
Java 2D Graphics, The Composite Interface and

Transparency

by Richard G. Baldwin

baldwin@austin.cc.tx.us

Java Programming, Lecture Notes # 320

March 20, 2000

 Introduction

 What is the CompositeContext Interface?

 What is the Composite Interface?

 What is the AlphaComposite Class?

 How Do I Get an AlphaComposite Object?

 What is the setComposite() Method?

 Sample Program

 Summary

 Complete Program Listing

Introduction

In an earlier lesson, I explained that the Graphics2D class extends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and

text layout. Beginning with JDK 1.2, Graphics2D is the fundamental class for rendering two-

dimensional shapes, text and images.

Must also understand other classes

I also explained that without understanding the behavior of other classes and interfaces, it is not

possible to fully understand the inner workings of the Graphics2D class.

Throughout this series of lessons, I have been providing you with information and sample

programs designed to help you understand the various classes and interfaces that are necessary

for an understanding of the Graphics2D class.

Two ways to achieve transpanency

There are at least two different ways to achieve transparency in Java 2D. One way is to use new

constructors for the Color class that allow you to create solid colors with a specified degree of

transparency. I will discuss that approach in a subsequent lesson.

A more generl approach

mailto:baldwin@austin.cc.tx.us

A second, and possibly more general approach, is to make use of an object that implement the

Composite interface, passing a reference to that object to the setComposite() method of the

Graphics2D class.

The Composite interface

This lesson and the next are designed to give you an understanding of the Composite interface,

with particular emphasis on transparency.

What is the CompositeContext Interface?

I mention the CompositeContext interface here only because it is referred to in the following

discussion of the Composite interface.

According to Sun,

“The CompositeContext interface

defines the encapsulated and optimized

environment for a compositing

operation. CompositeContext objects

maintain state for compositing

operations. In a multi-threaded

environment, several contexts can exist

simultaneously for a single Composite

object.”

What is the Composite Interface?

Our primary objective in this lesson is to develop an understanding of how to use objects of the

Composite interface as parameters to the setComposite() method of the Graphics2D

class. This is part of what Sun has to say about the Composite interface.

“The Composite interface, along with

CompositeContext, defines the

methods to compose a draw primitive

with the underlying graphics area.

After the Composite is set in the

Graphics2D context, it combines a

shape, text, or an image being rendered

with the colors that have already been

rendered according to pre-defined

rules.”

We will set the composite property

In other words, before drawing onto a Graphics2D object, we will invoke the setComposite()

method to set the composite property of the Graphics2D object.

We will pass a reference to an object that implements the Composite interface as a parameter.

This Composite object will control the way in which the colors of overlapping pixels are

rendered.

What is the AlphaComposite Class?

There is only one class in JDK 1.2.2 that implements the Composite interface. That class is

named AlphaComposite. Here is what Sun has to say about this class.

“This AlphaComposite class

implements the basic alpha compositing

rules for combining source and

destination pixels to achieve blending

and transparency effects with graphics

and images.

The rules implemented by this class are

a subset of the Porter-Duff rules

described in T. Porter and T. Duff,

"Compositing Digital Images",

SIGGRAPH 84, 253-259.

If any input does not have an alpha

channel, an alpha value of 1.0, which is

completely opaque, is assumed for all

pixels. A constant alpha value can also

be specified to be multiplied with the

alpha value of the source pixels.

The following abbreviations are used in

the description of the rules:

 Cs = one of the color

components of the source pixel.

 Cd = one of the color

components of the destination

pixel.

 As = alpha component of the

source pixel.

 Ad = alpha component of the

destination pixel.

 Fs = fraction of the source pixel

that contributes to the output.

 Fd = fraction of the input

destination pixel that

contributes to the output.

The color and alpha components

produced by the compositing operation

are calculated as follows:

 Cd = Cs*Fs + Cd*Fd

 Ad = As*Fs + Ad*Fd

where Fs and Fd are specified by each

rule. The above equations assume that

both source and destination pixels have

the color components premultiplied by

the alpha component. Similarly, the

equations expressed in the definitions

of compositing rules below assume

premultiplied alpha.

For performance reasons, it is

preferable that Rasters passed to the

compose method of a

CompositeContext object created by the

AlphaComposite class have

premultiplied data. If either source or

destination Rasters are not

premultiplied, however, appropriate

conversions are performed before and

after the compositing operation.

