control over which properties, events, and methods are exposed for more sophisticated

components.

Remember these three: properties, events, and methods. The object of introspection is to gather

information about these the exposed properties, events, and methods of a bean.

This has resulted in a composite mechanism. The default case is to use low-level reflection to

analyze the methods supported by a bean and then to apply design patterns to determine from the

methods the specific events, properties, and public methods that are supported.

However, they have also made it possible for a component developer to provide a class that

implements the BeanInfo interface and to use that class to explicitly describe the bean. This

BeanInfo class is then used to discover the beans behavior.

The Introspector class is provided to allow application builders and other tools to analyze beans

in a uniform manner. The Introspector class understands the various design patterns and

standard interfaces and extracts the pertinent information from the bean.

Design Patterns, General

The JavsSoft meaning of design patterns as used in this lesson is:

"conventional names and type signatures for sets of methods and/or interfaces that are used for

standard purposes."

A common example of design patterns as used in the Introspector class is the use of the

public void set<PropertyName>(<PropertyType> a);

public <PropertyType> get<PropertyName>();

methods to set and get the value of the property with the specified name and the specified type.

JavaSoft has settled on the use of design patterns for at least two reasons.

 First, they provide a useful programming standard and documentation hint for human

programmers. By using design patterns in their programming style, the programmer who

defines the class and other programmers who read it can more quickly understand and use

new classes.

 Second, the use of design patterns makes it possible for JavaSoft and others to write tools

and libraries that recognize the design patterns and use them to analyze and understand

components. Design patterns are used for Java Beans as a way to implement automatic

identification of properties, events, and exported methods.

Again, however, the use of design patterns is entirely optional within Java Beans. Programmers

who desire to do so can explicitly specify their properties, methods, and events using the

BeanInfo interface. By doing that, the programmer can use whatever names they please,

provided of course that they satisfy the general requirements of the Java language.

Design Patterns for Properties

Properties may be

 simple

 indexed

 bound

 constrained

In this lesson, we will deal primarily with simple and indexed properties and defer the other two

to a subsequent lesson.

Simple properties

The Introspector uses design patterns to locate properties by looking for methods having

signatures of the form

public void set<PropertyName>(<PropertyType> a);

public <PropertyType> get<PropertyName>();

The existence of a matching pair of such methods is regarded as defining a read-write property

whose name will be <propertyName>. (Note the change in case of the first letter in the property

name. This will be explained more fully later.)

The two methods are used to get and set the property values as the names of the method imply.

Both methods in the pair may be located either in the same class, or one may be in a subclass and

the other may be in a superclass.

If only one of the methods from the pair exists, then it is regarded either as a read-only or a

write-only property.

The default assumption is that the property is neither bound nor constrained. As mentioned

earlier, this will be discussed in more detail in a subsequent lesson.

Reflecting the above general description in more concrete terms might result in the following

public void setMyProperty(int a){//...}

public int getMyProperty(){//...}

pair of methods for a property named myProperty of type int.

Boolean Properties

As a special case for boolean properties, the Introspector will recognize the following form

either in place of or in addition to the get method.

public boolean is<PropertyName>(){//...}

In either case, if the “ is<PropertyName>” method is present for a boolean property then it will

be used to read the property value.

An example for a boolean property named ready might be:

public boolean isReady(){//...}

public void setReady(boolean m){//...}

It is important to remember that the instance variable used to maintain the value of the property

is not required to have the same name as the property, but it may have the same name.

Indexed Properties

An indexed property is a property having multiple values stored in an array. The following

design patterns are regarded as indicating a property of this type.

public <PropertyElementType>

 get<PropertyName>(int a){//...}

public void set<PropertyName>(

 int a, < PropertyElementType> b){//...}

where the value passed to the integer parameter is the index of the element of interest. It is also

possible to have accessor methods which read and/or write the entire array. This results in design

patterns which look like the following:

public <PropertyType>[] get<PropertyName>(){//...}

public void set<PropertyName>(<PropertyType> a[])

Taking all of this into account might lead to the following four methods in the design pattern for

an indexed property of type MyType named myProperty.

//return an element

public MyType getMyProperty(int a){//...}

//set an element

public void setMyProperty(int a, MyType b){//...}

public MyType[] getMyProperty(){//...} //return an array

public void setMyProperty(MyType a[]){//...} //set an array

Design Patterns for Events

Events can be exposed as multicast or unicast events. A multicast event notifies one or more

Listeners of the occurrence of an event. A unicast event can support only one Listener.

