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Introduction 

In an earlier lesson, I explained that the Graphics2D class extends the Graphics class to provide 

more sophisticated control over geometry, coordinate transformations, color management, and 

text layout. Beginning with JDK 1.2, Graphics2D is the fundamental class for rendering two-

dimensional shapes, text and images.  

Understanding other classes also required  

I also explained that without understanding the behavior of other classes and interfaces such as 

Shape, AffineTransform, GraphicsConfiguration, PathIterator, and Stroke, it is not possible 

to fully understand the inner workings of the Graphics2D class.  

What has been covered previously?  

Earlier lessons have explained a number of Java 2D concepts, including Shape, 

AffineTransform, and PathIterator.  

Before, I can explain the Stroke class, I need to explain how to fill a Shape in general.  An 

earlier lesson showed you how to fill a Shape with a solid color.  

How to fill, in general  

I explained in an earlier lesson that if you want to fill a Shape object before you draw it, you can 

accomplish this with the following two steps:  
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 Invoke setPaint() on the Graphics2D object, passing a reference to an object of a class 

that implements the Paint interface as a parameter. 

 Invoke the fill() method on the Graphics2D object, passing a reference to the Shape 

object that you want to fill as a parameter. 

Filling with color gradient  

This lesson will show you how to fill a Shape with a color gradient, both cyclic and acyclic.  

The Three Paint Classes 

In a previous lesson, I explained that the Java2D API in JDK 1.2.2 provides three classes that 

implement the Paint interface (and you can also define your own):  

 Color 

 GradientPaint 

 TexturePaint 

The Color class  

The Color class can be used to fill a Shape object with a solid color.  That was the topic of an 

earlier lesson.  

The GradientPaint class  

The GradientPaint class can be used to fill a Shape with a color gradient.  The gradient 

progresses from one specified color at one point in user space to a different specified color at a 

different point in user space.  

An acyclic gradient  

The two points describe a hypothetical line segment in user space.  The two colors can be 

stabilized beyond the end points of the hypothetical line segment.  This is known as an acyclic 

gradient.  

A cyclic gradient  

The gradient can also be caused to repeat in a cyclic fashion beyond the end points of the 

hypothetical line segment.  This is known as a cyclic gradient.  

The use of the GradientPaint class is the primary topic of this lesson.  

The TexturePaint class  

The TexturePaint class can be used to fill a Shape with a tiled version of a BufferedImage 

object.  This will also be the topic of a subsequent lesson.  



Sample Program 

The name of this program is PaintGradient01.  It illustrates the use of a Paint object to fill a 

Shape with a solid color.  

In this case, the Paint object is an instance of the GradientPaint class, which implements the 

interface named Paint.  

A screen shot of the output  

A significantly reduced screen shot of the output of this program is shown below.  Note that this 

screen shot was reduced to about seventy-percent of its original size in pixels.  Thus some of the 

quality was lost in the process.  

 

The GUI is a Frame object  

The program draws a four-inch by four-inch Frame on the screen.  It translates the origin to the 

center of the Frame.  Then it draws a pair of X and Y-axes centered on the new origin.  

So far, this is very similar to the sample programs that I have explained in previous lessons.  

A circle in each quadrant  



The program then draws one two-inch diameter circle in each quadrant.  For purpose of 

reference, it fills the circle in the upper left quadrant with solid red, exactly as in an earlier 

program.  

The circles in the other three quadrants are filled with color gradients that progress from red to 

orange in different ways.  

Acyclic gradient on the horizontal  

The color gradient in the upper right-hand circle progresses from red on the left end of a 

hypothetical line to orange on the right end of a hypothetical line in an acyclic manner.  

In other words, everything to the left of the beginning of a hypothetical line is the same color 

red.  Everything to the right of the end of the hypothetical line is the same color orange.  Only 

that portion in between the beginning and the end points of the hypothetical line vary in color.  

