
Java 2D Graphics, Texture Fill

by Richard G. Baldwin

baldwin@austin.cc.tx.us

Java Programming, Lecture Notes # 316

March 19, 2000

 Introduction

 The Three Paint Classes

 The TexturePaint Class

 The BufferedImage Class

 Sample Program BufferedImage01

 Sample Program PaintTexture01

 Summary

 Complete Program Listings

Introduction

In an earlier lesson, I explained that the Graphics2D class extends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and

text layout. Beginning with JDK 1.2, Graphics2D is the fundamental class for rendering two-

dimensional shapes, text and images.

I also explained that without understanding the behavior of other classes and interfaces such as

Shape, AffineTransform, GraphicsConfiguration, PathIterator, and Stroke, it is not possible

to fully understand the inner workings of the Graphics2D class.

What has been covered previously?

Earlier lessons have explained a number of Java 2D concepts, including Shape,

AffineTransform, and PathIterator. Before, I can explain the Stroke class, I need to explain

how to fill a Shape. Earlier lessons showed you how to fill a Shape with a solid color and with a

color gradient.

How to fill, in general

I explained in an earlier lesson that if you want to fill a Shape object before you draw it, you can

accomplish this with the following two steps:

 Invoke setPaint() on the Graphics2D object, passing a reference to an object of a class

that implements the Paint interface as a parameter.

mailto:baldwin@austin.cc.tx.us

 Invoke the fill() method on the Graphics2D object, passing a reference to the Shape

object that you want to fill as a parameter.

This lesson will show you how to fill a Shape with a tiled version of an image, otherwise known

as a texture.

The Three Paint Classes

In a previous lesson, I explained that the Java2D API in JDK 1.2.2 provides three classes that

implement the Paint interface (and you can also define your own):

 Color

 GradientPaint

 TexturePaint

The Color class

The Color class can be used to fill a Shape object with a solid color. That was the topic of an

earlier lesson.

The GradientPaint class

The GradientPaint class can be used to fill a Shape with a color gradient. That also was the

topic of an earlier lesson.

The TexturePaint class

The TexturePaint class can be used to fill a Shape with a tiled version of a BufferedImage

object. That is the topic of this lesson.

At this point, we need to learn a little more about the class named TexturePaint. Here is what

Sun has to say about the class.

“The TexturePaint class provides a

way to fill a Shape with a texture that

is specified as a BufferedImage. The

size of the BufferedImage object

should be small because the

BufferedImage data is copied by the

TexturePaint object.

At construction time, the texture is

anchored to the upper left corner of a

Rectangle2D that is specified in user

space. Texture is computed for

locations in the device space by

conceptually replicating the specified

Rectangle2D infinitely in all directions

in user space and mapping the

BufferedImage to each replicated

Rectangle2D.”

So, we see immediately that we need to know something about the BufferedImage class.

The BufferedImage Class

The BufferedImage class extends the Image class in JDK 1.2.Here is what Sun has to say about

BufferedImage.

“The BufferedImage subclass

describes an Image with an accessible

buffer of image data. A

BufferedImage is comprised of a

ColorModel and a Raster of image

data. The number and types of bands in

the SampleModel of the Raster must

match the number and types required

by the ColorModel to represent its

color and alpha components. All

BufferedImage objects have an upper

left corner coordinate of (0, 0). Any

Raster used to construct a

BufferedImage must therefore have

minX=0 and minY=0.”

All in all, this looks pretty complicated. Fortunately, we don’t need to be too concerned about

many of the technical details.

Getting a BufferedImage

There are a couple of ways that you can get a BufferedImage to use to fill your Shape. One

way is to read a file containing an image. I plan to cover that approach in subsequent lessons

that deal with image processing.

Another approach is to invoke the createImage() method on any object that extends the

Component class. This will return a reference to an object of type Image, which can be

downcast to BufferedImage. This is the approach used in this lesson,

The createImage() method

Here is what Sun has to say about the createImage() method.

public Image createImage(

 int width,

 int height)

Creates an off-screen drawable image

to be used for double buffering.

Parameters:

 width - the specified width.

 height - the specified height.

Returns: an off-screen drawable

image, which can be used for double

buffering.

As mentioned above, the BufferedImage class extends the Image class in JDK 1.2.

