
February 9, 2000

Java 2D Graphics, Simple Affine Transforms

Java Programming, Lecture Notes # 306

by Richard G. Baldwin

baldwin@austin.cc.tx.us

 Introduction

 What is an Affine Transform?

 Don’t Panic!

 What Do These Symbols Represent?

 How Are They Used?

o Scaling

o Translation

o Shear

o Rotation

 Sample Program

 Finally, Some Code

 Conclusion

 Complete Program Listing

Introduction

In an earlier lesson, I explained that the Graphics2D class extends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and

text layout. Beginning with JDK 1.2, Graphics2D is the fundamental class for rendering two-

dimensional shapes, text and images.

I also explained that without understanding the behavior of other classes and interfaces such as

Shape, AffineTransform, GraphicsConfiguration, PathIterator, and Stroke, it is not possible

to fully understand the inner workings of the Graphics2D class.

This lesson is intended to give you the necessary understanding of the AffineTransform class.

What is an Affine Transform?

A system of device-independent coordinates (called User Space) is used to pass all coordinate

information to the methods of a Graphics2D object. An AffineTransform object (see definition

below) is contained in the Graphics2D object as part of its state. This AffineTransform object

defines how to convert coordinates from user space to device-dependent coordinates in Device

Space.

According to Sun:

The AffineTransform class represents a

2D Affine transform that performs a

linear mapping from 2D coordinates to

other 2D coordinates that preserves the

"straightness" and "parallelness" of lines.

Affine transformations can be

constructed using sequences of

translations, scales, flips, rotations, and

shears.

According to David Flanagan in his book Java Foundation Classes in a Nutshell,

The coordinate system transformation

described by AffineTransform have two

very important properties:

 Straight lines remain straight

 Parallel lines remain parallel

Flanagan goes on to tell us:

An AffineTransform is a linear

transform, so the transformation can be

expressed in the matrix notation of linear

algebra. An arbitrary AffineTransform

can be mathematically expressed by six

numbers in a matrix like this:

 sx shx tx
shy sy ty

(If you are a purist, you will recognize immediately that this matrix is missing the large square

brackets [] that normally enclose a matrix. That is because I don’t know how to create large

square brackets in HTML.)

Don’t Panic!

Please don’t panic at the mention of matrix algebra. You don’t need to know anything about

matrix algebra to understand the material in this lesson. All that you need to know is a little

about ordinary algebra.

In fact, you don’t even have to understand ordinary algebra to implement the kinds of simple

transforms that I am going to show you in this lesson, but such an understanding will help you to

better understand how it all works.

What Do These Symbols Represent?

In this lesson, I am going to show you how to use the AffineTransform to cause your graphics

to be transformed in the following ways before being displayed on the output device:

 Scaling

 Translation

 Shear

 Rotation

In the notation shown above, the symbols or factors sx and sy are scale factors that accomplish

scaling. The factors tx and ty are scale factors that accomplish translation. The factors shx and

shy are scale factors that accomplish shear.

According to Flanagan, “...rotation is a combination of scaling and shearing, so there are not

separate rx and ry numbers.”

How Are They Used?

“So what?” you say. “So what if I have six numbers?” How do they accomplish scaling,

translation, and shear?

With regard to these three, all that you need to remember is the following pair of equations,

where the asterisk (*) indicates multiplication just as it does in Java programming

syntax. (Actually, you don’t even need to remember these equations, but it is helpful in

understanding what happens when we modify the default AffineTransform object.)

newX = sx*x + shx*y + tx

newY = shy*x + sy*y + ty

In other words, given the values for an x and y coordinate in user space, these multiplicative

factors are used calculate new values for those coordinates for use in device space, thereby

accomplishing scaling, shear, and translation.

As we will see later, if the factors representing shear and translation have a value of zero, then

that type of transform is simply not performed. If the factors representing scaling have a value of

unity (which is the default case), then there is no change in the coordinate value between user

space and device space. Any other values for any of the factors will cause some amount of

scaling, shear, or translation to take place.

For all three types of transform, the value used to transform the x coordinate is independent of

the value used to transform the y coordinate. Therefore, you could, for example, translate by a

large value in x and translate by a small value in y.

Before getting into the details of performing these transforms, it will probably be useful to

provide a few words of explanation about each.

Scaling

Scaling is perhaps the easiest of the four types of transforms to understand. This simply means

that if a point is located at a horizontal coordinate value of x in user space, it will be located at

sx*x in device space, where sx is a numeric multiplier that can be either positive or negative.

Translation

The purpose of translation is to move the origin of the coordinate system in device space.