Multicast Events

The design pattern that is used to identify the events that are multicast by a bean consists of a

pair of methods of the form:

public void add<EventListenerType>(<EventListenerType> a)

public void

 remove<EventListenerType>(<EventListenerType> a)

where

 both methods take the same “ <EventListenerType>” type argument,

 the “ <EventListenerType>” type implements the java.util.EventListener interface,

 the first method starts with “ add” ,

 the second method starts with “ remove” , and

 the “ <EventListenerType>” type name ends with “ Listener” .

This design pattern is based on an assumption that the bean is acting as a multicast event source

for the events specified in the “ <EventListenerType>” interface.

A pair of example methods that define a multicast event source might look like the following:

public void addMyTypeOfListener(MyTypeOfListener t){//...}
public void

 removeMyTypeOfListener(MyTypeOfListener t){//...}

Unicast Events

Unicast events comprise a special case. If the add method in the above design pattern throws the

java.util.TooManyListenersException, it is assumed that the event source is unicast and can

only tolerate a single event listener being registered at any given time. Converting the above

example to a unicast source gives us

public void addMyTypeOfListener(MyTypeOfListener t)

 throws java.util.TooManyListenersException{//...}

public void

 removeMyTypeOfListener(MyTypeOfListener t){//...}

Design Patterns for Methods

The default assumption is that all public methods of a bean should be exposed as external

methods. This makes them accessible by other components or by scripting languages. This

includes all property accessor methods and all event listener registry methods. The exception to

this assumption occurs when the programmer explicitly identifies the methods.

Explicit Specification

As an alternative to the use of design patterns, a bean can explicitly specify which properties,

events, and methods it supports by providing a class that implements the BeanInfo interface.

As mentioned earlier, a more detailed discussion of this topic will be deferred to a subsequent

lesson. For the meantime, suffice it to say that application tools should always use the

Introspector interface which combines the information from a variety of potential sources,

including explicit specifications, to construct a BeanInfo descriptor for a target bean.

Analyzing a Bean

The java.beans.Introspector will search out and identify exposed properties, methods, and

events on a bean using both explicit specifications and by performing implicit analysis using

design patterns. That information is encapsulated into a BeanInfo object that describes the bean

class.

The Introspector examines each class in the inheritance chain of the target class. It checks at

each level to determine if there is a matching BeanInfo class providing explicit information

about the bean. If it finds such a class, it uses that explicit information.

If it does not find such a class it uses low-level reflection APIs to study the target class and then

uses design patterns to analyze its behavior. It then moves on up the inheritance chain.

This multi-level analysis allows component developers to deliver complex beans with explicitly

specified behavior. These beans can then be subclassed and extended by end-user customers

without a requirement to provide explicit behavior information. The Introspector can then

combine the explicit behavior information provided by the bean's developer with information

gained by reflection and design patterns on the behavior introduced when the bean is subclassed.

Capitalization Rules

A set of capitalization rules are defined to be used whenever design patterns are used to infer a

property or event name.

When the name is extracted from the middle of a normal mixedCase Java name, the first

character in the name will normally be converted to a lower case letter. For example the property

accessor method named setMyProp() would normally result in a property name of myProp.

However, since it is sometimes desirable to use all uppercase names, the case will not be

changed if the first two characters of the name are both uppercase. For example, the property

accessor method named setRGB() would result in a property name of RGB.

Sample Program

This program was designed to be compiled and executed under JDK 1.1.1. The purpose of this

program is to illustrate Introspection, and in particular to illustrate the use of the static

getBeanInfo() method of the Introspector class to encapsulate information about a bean in an

object of type BeanInfo.

Once the information about the bean is encapsulated in the BeanInfo object, a variety of other

methods are used to extract specific types of information about the bean from the object.

In order to illustrate the behavior of the different methods being used, the application was

applied to the skeleton bean named Beans01 (which we discussed in an earlier lesson) and the

output from the program for each section of code was included as comments in that section.

To use the program, enter the command

java Introspect01 beanName

where beanName is the name of a beans class file without the .class extension.

As a sidelight, this program also illustrates the use of the fileWriter and printWriter classes

which are new to JDK 1.1. However, since they are to be discussed in another lesson dealing

with I/O upgrades in JDK 1.1, they are not discussed in this lesson.