You can cast the Image to a BufferedImage

Here is what Java Foundation Classes in a Nutshell, by David Flanagan, has to say about the

createImage() method.

“This method was first introduced in

Java 1.0; it returns an Image object. In

Java 1.2, however, the returned Image

object is always an instance of

BufferedImage so you can safely cast

it.

After you have created an empty

BufferedImage you can call its

createGraphics() method to obtain a

Graphics2D object.

...

Anything you can draw on the screen,

you can draw into a BufferedImage.”

The first sample program shows how to create and display a BufferedImage object.

The second program shows how to create a BufferedImage program and use it to fill a Shape

object.

Sample Program BufferedImage01

This program shows how to create and display a BufferedImage object without a requirement

for an external file containing an image.

A significantly reduced screen shot of the output of this program is shown below.

The GUI is a Frame object

The program draws a four-inch by four-inch Frame on the screen. It translates the origin to the

center of the Frame. Then it draws a pair of X and Y-axes centered on the new origin.

Then the program creates a BufferedImage object that is three inches on each side. It gets a

Graphics2D context on the BufferedImage.

Draw a green rectangle on the BufferedImage

Once the Graphics2D context is available, the program draws a rectangle on the context the

same size as the BufferedImage. Then it fills the rectangle with the solid color green.

Draw a red circle on the BufferedImage

Then the program draws a filled circle on the context that just fits inside the dimensions of the

BufferedImage object. The circle is filled with the solid color red. The circle covers the green

rectangle leaving some green exposed around the edges.

Draw the BufferedImage on the Frame

Finally, the program draws the BufferedImage object on the Frame, centered on the origin.

The program was tested using JDK 1.2.2 under WinNT Workstation 4.0

This discussion of dimensions in inches

on the screen depends on the method

named getScreenResolution()

returning the correct value. However,

the getScreenResolution() method

always seems to return 120 on my

computer regardless of the actual

screen resolution settings.

Will discuss in fragments

I will discuss this program in fragments. The controlling class and the constructor for the GUI

class are essentially the same as you have seen in several previous lessons, so, I won’t repeat that

discussion here. You can view that material in the complete listing of the program at the end of

the lesson.

All of the interesting action takes place in the overridden paint() method, so I will begin the

discussion there.

Overridden paint() method

The beginning portions of the overridden paint() method should be familiar to you by now as

well. So, I am going to let the comments in the Figure 1 speak for themselves.

 publicvoid paint(Graphics g){

 //Downcast the Graphics object to a

 // Graphics2D object

 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on the

 // screen based on actual screen resolution.

 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame

 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis

 g2.draw(new Line2D.Double(

 -1.5*ds,0.0,1.5*ds,0.0));

 //Draw y-axis

 g2.draw(new Line2D.Double(

 0.0,-1.5*ds,0.0,1.5*ds));

Figure 1

Get a BufferedImage object

Figure 2 invokes the createImage() method on the Frame (this) to get a reference to an object of

type Image. The Image is a square, three inches on each side.

double size = 3.0;//size of BufferedImage object

BufferedImage bufImg = (BufferedImage)

 this.createImage((int)(size*ds),

 (int)(size*ds));

Figure 2

This reference is immediately downcast to BufferedImage and stored in a reference variable of

type BufferedImage named bufImg.

Get a Graphics2D context on the BufferedImage

Figure 3 invokes the createGraphics() method on the BufferedImage to get a Graphics2D

context on the BufferedImage.

Graphics2D g2dImage =

 bufImg.createGraphics();

Figure 3

Once I have the Graphics2D context, I can draw pictures on the BufferedImage just as though I

am drawing on the screen.

Draw a green square on the BufferedImage

Figure 4 uses familiar code to draw a square on the BufferedImage. The square is the same size

as the BufferedImage, and is filled with solid green color.

Rectangle2D.Double theRectangle =

 new Rectangle2D.Double(

 0.0,0.0,size*ds,size*ds);

g2dImage.setPaint(new Color(0,255,0));//green

g2dImage.fill(theRectangle);

g2dImage.draw(theRectangle);

Figure 4

Draw a red circle on the BufferedImage

Continuing with familiar code, Figure 5 draws a filled red circle on the BufferedImage. This

circle covers the green square giving us a green square containing a red filled circle.