Cyclic gradient on the horizontal  

The color gradient in the lower left-hand circle progresses from red to orange and back several 

times in a cyclic manner.  The variations in color progress along and beyond a hypothetical line 

that is parallel to the horizontal axis.  

Cyclic gradient at 45 degrees to the horizontal  

The color gradient in the lower right-hand circle also progresses from red to orange and back 

several times in a cyclic manner.  However, in this case, the variations in color progress along 

and beyond a hypothetical line that is angled at 45 degrees to the horizontal.  

The normal disclaimer on inches  

The program was tested using JDK 1.2.2 under WinNT Workstation 4.0  

   

This discussion of dimensions in inches 

on the screen depends on the method 

named getScreenResolution() 

returning the correct value.  However, 

the getScreenResolution() method 

always seems to return 120 on my 

computer regardless of the actual 

screen resolution settings. 

Will discuss in fragments  

As is often the case, I will discuss this program in fragments.  



The controlling class and the constructor for the GUI class are essentially the same as you have 

seen in several previous lessons, so, I won’t bore you by repeating that discussion here.  You can 

view that material in the complete listing of the program near the end of the lesson.  

All of the interesting action takes place in the overridden paint() method, so I will begin the 

discussion there.  

Overridden paint() method  

The beginning portions of the overridden paint() method should be familiar to you by now as 

well.  So, I am going to let the comments in Figure 1 speak for themselves.  

  public void paint(Graphics g){ 

    //Downcast the Graphics object to a 

    //  Graphics2D object 

    Graphics2D g2 = (Graphics2D)g; 

      

    //Scale device space to produce inches on 

    // the screen based on actual screen 

    // resolution. 

    g2.scale((double)res/72,(double)res/72); 

   

    //Translate origin to center of Frame 

    g2.translate((hSize/2)*ds,(vSize/2)*ds); 

      

    //Draw x-axis 

    g2.draw(new Line2D.Double( 

                           -1.5*ds,0.0,1.5*ds,0.0)); 

    //Draw y-axis 

    g2.draw(new Line2D.Double( 

                           0.0,-1.5*ds,0.0,1.5*ds)); 

      

    //Upper left quadrant, Solid red fill 

    Ellipse2D.Double circle1 =  

       new Ellipse2D.Double( 

                 -2.0*ds,-2.0*ds,2.0*ds,2.0*ds); 

    g2.setPaint(new Color(255,0,0));//red 

    g2.fill(circle1); 

    g2.draw(circle1); 

 

Figure 1 

The code in Figure 1 includes the code required to place the circle in the upper left quadrant and 

fill it with the solid color red.  This is the same code that I showed you in an earlier lesson on 

solid-color fill.  

The interesting part  



That brings us to the interesting part, which is to place a circle in the upper-right quadrant and 

fill it with a horizontal, acyclic gradient from red to orange.  

I begin by instantiating an object of the Ellipse2D.Double class bounded by a square in the 

upper-right quadrant.  This is a circle.  

This is not new.  You have seen code like this in previous lessons, so I won’t discuss it 

further.  See Figure 2.  

    Ellipse2D.Double circle2 =  

                new Ellipse2D.Double( 

                      0.0*ds,-2.0*ds,2.0*ds,2.0*ds); 

 

Figure 2 

The GradientPaint class  

At this point, we need to take a look at some detailed information about the GradientPaint 

class.  This is what Sun has to say on the topic.  

   

“The GradientPaint class provides a 

way to fill a Shape with a linear color 

gradient pattern.   

If Point P1 with Color C1 and Point P2 

with Color C2 are specified in user 

space, the Color on the P1, P2 

connecting line is proportionally 

changed from C1 to C2.   

Any point P not on the extended P1, P2 

connecting line has the color of the 

point P' that is the perpendicular 

projection of P on the extended P1, P2 

connecting line.   

Points on the extended line outside of 

the P1, P2 segment can be colored in 

one of two ways.   