The alpha resulting from the

compositing operation is stored in the

destination if the destination has an

alpha channel. Otherwise, the resulting

color is divided by the resulting alpha

before being stored in the destination

and the alpha is discarded. If the alpha

value is 0.0, the color values are set to

0.0.”

A fairly complex topic

This can be a fairly complex topic. An object of the AlphaComposite class can be used to

implement any one of about eight different compositing rules.

As you can see from the above description, the manner in which the color components of the

destination pixel are determined depend on the rule being applied (a single AlphaComposite

object can apply only one rule).

Flanagan explains the rules

You can read about the different rules in Java Foundation Classes in a Nutshell, by David

Flanagan.

In these lessons, I will illustrate only one of the compositing rules: the rule known as

SRC_OVER. Here is what Flanagan has to say about this rule.

“By far the most commonly used

compositing rule. It draws the source

on top of the destination. The source

and destination are combined based on

the transparency of the source. Where

the source is opaque, it replaces the

destination. Where the source is

transparent, the destination is

unchanged. Where the source is

translucent, the source and destination

colors are combined so that some of the

destination color shows through the

translucent source.”

SRC_OVER as per Sun

Here is Sun’s formal definition of this rule from the JDK 1.2.2 documentation.

SRC_OVER

public static final int SRC_OVER

Porter-Duff Source Over Destination

rule. The source is composited over the

destination.

Fs = 1 and Fd = (1-As), thus:

 Cd = Cs + Cd*(1-As)

 Ad = As + Ad*(1-As)

SRC_OVER as per Flanagan

However, Sun’s explanation doesn’t agree with Flanagan’s explanation. According to Flanagan,

the equations for this rule should be written as follows:

Fs = As and Fd = (1-As), thus:

 Cd = Cs*As + Cd*(1-As)

In these lessons, the thing that will be most obvious will be the color resulting from overlapping

two or more geometric figures with varying degrees of transparency.

Which is correct?

Although I’m not qualified to tell you which of the two explanations is the correct one,

experimental results seem to favor Flanagan’s explanation over Sun’s explanation.

If As is set to zero...

For example, if As is set to zero, Sun’s explanation would cause the destination color, Cd, to

contain equal contributions of the source color and the destination color.

Flanagan’s explanation for this case would eliminate all of the source color from the final

destination color, which agrees with experimental results.

May be a matter of interpretation

However, these apparent discrepancies may simply be a matter of interpretation of the various

terms used in the equations and the explanations.

How Do I Get an AlphaComposite Object?

You cannot directly instantiate an object of the AlphaComposite class. Rather, you get an

AlphaComposite object by invoking the following factory method of the AlphaComposite

class.

public static AlphaComposite

 getInstance(int rule, float alpha)

Creates an AlphaComposite object

with the specified rule and the constant

alpha to multiply with the alpha of the

source. The source is multiplied with

the specified alpha before being

composited with the destination.

Parameters:

 rule - the compositing rule

 alpha - the constant alpha to be

multiplied with the alpha of the

source. alpha must be a floating

point number in the inclusive

range [0.0, 1.0].

How do I specify the rule?

You specify the rule by passing an int value given by one of the symbolic constants of the

AlphaComposite class, such as SRC_OVER described earlier.

What is the setComposite() Method?

We need to look at one more definition before embarking on our sample program. Here is part

of what Sun has to say about the setComposite() method of the Graphics2D class.

public abstract void

 setComposite(Composite comp)

Sets the Composite for the

Graphics2D context. The Composite

is used in all drawing methods such as

drawImage, drawString, draw, and fill.

It specifies how new pixels are to be

combined with the existing pixels on

the graphics device during the

rendering process.

Parameters:

 comp - the Composite object to

be used for rendering

You could define your own class

The required parameter is a reference to any object that implements the Composite interface,

meaning that you could define your own class to implement this interface.

In this lesson, I elected to make use of the existing AlphaComposite class described above.

Sample Program

This program is named Composite01. You will need to compile and execute the program so that

you can view its output while reading the discussion. Without being able to view the output, the

discussion will probably mean very little to you.

A screen shot of the output

In case you are unable to compile and execute the program, a screen shot of the output

follows. Note, however that this screen shot has been reduced to about 70-percent of its original

size in pixels, so some of the quality has been lost in the process.

The GUI is a Frame object

The program draws a four-inch by four-inch Frame on the screen. It translates the origin to the

center of the Frame. Then it draws a pair of X and Y-axes centered on the new origin.