Ellipse2D.Double theCircle =

 new Ellipse2D.Double(

 0.0,0.0,size*ds,size*ds);

g2dImage.setPaint(new Color(255,0,0));//red

g2dImage.fill(theCircle);

g2dImage.draw(theCircle);

Figure 5

Render the BufferedImage on the Frame

It is important to understand that up to this point, I have simply been creating a virtual image in

the computer’s memory. Nothing has been done so far to cause this image to be visible to a

human observer.

One common use of BufferedImage is to build virtual images in memory and to blast them to

the screen as quickly as possible to produce smooth animation. This can sometimes eliminate

the flicker that often occurs when we attempt to produce animation by drawing directly on the

screen.

In this case, all I want to do is to see the image that I have constructed in the computer’s

memory. I accomplish that in Figure 6, which invokes the drawImage() method of the

Graphics2D class to render the BufferedImage on the screen.

g2.drawImage(bufImg,null,(int)(-(size/2)*ds),

 (int)(-(size/2)*ds));

Figure 6

A red filled circle on a green square

If you compile and run this program, you should see a filled red circle on a green square. The

outermost edges of the circle coincide with the edges of the square. If the actual resolution of

your screen is given by ds, the size of the square should be three inches on each side.

How does this differ from previous programs

Although it may not be obvious from the visual presentation, this is significantly different from

the previous programs that have drawn circles on the screen and filled them.

This program did not draw a circle on the screen. Rather, the circle was drawn and filled in the

computer’s memory and transferred to the screen in the final rendering process.

Why go to all of this trouble

This does seem like a hard way to get a filled red circle on the screen. However, the purpose of

this program was not to display a filled red circle on the screen. The purpose was to show you

how to create a BufferedImage under program control and to draw something on that

BufferedImage.

The rendering of the BufferedImage on the screen was simply a little icing on the cake.

The next sample program will need a BufferedImage object, and you now know how to create

one without the need for an external file containing an image.

You can view a complete listing of the program at the end of the lesson.

Sample Program PaintTexture01

This program illustrates the use of a TexturePaint object to fill a relatively large circle with

small tiled instances of a BufferedImage object.

A significantly reduced screen shot of the output of this program is shown below.

The BufferedImage object has a red filled circle on a green square the same as in the previous

program.

The program uses code to create the BufferedImage object to avoid the need to provide an

auxiliary image file to accompany this lesson.

As usual, the GUI is a Frame object

The program draws a four-inch by four-inch Frame on the screen. It translates the origin to the

center of the Frame. Then it draws a pair of X and Y-axes centered on the new origin.

Then it fills a two-inch diameter circle with small tiled versions of the BufferedImage object

described above.

Finally, the program draws the filled two-inch diameter circle on the Frame, centered on the

origin.

The program was tested using JDK 1.2.2 under WinNT Workstation 4.0

This discussion of dimensions in inches

on the screen depends on the method

named getScreenResolution()

returning the correct value. However,

the getScreenResolution() method

always seems to return 120 on my

computer regardless of the actual

screen resolution settings.

Will discuss in fragments

I will discuss this program in fragments. The controlling class and the constructor for the GUI

class are essentially the same as you have seen in several previous lessons, so, I won’t repeat that

discussion here. You can view that material in the complete listing of the program at the end of

the lesson.

All of the interesting action takes place in the overridden paint() method, so I will begin the

discussion there.

Overridden paint() method

The beginning portions of the overridden paint() method should be familiar to you by now as

well. So, I am going to let the comments in Figure 7 speak for themselves.

publicvoid paint(Graphics g){

 //Downcast the Graphics object to a

 // Graphics2D object

 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on

 // the screen based on actual screen

 // resolution.

 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame

 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis

 g2.draw(new Line2D.Double(

 -1.5*ds,0.0,1.5*ds,0.0));

 //Draw y-axis

 g2.draw(new Line2D.Double(

 0.0,-1.5*ds,0.0,1.5*ds));

Figure 7

The main Shape object

Figure 8 instantiates the main Shape object. This is a circle, two inches in diameter. This circle

will be filled with a tile pattern constructed from the BufferedImage object, which is a red ball

on a green square background.