   

 If the gradient is cyclic then the 

points on the extended P1, P2 

connecting line cycle back and 

forth between the colors C1 and 



C2. 

 If the gradient is acyclic then 

points on the P1 side of the 

segment have the constant Color 

C1 while points on the P2 side 

have the constant Color C2.”  

For the record, the gradient implemented by the next code fragment is acyclic.  

GradientPaint constructor  

Now, we need to take a look at the constructor for the GradientPaint class.  

Four overloaded versions  

Actually, there are four overloaded versions of the constructor.  Two of them accept the 

coordinates of the ends of the hypothetical line mentioned above (P1 and P2) as objects of the 

class Point2D (I discussed the Point2D class in one of the early lessons in this series on Java 

2D).  

The other two constructors accept the coordinates of the ends of the hypothetical line as 

parameters of type float.  (If you need the accuracy of double, you need to use one of the 

constructors that accept objects of the class Point2D.)  

The constructor in the next code fragment specifies the end points of the hypothetical line as type 

float.  

Cyclic versus acyclic  

Having separated the constructors into two categories based on how the coordinate information 

is specified, the next separation has to do with acyclic versus cyclic behavior.  

Two of the constructors (one of each coordinate data type) default to acyclic behavior.  

The other two constructors have a boolean parameter that allows you to specify cyclic or acyclic.  

One specific constructor  

Here is information about the version of the constructor that accepts float parameters and allows 

you to specify acyclic or cyclic.  

   

public GradientPaint(  

  float x1,   



  float y1,   

  Color color1,   

  float x2,   

  float y2,  

  Color color2,  

  boolean cyclic)  

Constructs either a cyclic or acyclic 

GradientPaint object depending on the 

boolean parameter.  

Parameters:  

 x1, y1 - coordinates of the first 

specified Point in user space 

 color1 - Color at the first 

specified Point 

 x2, y2 - coordinates of the 

second specified Point in user 

space 

 color2 - Color at the second 

specified Point 

 cyclic - true if the gradient 

pattern should cycle repeatedly 

between the two colors; false 

otherwise  

This is the version of the constructor that is used in the next code fragment.  

Where’s the code?  

The next fragment (Figure 3) invokes the setPaint() method passing a reference to an object that 

implements the Paint interface as a parameter.  As you are already aware, the parameter to 

setPaint() must implement the Paint interface.  

    g2.setPaint( 

       new GradientPaint( 

          0.5f*ds,-1.0f*ds,Color.red, 

          1.5f*ds,-1.0f*ds,Color.orange,false)); 

 

Figure 3 

A GradientPaint object  



The thing that is new about this fragment is that the object that is passed to the setPaint() method 

is an object of the GradientPaint class. (Did I mention that GradientPaint also implements 

Paint?)  

This GradientPaint object will be used to fill a circle that is two inches in diameter.  The 

bounding rectangle for the circle is a square that fits exactly in the upper-right quadrant of the 

Frame.  

End points of the hypothetical line  

The hypothetical line segment that determines the beginning and the end of the color gradient 

begins at a point that is one-half inch inside the left edge of the circle (0.5f*ds).  The 

hypothetical line segment stops at a point that is one-half inch inside the right edge of the circle 

(1.5f*ds).  

The hypothetical line segment is horizontal  

The coordinate information describes the ends of a hypothetical line that is parallel to the 

horizontal axis (the Y-coordinates of the two end points of the hypothetical line are the same at -

1.0f*ds).  

float rather than double  

In case this syntax is new to you, the “f” causes the literal value to be interpreted as float rather 

than double.  

Color gradient is horizontal  

Since the hypothetical line is parallel to the horizontal axis, the color gradient will also be 

parallel to the horizontal axis.  

Color gradient is acyclic  

The boolean parameter is false, so the gradient does not repeat beyond the ends of the 

hypothetical line.  

Gradient is from red to orange  

The beginning color is red, so everything to the left of the starting point is red.  