A large circle

After drawing the X and Y-axes, the program draws a circle with a thick border centered on the

origin. This circle is used later to provide visual cues relative to transparency.

Transparent ellipses

After the large circle is drawn, three ellipses are drawn on top of one another in each quadrant.

Each ellipse has a common center, and is rotated by sixty degrees relative to the ellipse beneath

it.

The red ellipse is on the bottom of the stack, the green ellipse is in the center, and the blue ellipse

is on the top of the stack.

The different ellipses are given various transparency values in the different quadrants to illustrate

the effect of the alpha parameter to the setComposite() method.

Transparency by quadrant

Here is the transparency given to each of the ellipses in the different quadrants.

TRANSPARENCY
Upper-left quadrant
No transparency

Upper-right quadrant
Red is not transparent
Green is not transparent
Blue is 50-percent transparent

Lower-left quadrant
Red is not transparent
Green is 50-percent transparent
Blue is 90-percent transparent

Lower-right quadrant
Red is not transparent
Green is 90-percent transparent
Blue is 90-percent transparent

As you can see from the information given above, the red ellipse is opaque in all four

quadrants. As a result, the large black circle doesn’t show through the red ellipse in any of the

quadrants.

Upper-left quadrant

All three ellipses are opaque in the upper-left quadrant, so nothing shows through, and the

stacking order of the ellipses is pretty obvious.

Green and blue ellipses become transparent

The green and blue ellipses are made progressively more transparent as you move through the

other three quadrants. As a result, you can “see through” the green and blue ellipses and see the

geometric figures that lie beneath them (the other ellipses and the large black circle).

Upper-right quadrant

In this quadrant, the blue ellipse is transparent, but the green ellipse and the red ellipse are

opaque. Neither the large circle nor the red ellipse can be seen through the green ellipse.

However, both the green and red ellipses show through the blue ellipse in the upper-right

quadrant.

Lower-left quadrant

In the lower-left quadrant, both the green and blue ellipses are transparent to some degree, with

the blue ellipse being the more transparent of the two.

Both the green and the red ellipses show through the blue ellipse, which is on the top of the

stack.

Both the red ellipse and the large circle show through the green ellipse.

The large circle would also show through the blue ellipse as well except that the red ellipse,

which is opaque, hides the circle in the area of the blue ellipse.

Lower-right quadrant

In the lower-right quadrant, both the green and blue ellipses are ninety-percent transparent, and

the large circle shows through the blue ellipse. Again, the red ellipse, which is opaque, hides the

circle.

The lower-right quadrant also produces an optical illusion. On my screen, it looks like the red

ellipse is partially transparent with the green and blue ellipses showing through the red

ellipse. However, that is not the case. The red ellipse is opaque in this quadrant, as evidenced

by the fact that the large circle does not show through the red ellipse. The opaque red ellipse is

still on the bottom of the stack, and the transparent blue ellipse is still on the top of the stack.

Illustrates rotation and translation

Although this isn’t the primary purpose of this lesson, the lesson also provides a good illustration

of the benefits of rotation and translation.

As we will see when we examine the code, the task of rotating the ellipses relative to each other

and the task of translating them into the various quadrants was made much easier (even possible)

through the use of the AffineTransform to rotate and translate the ellipses.

The normal caveat regarding inches

This discussion of dimensions in inches

on the screen depends on the method

named getScreenResolution()

returning the correct value. However,

the getScreenResolution() method

always seems to return 120 on my

computer regardless of the actual

screen resolution settings.

Will discuss in fragments

I will discuss this program in fragments. The controlling class and the constructor for the GUI

class are essentially the same as you have seen in several previous lessons, so, I won’t repeat that

discussion here. You can view that material in the complete listing of the program at the end of

the lesson.

All of the interesting action takes place in the overridden paint() method, so I will begin the

discussion there.

Overridden paint() method

The beginning portions of the overridden paint() method should be familiar to you by now as

well. So, I am going to let the comments in Figure 1 speak for themselves.

//Override the paint() method

publicvoid paint(Graphics g){

 //Downcast the Graphics object to a

 // Graphics2D object

 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on

 // the screen based on actual screen

 // resolution.