 Ellipse2D.Double theMainCircle =

 new Ellipse2D.Double(

 -1.0*ds,-1.0*ds,2.0*ds,2.0*ds);

Figure 8

The interesting part

That brings us to the interesting part. Figure 9 declares and initializes a double variable named

tileSize that will be used to establish the size of the tiles, in inches, used to fill the circle.

double tileSize = 0.25;//size of tiles in the fill

Rectangle2D.Double anchor =

 new Rectangle2D.Double(

 0,0,(int)(tileSize*ds),

 (int)(tileSize*ds));

Figure 9

Controlling the size of the tiles

This variable is used to instantiate a new Rectangle2D.Double object that is a square, 0.25

inches on each side. As we will see later, the BufferedImage object will be automatically scaled

to fit this rectangle, and a large number of such rectangles will be used to fill the circle.

The TexturePaint class

At this point, we need to learn a little more about the TexturePaint class. This is what Sun has

to say about the constructor for this class.

public TexturePaint(

 BufferedImage txtr,

 Rectangle2D anchor)

Constructs a TexturePaint object.

Parameters:

 txtr - the BufferedImage object

with the texture used for

painting

 anchor - the Rectangle2D in

user space used to anchor and

replicate the texture

As you can see, the constructor takes two parameters. The first parameter is a reference to a

BufferedImage object that will be used to produce the tiles to fill the Shape.

The second parameter is a rectangle that is used to anchor and replicate the texture. Sun has this

to say about the actual process of filling the Shape.

“Texture is computed for locations in

the device space by conceptually

replicating the specified Rectangle2D

infinitely in all directions in user space

and mapping the BufferedImage to

each replicated Rectangle2D.”

The bottom line

The bottom line is that the circle is filled with rectangles of the specified size, and the

BufferedImage is scaled down and drawn automatically on each rectangle.

Originally, I created a small BufferedImage objectthat was the same size as the

rectangle. When I did that, I got a very ragged looking circle in the BufferedImage. I found

that the results were much better when I created a fairly large BufferedImage and allowed it to

be scaled down automatically to fit the rectangle.

Instantiate a TexturePaint object

Figure 10 instantiates the new TexturePaint object, passing the BufferedImage and the anchor

rectangle to the constructor as parameters.

TexturePaint theTexturePaintObj =

 new TexturePaint(

 getBufferedImage(),anchor);

Figure 10

The BufferedImage is actually produced by invoking a method named getBufferedImage() that

I will discuss shortly.

There is nothing special about the getBufferedImage() method. It is simply a convenience

method that I wrote to separate the code that generates the BufferedImage from the code that

uses the BufferedImage.

Filling and drawing the circle

Figure 11 shows the three statements that you have come to expect for filling and drawing Shape

objects.

//set fill object

g2.setPaint(theTexturePaintObj);

g2.fill(theMainCircle);//do the fill

g2.draw(theMainCircle);//draw the filled circle

Figure 11

Compile and run the program

If you compile and run this program, you should see a two-inch diameter circle centered on a

Frame. The circle is filled with small green squares, and each green square contains a red filled

circle.

The getBufferedImage() method

Figure 12 contains the entire method named getBufferedImage().

BufferedImage getBufferedImage(){

 //Larger images produce better quality.

 double imageSize = 10.0;

 BufferedImage theBufferedImage =

 (BufferedImage)this.createImage(

 (int)(imageSize*ds),

 (int)(imageSize*ds));

 //Get a Graphics2D context on

 // the BufferedImage object

 Graphics2D g2dImage =

 theBufferedImage.createGraphics();

 //Draw a rectangle on the

 // Graphics2d context on the

 // BufferedImage and fill it with

 // the color green.

 Rectangle2D.Double theRectangle =

 new Rectangle2D.Double(

 0.0,0.0,imageSize*ds,

 imageSize*ds);

 g2dImage.setPaint(new Color(0,255,0));

 g2dImage.fill(theRectangle);

 g2dImage.draw(theRectangle);

 //Draw a circle on the Graphics2d

 // context on the BufferedImage and

 // fill it with the color red.

 // This circle will cover the green rectangle.