The ending color is orange, so everything to the right of the ending point is orange.  

In between, the color varies from red to orange.  

Fill the circle and render it  



As in an earlier lesson, Figure 4 invokes the fill() method to fill the circle with the color gradient, 

and then invokes the draw() method to render the circle on the screen.  There is nothing new 

here.  

    g2.fill(circle2); 

    g2.draw(circle2); 

 

Figure 4 

Run the program  

Run the program and take a look at the circle in the upper-right quadrant.  

Someone once said that a picture is worth a thousand explanations of code fragments, or 

something to that effect.  

Looks kind of like the sun  

On my machine, the circle looks a little like a photograph of the sun (no reference intended to the 

company named that invented Java).  

Horizontal cyclic color gradient  

Figure 5 causes a cyclic color gradient to be applied to a circle in the lower-left quadrant.  

   Ellipse2D.Double circle3 =  

        new Ellipse2D.Double( 

                      -2.0*ds,0.0*ds,2.0*ds,2.0*ds); 

    g2.setPaint( 

         new GradientPaint( 

             -1.15f*ds,1.0f*ds,Color.red, 

             -0.85f*ds,1.0f*ds,Color.orange,true)); 

    g2.fill(circle3); 

    g2.draw(circle3); 

 

 

Figure 5 

The coordinate values that are used cause the circle to be in the lower-left quadrant, and cause 

the gradient to be parallel to the horizontal axis.  

The true parameter that is passed to the constructor for the GradientPaint object causes the 

gradient to be cyclic.  

A cyclic gradient at 45 degrees  



The final fragment, Figure 6, causes a cyclic gradient from red to orange to fill a circle in the 

lower-right quadrant.  It will be left as an exercise for the student to interpret the coordinate 

values of the end points of the hypothetical line to understand how it represents a line at 45 

degrees to the horizontal.  

    Ellipse2D.Double circle4 =  

        new Ellipse2D.Double( 

                     0.0*ds,0.0*ds,2.0*ds,2.0*ds); 

    g2.setPaint( 

        new GradientPaint( 

           0.0f*ds,0.0f*ds,Color.red, 

           0.25f*ds,0.25f*ds,Color.orange,true)); 

    g2.fill(circle4); 

    g2.draw(circle4); 

 

Figure 6 

Again, the boolean value passed to the GradientPaint constructor is true, causing the gradient 

to be cyclic.  

You can view a complete listing of the program at the end of the lesson.  

Summary 

In this lesson, I have explained the GradientPaint class, and have shown you how it can be used 

to fill a Shape with a color gradient that progresses from one color at a specified point in user 

space to a different color at a different point in user space.  

The gradient can be either cyclic or acyclic, and it can progress along a hypothetical line of any 

length, at any angle in user space.  

Complete Program Listing 

A complete listing of the program is provided in Figure 7. 

/*PaintGradient01.java 12/12/99 
 Copyright 1999, R.G.Baldwin 
   
 Illustrates use of a Paint object to fill a Shape with 
 a gradient and a solid color. 
   
 Draws a 4-inch by 4-inch Frame on the screen. 
   
 Translates the origin to the center of the Frame. 
   
 Draws a pair of X and Y-axes centered on the 
 new origin. 
   
 Draws one 2-inch diameter circle in each quadrant. 
   
 Fill upper left circle with solid red. 
 Fills upper right circle with gradient red to orange,  
 acyclic 



 Fills lower left circle with gradient red to orange,  
 cyclic along horizontal axis 
 Fills lower right circle with gradient, red to orange,  
 cyclic along 45 degrees 
   
 Whether the dimensions in inches come out 
 right or not depends on whether the method 
 getScreenResolution() returns the correct 
 resolution for your screen. 
   