The program was tested using JDK 1.1.1 and Win95.

Interesting Code Fragments

The first interesting code fragment is that portion of the constructor that creates an object of type

Class that describes the class of the bean specified on the command line. Here, we create an

object of type Class that describes the class of the bean. This object will be used later with the

static getBeanInfo() method of the Introspector class. The forName() method of the Class

class returns such an object, given the name of the class as a String parameter.

Class myBeanClassObject = Class.forName(myBeanClassName);

The next interesting code fragment uses the static getBeanInfo() method of the Introspector

class to obtain information about the class of the bean and its superclasses. There are two

overloaded versions of this method. One version which requires a single parameter extracts

information about the entire inheritance tree.

The second version that has two parameters uses the second parameter to determine the point in

the tree at and above which information is not needed. In this case, we make the second

parameter be the superclass of the bean, thus causing the getBeanInfo() method to extract

information only on the class of the bean.

BeanInfo beanInfo = Introspector.getBeanInfo(

 myBeanClassObject,myBeanClassObject.getSuperclass());

The next interesting code fragment applies the getBeanDescriptor() method to the BeanInfo

object to produce an object of type BeanDescriptor. Such an object provides global information

about a bean, including its Java class, its displayName, etc.

Once the BeanDescriptor object is available, other methods are applied to the object to extract

specific information from the object and write it to the output file.

When this application was applied to the skeleton bean named Beans01 that we studied in an

earlier lesson, the output shown in the comments was produced by this section of code.

/*

Name of bean: Beans01

Class of bean: class Beans01

*/

BeanDescriptor beanDescriptor =

 beanInfo.getBeanDescriptor();

printWriter.println("Name of bean: "

 + beanDescriptor.getName());

printWriter.println("Class of bean: "

 + beanDescriptor.getBeanClass());

printWriter.println("");

The next interesting code fragment uses the getPropertyDescriptors() method to produce an

array of PropertyDescriptor objects.

Each object describes one property that a Java Bean exports via a pair of accessor methods. Once

that array of objects is available, other methods are used to extract specific information about

each of the properties and to write that information into the output file.

When this program was applied to the skeleton bean named Beans01, the output for this section

of code was as shown in the comments. Note that the preferredSize property is a read-only

property because its set method is null (there is no set method for this property). Note that

manual breaks have been inserted to make the material fit the page.

/*

==== Properties: ====

Name: color

 Type: class java.awt.Color

 Get method:

 public synchronized java.awt.Color Beans01.getColor()

 Set method:

 public synchronized void Beans01.setColor(java.awt.Color)

Name: preferredSize

 Type: class java.awt.Dimension

 Get method: public synchronized

 java.awt.Dimension Beans01.getPreferredSize()

 Set method: null

Name: myBooleanProperty

 Type: boolean

 Get method:

 public synchronized boolean Beans01.isMyBooleanProperty()

 Set method:

 public synchronized void

 Beans01.setMyBooleanProperty(boolean)

*/

printWriter.println("==== Properties: ====");

PropertyDescriptor[] propertyDescriptor =

 beanInfo.getPropertyDescriptors();

for (int i=0; i<propertyDescriptor.length; i++) {

 printWriter.println("Name: " +

 propertyDescriptor[i].getName());

 printWriter.println(" Type: "

 + propertyDescriptor[i].getPropertyType());

 printWriter.println(" Get method: "

 + propertyDescriptor[i].getReadMethod());

 printWriter.println(" Set method: "

 + propertyDescriptor[i].getWriteMethod());

}//end for-loop

printWriter.println("");

The next interesting code fragment uses the getEventSetDescriptors() method to produce an

array of EventSetDescriptor objects. Other methods are then used to extract information from

each of those objects.

When this program was applied to the skeleton bean named Beans01, the output for this section

of code was as shown in the comments. (Note that the line breaks were inserted during the

editing of this document to make it all fit on the screen.) In this case, only one multicast event

was exposed by the bean.