 Ellipse2D.Double circleOntheBufferedImage

 = new Ellipse2D.Double(

 0.0,0.0,imageSize*ds,

 imageSize*ds);

 //red

 g2dImage.setPaint(new Color(255,0,0));

 g2dImage.fill(circleOntheBufferedImage);

 g2dImage.draw(circleOntheBufferedImage);

 return theBufferedImage;

 }//end getBuffered Image

 }//end class GUI

 //==============================//

Figure 12

As mentioned earlier, this is a convenience method that I wrote to separate the code that creates

the BufferedImage from the code that uses it. The method creates and returns a BufferedImage

object consisting of a filled red circle on a green square background.

This is essentially the same code as in the previous program, except that this time, instead of

rendering the BufferedImage on the screen, the method simply returns a reference to the

BufferedImage object. Since there is nothing new in the fragment, I won’t discuss it further.

Summary

In this lesson, I have shown you how to create a BufferedImage object under program control

without the requirement for an external image file.

I have also shown you how to use a BufferedImage object to fill a Shape with a texture

produced by tiling the BufferedImage.

Complete Program Listings

A complete listing of both programs is provided in Figure 13 and Figure 14.

/*BufferedImage01.java 12/12/99
 Copyright 1999, R.G.Baldwin

 Illustrates:
 1. Creating a BufferedImage object from code as
 an alternative to importing from an image file.
 2. Drawing geometric shapes on the
 BufferedImage object.
 3. Drawing the BufferedImage object on a
 Frame object.

 Draws a 4-inch by 4-inch Frame on the screen.

 Translates the origin to the center of the Frame.

 Creates a BufferedImage object 3.0 inches on
 each side.

 Gets a Graphics2D context on the BufferedImage

 Draws a green filled rectangle on the context
 that is the same size as the BufferedImage object.

 Draws a red filled circle on the context that just fits
 inside the dimensions of the BufferedImage object.
 The circle covers the green rectangle.

 Draws the BufferedImage object on the Frame,
 centered on the origin.

 Whether the dimensions in inches come out right
 or not depends on whether the method
 getScreenResolution() returns the correct
 resolution for your screen.

 Tested using JDK 1.2.2, WinNT Workstation 4.0
 ***/
 import java.awt.geom.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.image.*;

 class BufferedImage01{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
 }//end controlling class BufferedImage01

 class GUI extends Frame{
 int res;//store screen resolution here
 staticfinalint ds = 72;//default scale, 72 units/inch
 staticfinalint hSize = 4;//horizonal size = 4 inches
 staticfinalint vSize = 4;//vertical size = 4 inches

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();
 //Set Frame size
 this.setSize(hSize*res,vSize*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor
 //---//

 //Override the paint() method
 publicvoid paint(Graphics g){
 //Downcast the Graphics object to a
 // Graphics2D object
 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on
 // the screen based on actual screen resolution.
 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame
 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis
 g2.draw(new Line2D.Double(
 -1.5*ds,0.0,1.5*ds,0.0));
 //Draw y-axis
 g2.draw(new Line2D.Double(
 0.0,-1.5*ds,0.0,1.5*ds));

 double size = 3.0;//size of BufferedImage object
 //Get a BufferedImage object
 BufferedImage bufImg =
 (BufferedImage)this.createImage(
 (int)(size*ds),
 (int)(size*ds));

 //Get a Graphics2D context on the
 // BufferedImage object
 Graphics2D g2dImage =
 bufImg.createGraphics();

 //Draw a rectangle on the BufferedImage and
 // fill it with the color green.
 Rectangle2D.Double theRectangle =
 new Rectangle2D.Double(
 0.0,0.0,size*ds,size*ds);
 g2dImage.setPaint(new Color(0,255,0));//green
 g2dImage.fill(theRectangle);
 g2dImage.draw(theRectangle);

 //Draw a circle on the BufferedImage and fill
 // it with the color red.
 Ellipse2D.Double theCircle =
 new Ellipse2D.Double(
 0.0,0.0,size*ds,size*ds);
 g2dImage.setPaint(new Color(255,0,0));//red
 g2dImage.fill(theCircle);
 g2dImage.draw(theCircle);

 //Now draw the BufferedImage on the Frame
 g2.drawImage(bufImg,null,(int)(-(size/2)*ds),
 (int)(-(size/2)*ds));

 }//end overridden paint()

 }//end class GUI
 //==============================//

Figure 13

/*PaintTexture01.java 12/12/99
 Copyright 1999, R.G.Baldwin

 Illustrates use of a TexturePaint object to fill a
 relatively large circle with small tiled instances of a
 BufferedImage object.