 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame

 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis

 g2.draw(new Line2D.Double(

 -1.5*ds,0.0,1.5*ds,0.0));

 //Draw y-axis

 g2.draw(new Line2D.Double(

 0.0,-1.5*ds,0.0,1.5*ds));

Figure 1

The large circle

Figure 2 draws the large circle with a border width of 0.1 inches. There is nothing new here, so I

won’t provide an explanation.

//Draw a big circle underneath all of the ellipses

g2.setStroke(new BasicStroke(0.1f*ds));

Ellipse2D.Double bigCircle =

 new Ellipse2D.Double(

 -1.5*ds,-1.5*ds,3.0*ds,3.0*ds);

g2.draw(bigCircle);

Figure 2

An ellipse reference variable

Figure 3 simply declares a reference variable of the class Ellipse2D.Double. This reference

variable will be used repeatedly in subsequent code for the instantiation of ellipse objects.

 Ellipse2D.Double theEllipse;

Figure 3

Now things get interesting

At this point, things get interesting. I need to draw the three filled ellipses in the upper-left

quadrant. One way to do this (the hard way) would be to calculate the coordinates of the ellipses

in the quadrant and define them according to those coordinates.

The easier way is to translate the origin to the center of what was previously the upper-left

quadrant, and to define the bounding rectangle for the ellipses centered on the new origin.

Figure 4 translates the origin to the center of what was previously the upper-left quadrant. After

this statement is executed, any geometric figure that is drawn centered on the origin will actually

be rendered in the center of what was earlier the upper-left quadrant.

 g2.translate(-1.0*ds,-1.0*ds);

Figure 4

Opaque red ellipse

The next several fragments draw and fill a red opaque ellipse centered on the new origin.

The code in Figure 5 has been covered in previous lessons, so I won’t discuss it further in this

lesson.

 theEllipse = new Ellipse2D.Double(

 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);

 g2.setPaint(Color.red);

Figure 5

setComposite() and AlphaComposite

Figure 6 shows the use of the setComposite() method and the AlphaComposite class.

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,1.0f));

Figure 6

An understanding of this single statement is pretty much the heart of this entire lesson.

As mentioned earlier, the parameter to the setComposite() method must be a reference to an

object that implements the Composite interface. This requirement can be satisfied by passing a

reference to an object of the AlphaComposite class.

Also, as mentioned earlier, such an object can be obtained only by invoking the factory method,

named getInstance() of the AlphaComposite class.

Parameters to getInstance()

The getInstance method requires two parameters. The first parameter is an int whose value

specifies the compositing rule that will be used. The second is the alpha value that will be used

with that rule to establish how compositing will be accomplished.

This fragment specifies the SRC_OVER rule by passing that symbolic constant from the

AlphaComposite class. You might want to use this program to experiment with the other rules

of the AlphaComposite class and view the results.

Specifying transparency

This fragment also specifies that the source object will be opaque.

For this compositing rule, an alpha parameter value of 1.0f specifies opaque while a value of 0.0f

specifies total transparency.

It is primarily the value of the alpha parameter that will be varied throughout the remainder of

this program to achieve the desired results.

Rendering the red ellipse

Figure 7 simply renders the ellipse according to the paint and composite properties previously

established. There is nothing new here.

 g2.fill(theEllipse);

Figure 7

Green opaque ellipse at sixty degrees

To some extent, the use of translation above was for convenience. I could have placed the red

ellipse in the upper-left quadrant by specifying a bounding rectangle at that location.

However, the code in Figure 8 will render a green opaque ellipse rotated by an angle of sixty

degrees. This rotational transformation is not simply for convenience. I don’t know of any other

way to draw an ellipse whose major axis is neither horizontal nor vertical, except for use of the

GeneralPath class to construct the ellipse piecemeal. I certainly don’t want to create the ellipse

using GeneralPath.

 theEllipse = new Ellipse2D.Double(

 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);

 g2.rotate(Math.PI/3.0);//rotate 60 degrees

 g2.setPaint(Color.green);

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,1.0f));

 g2.fill(theEllipse);

Figure 8

The code in Figure 8

 Defines a new ellipse centered on the new origin with a horizontal major axis.

 Specifies that it will be rendered by rotating it sixty degrees.

 Sets its fill color to green.

 Sets its transparency to opaque.

 Renders it in device space (the screen).

Blue opaque ellipse at 120 degrees

Recall from the earlier lesson on the use of the AffineTransform that successive calls to the

rotate() method produce cumulative angles of rotation. Therefore, in order to rotate the blue

ellipse by a total of 120 degrees, the following fragment invokes another sixty-degree rotation.