 Tested using JDK 1.2.2 under WinNT Workstation 4.0 
 *******************************************/ 
 import java.awt.geom.*; 
 import java.awt.*; 
 import java.awt.event.*; 
 import java.awt.image.*; 
   
 class PaintGradient01{ 
   publicstaticvoid main(String[] args){ 
     GUI guiObj = new GUI(); 
   }//end main 
 }//end controlling class PaintGradient01 
   
 class GUI extends Frame{ 
   int res;//store screen resolution here 
   staticfinalint ds = 72;//default scale, 72 units/inch 
   staticfinalint hSize = 4;//horizonal size = 4 inches 
   staticfinalint vSize = 4;//vertical size = 4 inches 
    
   GUI(){//constructor 
     //Get screen resolution 
     res = Toolkit.getDefaultToolkit(). 
                                      getScreenResolution(); 
     //Set Frame size 
     this.setSize(hSize*res,vSize*res); 
     this.setVisible(true); 
     this.setTitle("Copyright 1999, R.G.Baldwin"); 
          
     //Window listener to terminate program. 
     this.addWindowListener(new WindowAdapter(){ 
       public void windowClosing(WindowEvent e){ 
         System.exit(0);}}); 
   }//end constructor 
   //-----------------------------------------------------// 
    
   //Override the paint() method 
   public void paint(Graphics g){ 
     //Downcast the Graphics object to  
     //a Graphics2D object 
     Graphics2D g2 = (Graphics2D)g; 
      
     //Scale device space to produce inches  
     //on the screen 
     // based on actual screen resolution. 
     g2.scale((double)res/72,(double)res/72); 
   
     //Translate origin to center of Frame 
     g2.translate((hSize/2)*ds,(vSize/2)*ds); 
      
     //Draw x-axis 
     g2.draw(new Line2D.Double( 
                                         -1.5*ds,0.0,1.5*ds,0.0)); 
     //Draw y-axis 
     g2.draw(new Line2D.Double( 
                                         0.0,-1.5*ds,0.0,1.5*ds)); 
      
     //Upper left quadrant, Solid red fill 
     Ellipse2D.Double circle1 =  
        new Ellipse2D.Double( 
                              -2.0*ds,-2.0*ds,2.0*ds,2.0*ds); 



     g2.setPaint(new Color(255,0,0));//red 
     g2.fill(circle1); 
     g2.draw(circle1); 
      
     //Upper right quadrant 
     //Gradient red to orange, acyclic 
     Ellipse2D.Double circle2 =  
         new Ellipse2D.Double( 
                                 0.0*ds,-2.0*ds,2.0*ds,2.0*ds); 
     g2.setPaint( 
               new GradientPaint( 
                      0.5f*ds,-1.0f*ds,Color.red, 
                      1.5f*ds,-1.0f*ds,Color.orange,false)); 
     g2.fill(circle2); 
     g2.draw(circle2); 
      
     //Lower left quadrant 
     //Gradient red to orange, cyclic along  
     //horizontal axis 
     Ellipse2D.Double circle3 =  
         new Ellipse2D.Double( 
                                -2.0*ds,0.0*ds,2.0*ds,2.0*ds); 
     g2.setPaint( 
              new GradientPaint( 
                      -1.15f*ds,1.0f*ds,Color.red, 
                      -0.85f*ds,1.0f*ds,Color.orange,true)); 
     g2.fill(circle3); 
     g2.draw(circle3); 
      
     //Lower right quadrant 
     //Gradient red to orange, cyclic along 
     // 45 degree angle 
     Ellipse2D.Double circle4 =  
          new Ellipse2D.Double( 
                                 0.0*ds,0.0*ds,2.0*ds,2.0*ds); 
     g2.setPaint( 
                new GradientPaint( 
                      0.0f*ds,0.0f*ds,Color.red, 
                      0.25f*ds,0.25f*ds,Color.orange,true)); 
     g2.fill(circle4); 
     g2.draw(circle4);     
   
   }//end overridden paint() 
      
 }//end class GUI 
 //==============================// 
 

Figure 7 
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