 The BufferedImage object has a red filled circle on
 a square green background.

 Uses code to create the BufferedImage object to
 avoid the need to provide an auxiliary image file.

 Draws a 4-inch by 4-inch Frame on the screen.

 Translates the origin to the center of the Frame.

 Draws a pair of X and Y-axes centered on the new
 origin.

 Fills a 2-inch diameter circle with small tiled
 versions of the BufferedImage object.

 Draws the filled 2-inch diameter circle on the
 Frame, centered on the origin.

 Whether the dimensions in inches come out right
 or not depends on whether the method
 getScreenResolution() returns the correct
 resolution for your screen.

 Tested using JDK 1.2.2, WinNT Workstation 4.0
 ***/
 import java.awt.geom.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.image.*;

 class PaintTexture01{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
 }//end controlling class PaintTexture01

 class GUI extends Frame{
 int res;//store screen resolution here
 staticfinalint ds = 72;//default scale, 72 units/inch
 staticfinalint hSize = 4;//horizonal size = 4 inches
 staticfinalint vSize = 4;//vertical size = 4 inches

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();
 //Set Frame size
 this.setSize(hSize*res,vSize*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor
 //---//

 //Override the paint() method
 publicvoid paint(Graphics g){
 //Downcast the Graphics object to a
 // Graphics2D object
 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on the
 // screen based on actual screen resolution.
 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame
 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis
 g2.draw(new Line2D.Double(
 -1.5*ds,0.0,1.5*ds,0.0));
 //Draw y-axis
 g2.draw(new Line2D.Double(

 0.0,-1.5*ds,0.0,1.5*ds));

 //Instantiate the main Shape object which is a
 // circle
 Ellipse2D.Double theMainCircle =
 new Ellipse2D.Double(
 -1.0*ds,-1.0*ds,2.0*ds,2.0*ds);

 double tileSize = 0.25;//size of tiles in the fill

 //Instantiate the anchor rectangle. This
 // determines the size of the tiles containing the
 // BufferedImage when the circle is filled.
 Rectangle2D.Double anchor =
 new Rectangle2D.Double(
 0,0,(int)(tileSize*ds),
 (int)(tileSize*ds));
 //Instantiate the TexturePaint object and
 // populate it with a BufferedImage object.
 TexturePaint theTexturePaintObj =
 new TexturePaint(getBufferedImage(),anchor);

 g2.setPaint(theTexturePaintObj);//set fill object
 g2.fill(theMainCircle);//do the fill
 g2.draw(theMainCircle);//draw the filled circle

 }//end overridden paint()
 //---//

 //Method to create and return a BufferedImage
 // object
 //Returns a BufferedImage consisting of a filled
 // red circle on a green square background.
 BufferedImage getBufferedImage(){
 //Larger images produce better quality.
 double imageSize = 10.0;
 BufferedImage theBufferedImage =
 (BufferedImage)this.createImage(
 (int)(imageSize*ds),
 (int)(imageSize*ds));

 //Get a Graphics2D context on the
 // BufferedImage object
 Graphics2D g2dImage =
 theBufferedImage.createGraphics();

 //Draw a rectangle on the Graphics2d context
 // on the BufferedImage and fill it with the color
 // green.
 Rectangle2D.Double theRectangle =
 new Rectangle2D.Double(
 0.0,0.0,imageSize*ds,
 imageSize*ds);
 g2dImage.setPaint(new Color(0,255,0));
 g2dImage.fill(theRectangle);
 g2dImage.draw(theRectangle);

 //Draw a circle on the Graphics2d context on the
 // BufferedImage and fill it with the color red.
 // This circle will cover the green rectangle.
 Ellipse2D.Double circleOntheBufferedImage =
 new Ellipse2D.Double(
 0.0,0.0,imageSize*ds,
 imageSize*ds);
 g2dImage.setPaint(new Color(255,0,0));//red
 g2dImage.fill(circleOntheBufferedImage);
 g2dImage.draw(circleOntheBufferedImage);

 return theBufferedImage;

 }//end getBuffered Image

 }//end class GUI
 //===============================//

Figure 14

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

-end-

mailto:baldwin@austin.cc.tx.us
http://www.geocities.com/Athens/7077/scoop/onjava.html