Otherwise, the code in Figure 9 is straightforward, producing an opaque blue ellipse in the

upper-left quadrant rotated by a total of 120 degrees relative to the red ellipse.

 theEllipse = new Ellipse2D.Double(

 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);

 g2.rotate(Math.PI/3.0);//rotate 60 degrees

 g2.setPaint(Color.green);

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,1.0f));

 g2.fill(theEllipse);

Figure 9

As mentioned earlier, the blue ellipse is on the top of the stack, the red ellipse is on the bottom of

the stack, and the green ellipse is in the middle.

Rotation can produce complexity

The combination of rotation and translation can produce very complicated results. The objective

of the next few fragments is to produce ellipses having different transparency values in the

upper-right quadrant.

Translate origin to upper-right quadrant

To avoid the complexity mentioned above, before translating the origin to the center of the

original upper-right quadrant, the code in Figure 10 reverses the rotation previously imposed by

the code discussed above.

 //undo previous rotation

 g2.rotate(-2*(Math.PI/3.0));

 g2.translate(2.0*ds,0.0*ds);

Figure 10

Note that the angle of rotation is negative, and amount of rotation is sixty degrees multiplied by

two.

Following reversal of the previous rotation, the origin is translated. In this case, the new origin is

translated two inches to the right of the previous origin, but at the same vertical position. This

places the new origin in the center of what was originally the upper-right quadrant.

Repetitive code

From this point forward, the code becomes very repetitive. Therefore, I am going to show only

that code that distinguishes the rendering of the ellipses in one quadrant from the rendering in the

other quadrants, with respect to transparency.

You can view the entire program at the end of the lesson.

Upper-right quadrant

Figure 11 shows the invocation of the setComposite() methods for the red, green, and blue

ellipses respectively.

 //...

 //Red is not transparent

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,1.0f));

 //...

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,1.0f));

 //...

 //Blue is 50-percent transparent

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,0.5f));

 //...

Figure 11

As you can see, the first two are opaque (alpha equals 1.0f) while the blue ellipse is fifty-percent

transparent (alpha equals 0.5f).

Lower-left quadrant

Figure 12 shows the invocation of the setComposite() methods for the red, green, and blue

ellipses respectively in the lower-left quadrant.

 //...

 //Red is not transparent

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,1.0f));

 //...

 //Green is 50 percent transparent

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,0.5f));

 //...

 //Blue is 90-percent transparent

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,0.1f));

Figure 12

The red ellipse is opaque (alpha equals 1.0f). The green ellipse is fifty-percent transparent (alpha

equals 0.5f), while the blue ellipse is ninety-percent transparent (alpha equals 0.1f).

Lower-right quadrant

Figure 13 shows that the red ellipse is opaque (alpha equals 1.0f). The green and blue ellipses

are ninety-percent transparent (alpha equals 0.1f).

 //...

 //Red is not transparent

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,1.0f));

 //...

 //Green is 90-percent transparent

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,0.1f));

 //...

 //Blue is 90-percent transparent

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,0.1f));

Figure 13

Summary

In this lesson, I have shown you how to use the setComposite() method of the Grapics2D class

along with the AlphaComposite class to control the manner in which new pixel values are

composited with existing pixel values. The sample programs in this lesson concentrate on

transparency as a way to demonstrate compositing pixels.

In addition, you have seen some additional uses for the translate and rotate transforms.

Complete Program Listing

A complete listing of the program is provided in Figure 14.

/*Composite01.java 12/12/99
 Copyright 1999, R.G.Baldwin

 Illustrates use of the AlphaComposite class to
 achieve transparency with solid-fill colors.

 Draws a 4-inch by 4-inch Frame on the screen.

 Translates the origin to the center of the Frame.

 Draws a pair of X and Y-axes centered on the new
 origin.

 Draw a big circle centered on the origin underneath
 all of the ellipses.

 Uses rotation and translation to fill three ellipses in
 each of the four quadrants. The ellipses intersect
 at their center. Each is rotated by 60 degrees
 relative to the one below it. The order is:
 Red ellipse on the bottom
 Green ellipse in the middle
 Blue ellipse on the top

 TRANSPARENCY
 Upper-left quadrant
 No transparency

 Upper-right quadrant
 Red is not transparent
 Green is not transparent
 Blue is 50-percent transparent

 Lower-left quadrant
 Red is not transparent
 Green is 50-percent transparent
 Blue is 90-percent transparent

 Lower-right quadrant
 Red is not transparent
 Green is 90-percent transparent
 Blue is 90-percent transparent

 Whether the dimensions in inches come out right or
 not depends on whether the method
 getScreenResolution() returns the correct
 resolution for your screen.