For example, the default position of the origin is the upper left-hand corner of the component on

which the graphic is being displayed. Assume that the component is a Frame object that is four

inches on each side. You might like for the origin to be in the center of the Frame instead of at

the top left-hand corner. You could accomplish this by translating the origin by two inches in

both the horizontal and vertical directions.

Or, you might like for the origin to be just barely inside the borders of the Frame object instead

of outside the borders as is the default. This can be accomplished by getting the widths of the

top border and left border by invoking getInsets() on the Frame, and then using those values to

translate the origin to a location that is just barely inside the borders.

Another use of translation (in combination with scaling) is to flip the default positive direction of

the vertical axis so that increasing positive values go up instead of down, which is the default. I

will leave the implementation of this as an exercise for the student.

Shear

I like the way that Jonathan Knudsen describes shear in his book entitled Java 2D Graphics. He

describes it something like this. Take a stack of paper (like you might place in your laser printer)

and draw a picture on the side of the stack. Then deform the stack so that the side of the stack on

which you drew the picture takes the form of a parallelogram. Be especially careful to keep the

opposite sides parallel. Then look at your picture. It will have been subjected to shear in one

dimension.

Rotation

Rotation is also fairly easy to visualize (but the combination of rotation and shear can be very

difficult to visualize). To visualize rotation, draw a picture on a piece of paper. Use a single

tack to attach it to a bulletin board. Then rotate the paper a few degrees around the tack. You

will have rotated the picture around the coordinates of the tack by the specified number of

degrees.

Java 2D works the same way. In the process of transforming a graphic from user space to device

space, you can cause it to be rotated by a specified angle around a specified coordinate position.

However, in Java 2D, the angle must be specified in radians instead of degrees. If you are

unfamiliar with the use of radian measure to specify an angle, just remember the following

identity:

PI radians = 180 degrees

Where PI is the numeric value that you learned about in your geometry class.

PI has a value of 3.14159........... However, you don’t have to remember the value of PI. It is

available as a static final constant in the Math class. You can access the value as Math.PI.

If this sounds confusing, you might also want to remember the following identities:

PI/2 = 90 degrees

PI/4 = 45 degrees

PI/8 = 22.5 degrees

PI/16 = 11.25 degrees, etc.

This last identify is used in the sample program in the following section to rotate a simple

graphic by 11.25 degrees.

Another interesting thing about the rotation transform is that positive angles of rotation proceed

in a clockwise direction. This may be backwards from what you are accustomed to in various

science and engineering endeavors where counter-clockwise rotation is often thought of as the

positive direction of rotation.

Sample Program

With that introduction, lets look at some code and learn just how simple it is to accomplish

Scaling, Translation, Shear, and Rotation with Java 2D.

The name of the sample program is Affine01.java. This program illustrates the use of

convenience method of the Graphics2D class that make it very easy to apply transforms of the

following types:

 Scaling

 Translation

 Shear

 Rotation

The methods that I will be discussing here are simply convenience methods, and there are other,

more general, ways to apply Affine transforms as well. If you understand the process in

sufficient detail, you can create your own matrix of six numeric values and cause those six

values to be used to implement the transform. But, that is a topic for another lesson. In this

lesson, I will concentrate on the convenience methods.

You can use these convenience methods to apply transform of the four types listed above with no

concern for the six numeric values in the transform matrix. However, for your education (and

mine as well), I have written the program such that when a transform is applied using a

convenience method, the six values are displayed on the command-line screen. That way, we

can both see what a particular transform produces in terms of the transform matrix (if we care

about such things).

Experimentation is encouraged

This program is designed for experimentation. Four individual statements similar to the

following are used to apply each of the four types of transforms (as you can see, this is the

statement that applies translation):

 g2.translate(0.25*ds,0.25*ds);

You should experiment with these statements by disabling them, enabling them, and rearranging

them, and then observing the graphic output when you run the program.

Cumulative but not commutative

You will find that the result of executing two or more of the statements in succession is

cumulative, but not commutative. In other words, applying translation and rotation, for example,

causes the output graphic to be translated and also rotated. However, depending on your

parameters, you might not get the same results if you switch the order of translating and rotating.

The six numeric values

Finally, before getting into the details of the code, I am going to show you the six numeric values

contained in the default Affine transform and the six values contained in the transform after

applying each of the four types of transforms in succession.