 ==== Events: ====

 Event Name: action

 Add Method: public synchronized void Beans01.

 addActionListener(java.awt.event.ActionListener)

 Remove Method: public synchronized void Beans01.

 removeActionListener(

 java.awt.event.ActionListener)

 Event Type: actionPerformed

 */

 printWriter.println("==== Events: ====");

 EventSetDescriptor[] eventSetDescriptor =

 beanInfo.getEventSetDescriptors();

 for (int i=0; i<eventSetDescriptor.length; i++) {

 printWriter.println("Event Name: "

 + eventSetDescriptor[i].getName());

 printWriter.println(" Add Method: " +

 eventSetDescriptor[i].getAddListenerMethod());

 printWriter.println(" Remove Method: " +

 eventSetDescriptor[i].getRemoveListenerMethod());

 MethodDescriptor[] methodDescriptor =

 eventSetDescriptor[i].

 getListenerMethodDescriptors();

 for (int j=0; j<methodDescriptor.length; j++) {

 printWriter.println(" Event Type: "

 + methodDescriptor[j].getName());

 }//end for-loop

 }//end for-loop

 printWriter.println("");

The final interesting code fragment uses the getMethodDescriptors() method to produce an

array of MethodDescriptor objects. Each such object describes a particular method that a Java

Bean supports for external access from other methods.

This program was applied to the skeleton bean named Beans01, and the output for this section of

code is shown in the comments. You should note that the list of methods includes property

accessor methods, methods that expose multicast event support, and "ordinary" methods that are

not intended to expose properties or events.

 /*

 ==== Methods: ====

 makeRed

 setMyBooleanProperty

 removeActionListener

 addActionListener

 setColor

 getColor

 getPreferredSize

 makeBlue

 isMyBooleanProperty

 */

 printWriter.println("==== Methods: ====");

 MethodDescriptor[] methodDescriptor =

 beanInfo.getMethodDescriptors();

 for (int i=0; i<methodDescriptor.length; i++) {

 printWriter.println(methodDescriptor[i].getName());

 }//end for-loop

 printWriter.println("");.

The above code fragments represent only those parts of the program that are new and interesting

in the context of Java Beans. A listing of the entire program with comments is contained in the

next section.

Program Listing

A listing of the entire program with comments follows. See the previous sections for an

operational description of the program.

/*File Introspect01.java Copyright 1997, R.G.Baldwin

This program was designed to be compiled and executed

under JDK 1.1.1.

The purpose of this program is to illustrate the use of the

static getBeanInfo() method of the Introspector class to

encapsulate information about a bean in an object of type

BeanInfo.

Once the information about the bean is encapsulated in the

BeanInfo object, a variety of other methods are used to

extract specific types of information about the bean from

the object.

In order to illustrate the behavior of the different

methods being used, the application was applied to the

skeleton bean named Beans01 (discussed in an earlier

lesson) and the output from the program for each section of

code was included as comments in that section.

The program was tested using JDK 1.1.1 and Win95.

**/

import java.io.*;

import java.beans.*;

import java.lang.reflect.*;

public class Introspect01

{

 //name of bean class file to be analyzed

 static String myBeanClassName;

 FileWriter fileWriter;

 PrintWriter printWriter;

 //Start the program and get the name of the class file

 // for the bean in the String myBeanClassName

 public static void main(String args[]) throws Exception {

 myBeanClassName = args[0];

 Introspect01 x = new Introspect01();

 }//end main

 public Introspect01() throws Exception {//constructor

 //Open an output file to store the report in.

 fileWriter = new FileWriter("junk.txt");

 printWriter = new PrintWriter(fileWriter);

 //Create an object of type Class that describes the

 // class of the bean. The static method

 // Introspector.getBeanInfo() requires either one or

 // two objects of type Class as parameters. The

 // forName() method of the Class class returns such an

 // object, given the name of a class as a parameter.

 Class myBeanClassObject = Class.forName(

 myBeanClassName);

 //Given the Class object that describes the bean's

 // class, use the static getBeanInfo() method of the

 // Introspector class to obtain information about the

 // class of the bean. Save this information in an

 // object of type BeanInfo. The second parameter

 // passed to getBeanInfo() prevents introspection from

 // going further up the inheritance hierarchy.

 BeanInfo beanInfo = Introspector.getBeanInfo(

 myBeanClassObject,myBeanClassObject.getSuperclass());

 //A BeanDescriptor object provides global information

 // about a bean, including its Java class, its

 // displayName, etc. Use the getBeanDescriptor()

 // method to extract information of that type from

 // the beanInfo object and store it in a new

 // BeanDescriptor object. Store the information in the

 // output file using methods designed to extract the

 // name and class of the bean from the beanDescriptor

 // object. When this application was applied to the

 // skeleton bean named Beans01, the following output

 // was produced by this section of code.