 Tested using JDK 1.2.2 under WinNT Workstation 4.0
 ***/
 import java.awt.geom.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.image.*;

 class Composite01{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
 }//end controlling class Composite01

 class GUI extends Frame{
 int res;//store screen resolution here
 staticfinalint ds = 72;//default scale, 72 units/inch
 staticfinalint hSize = 4;//horizonal size = 4 inches
 staticfinalint vSize = 4;//vertical size = 4 inches

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();
 //Set Frame size
 this.setSize(hSize*res,vSize*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.

 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor
 //--//

 //Override the paint() method
 publicvoid paint(Graphics g){
 //Downcast the Graphics object to a
 // Graphics2D object
 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on the
 // screen based on actual screen resolution.
 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame
 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis
 g2.draw(new Line2D.Double(
 -1.5*ds,0.0,1.5*ds,0.0));
 //Draw y-axis
 g2.draw(new Line2D.Double(
 0.0,-1.5*ds,0.0,1.5*ds));

 //Draw a big circle underneath all of the ellipses.
 g2.setStroke(new BasicStroke(0.1f*ds));
 Ellipse2D.Double bigCircle =
 new Ellipse2D.Double(
 -1.5*ds,-1.5*ds,3.0*ds,3.0*ds);
 g2.draw(bigCircle);

 Ellipse2D.Double theEllipse;

 //Translate origin to upper-left quadrant
 g2.translate(-1.0*ds,-1.0*ds);

 //Red horizontal ellipse
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.setPaint(Color.red);
 //Red is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Green ellipse at 60 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate(Math.PI/3.0);//rotate 60 degrees
 g2.setPaint(Color.green);
 //Green is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Blue ellipse at 120 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate((Math.PI/3.0));//rotate 60 more deg
 g2.setPaint(Color.blue);
 //Blue is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Translate origin to upper-right quadrant

 g2.rotate(-2*(Math.PI/3.0));//undo prev rotation
 g2.translate(2.0*ds,0.0*ds);

 //Red horizontal ellipse
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.setPaint(Color.red);
 //Red is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Green ellipse at 60 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate(Math.PI/3.0);//rotate 60 degrees
 g2.setPaint(Color.green);
 //Green is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Blue ellipse at 120 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate((Math.PI/3.0));//rotate 60 more deg
 g2.setPaint(Color.blue);
 //Blue is 50-percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.5f));
 g2.fill(theEllipse);

 //Translate origin to lower-left quadrant
 g2.rotate(-2*(Math.PI/3.0));//undo prev rotation
 g2.translate(-2.0*ds,2.0*ds);

 //Red horizontal ellipse
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.setPaint(Color.red);
 //Red is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Green ellipse at 60 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate(Math.PI/3.0);//rotate 60 degrees
 g2.setPaint(Color.green);
 //Green is 50 percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.5f));
 g2.fill(theEllipse);

 //Blue ellipse at 120 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate((Math.PI/3.0));//rotate 60 more deg
 g2.setPaint(Color.blue);
 //Blue is 90-percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.1f));
 g2.fill(theEllipse);

 //Translate origin to lower-right quadrant
 g2.rotate(-2*(Math.PI/3.0));//undo prev rotation
 g2.translate(2.0*ds,0.0*ds);

 //Red horizontal ellipse
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.setPaint(Color.red);
 //Red is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Green ellipse at 60 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate(Math.PI/3.0);//rotate 60 degrees
 g2.setPaint(Color.green);
 //Green is 90-percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.1f));
 g2.fill(theEllipse);

 //Blue ellipse at 120 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate((Math.PI/3.0));//rotate 60 more deg
 g2.setPaint(Color.blue);
 //Blue is 90-percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.1f));
 g2.fill(theEllipse);

 }//end overridden paint()

 }//end class GUI
 //==============================//

Figure 14

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

mailto:baldwin@austin.cc.tx.us
http://www.geocities.com/Athens/7077/scoop/onjava.html

-end-