 /*

 Name of bean: Beans01

 Class of bean: class Beans01

 */

 BeanDescriptor beanDescriptor =

 beanInfo.getBeanDescriptor();

 printWriter.println("Name of bean: " +

 beanDescriptor.getName());

 printWriter.println("Class of bean: " +

 beanDescriptor.getBeanClass());

 printWriter.println("");

 //A PropertyDescriptor object describes one property

 // that a Java Bean exports via a pair of accessor

 // methods. Use the getPropertyDescriptors() method

 // to create an array of PropertyDescriptor objects,

 // one for each exported property. Then store that

 // information in the output file using methods

 // designed to extract the name of the property, the

 // type of the property, the name of the get method,

 // and the name of the set method. When this

 // application was applied to Beans01, the following

 // output was produced by this section of code. Manual

 // line breaks were inserted to make it fit in the

 // available space.

 /*

 ==== Properties: ====

 Name: color

 Type: class java.awt.Color

 Get method: public synchronized java.awt.Color

 Beans01.getColor()

 Set method: public synchronized void

 Beans01.setColor(java.awt.Color)

 Name: preferredSize

 Type: class java.awt.Dimension

 Get method: public synchronized java.awt.Dimension

 Beans01.getPreferredSize()

 Set method: null

 Name: myBooleanProperty

 Type: boolean

 Get method: public synchronized boolean

 Beans01.isMyBooleanProperty()

 Set method: public synchronized void

 Beans01.setMyBooleanProperty(boolean)

 */

 printWriter.println("==== Properties: ====");

 PropertyDescriptor[] propertyDescriptor =

 beanInfo.getPropertyDescriptors();

 for (int i=0; i<propertyDescriptor.length; i++) {

 printWriter.println("Name: " +

 propertyDescriptor[i].getName());

 printWriter.println(" Type: " +

 propertyDescriptor[i].getPropertyType());

 printWriter.println(" Get method: " +

 propertyDescriptor[i].getReadMethod());

 printWriter.println(" Set method: " +

 propertyDescriptor[i].getWriteMethod());

 }//end for-loop

 printWriter.println("");

 //An EventSetDescriptor object describes a group of

 // events that a given Java bean fires. Information can

 // be extracted from each object of the type.

 // When this application was applied to the Beans01

 // bean, the following output was produced by this

 // section of code (note that line breaks were

 // inserted during editing).

 /*

 ==== Events: ====

 Event Name: action

 Add Method: public synchronized void Beans01.

 addActionListener(java.awt.event.ActionListener)

 Remove Method: public synchronized void Beans01.

 removeActionListener(java.awt.event.ActionListener)

 Event Type: actionPerformed

 */

 printWriter.println("==== Events: ====");

 EventSetDescriptor[] eventSetDescriptor =

 beanInfo.getEventSetDescriptors();

 for (int i=0; i<eventSetDescriptor.length; i++) {

 printWriter.println("Event Name: " +

 eventSetDescriptor[i].getName());

 printWriter.println(" Add Method: " +

 eventSetDescriptor[i].getAddListenerMethod());

 printWriter.println(" Remove Method: " +

 eventSetDescriptor[i].getRemoveListenerMethod());

 MethodDescriptor[] methodDescriptor =

 eventSetDescriptor[i].

 getListenerMethodDescriptors();

 for (int j=0; j<methodDescriptor.length; j++) {

 printWriter.println(" Event Type: " +

 methodDescriptor[j].getName());

 }//end for-loop

 }//end for-loop

 printWriter.println("");

 //A MethodDescriptor describes a particular method that

 // a Java Bean supports for external access from other

 // components. The getMethodDescriptors() method

 // returns an array of MethodDescriptor objects where

 // each object describes one of the methods. When this

 // application was applied to the Beans01 bean, the

 // following output was produced by this section

 // of code.

 /*

 ==== Methods: ====

 makeRed

 setMyBooleanProperty

 removeActionListener

 addActionListener

 setColor

 getColor

 getPreferredSize

 makeBlue

 isMyBooleanProperty

 */

 printWriter.println("==== Methods: ====");

 MethodDescriptor[] methodDescriptor =

 beanInfo.getMethodDescriptors();

 for (int i=0; i<methodDescriptor.length; i++) {

 printWriter.println(methodDescriptor[i].getName());

 }//end for-loop

 printWriter.println("");

 printWriter.close();

 }//end constructor

}//end class Introspect01

-end-