Default Transform
1.0 0.0 0.0
0.0 1.0 0.0

Add Scale Transform
1.6666666666666667 0.0 0.0
0.0 1.6666666666666667 0.0

Add Translate Transform
1.6666666666666667 0.0 30.0

0.0 1.6666666666666667 30.0

Add Shear Transform
1.6666666666666667 0.08333333333333334 30.0
0.16666666666666669 1.666666666666666730.0

Add Rotate Transform
1.6508996608400615 -0.2434184299932779
79.32270275806317
0.4886147500940855 1.6021270803360292 -
7.066823581936546

The default values

As you can see, the default transform has non-zero values only in the two scale factors for a

scaling transform, and these scale factors are both unity. Thus, the default transform doesn’t

apply any scaling between user space and device space.

The scaling transform

After invoking the scale() methodto compensate for the difference in the default coordinate

values (at 72 units per inch) and the actual resolution of my screen at 120 pixels per inch, the

scale factor increased to 1.666... This is the ratio of 120 to 72.

See the caveat in an earlier lesson that

the getScreenResolution() method

always seems to return 120 on my

computer regardless of the actual screen

resolution settings.

The translation

After I applied a translation of 0.25 inches in both dimensions, each of the translation scale

factors changed from zero to 30.0. This is the product of 0.25 and the resolution of my screen.

The shear

Then I applied a shear of 0.05 inches in x and 0.1 inches in y. The two shear factors changed

from zero to 0.08333... and 0.1666... respectively. If you are interested, I will leave it as an

exercise for you to go back to the equations that I presented earlier to deduce how these factors

produce the desired amount of shear.

The rotation

Finally, adding rotation by 11.25 degrees caused all six values to change from their previous

values. As mentioned earlier, this is probably the most complex aspect of the standard

translations insofar as understanding what the numbers mean. You will need some

understanding of trigonometry to understand these values.

Don’t worry about the six numeric values

Again, as I mentioned earlier, you can use the convenience methods to apply the four standard

types of transforms without ever giving any thought to these numeric values. They are presented

here only for the benefit of those students who have a desire to go further and to produce custom

transforms from a numeric basis.

Finally, Some Code!

After all of that, I am finally going to show you some code.

As usual, I will discuss the program in code fragments. A complete listing of the program is

provided at the end of the lesson.

The first fragment (Figure 1) instantiates an object of a class named GUI and causes it to be

displayed on the screen. This code is very similar to code that I have presented in earlier lessons,

so I won’t discuss it in detail.

/*Affine01.java 12/12/99
Copyright 1999, R.G.Baldwin

Tested using JDK 1.2.2 under WinNT Workstation 4.0
**************************************/
import java.awt.geom.*;
import java.awt.*;
import java.awt.event.*;

class Affine01{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
}//end controlling class Affine01

class GUI extends Frame{
 int res;//store screen resolution here
 staticfinalint ds = 72;//default scale, 72 units/inch

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();

 //Set Frame size to four-inches by four-inches
 this.setSize(4*res,4*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor

Figure 1

Basically, this code causes a Frame object that is four inches on each side to be displayed on the

screen. Beyond this, all of the action in the program is provided by an overridden paint()

method, which I will discuss shortly.

Overridden paint() method

Figure 2 shows the beginning of the overridden paint() method. As mentioned in an earlier

lesson, the paint() method always receives a reference to an object of the Graphics class. It is

necessary to downcast this reference to the Graphics2D class in order to gain access to the

methods of the Graphics2D class (Graphics2D extends Graphics).

 publicvoid paint(Graphics g){

 Graphics2D g2 = (Graphics2D)g;

Figure 2

Displaying the six numeric values

Figure 3 displays the words “Default Transform” on the screen and then invokes a method

named displayMatrix() to cause the six values of the default AffineTransform object to be

displayed. I will discuss the method named displayMatrix() later.

 System.out.println("Default Transform");

 displayMatrix(g2.getTransform());

Figure 3

What does the program really do?

Fundamentally, this program makes four updates to the default AffineTransform object to apply

scaling, translation, shear, and rotation to the transform. Then the program creates and draws a

graphic inside the Frame object. When the graphic is drawn, it is transformed according to the

current state of the AffineTransform object.

As indicated earlier, you are encouraged to disable, enable, and rearrange these four transform

update operations, recompile, and run the program in order to get a good feel for the effect of the

different types of transforms.

The default case with no transforms enabled

For example, if you disable all four transform updates and run the program, you should see five

concentric squares located in the upper left-hand quadrant of the Frame object. (Can squares be

concentric? Maybe nested squares would be a better description.)

The dimensions of the outer square should be 72 pixels on each side. Of course, this will

produce different size squares, depending on the resolution of your screen in terms of pixels per

inch. If your screen actually has 72 pixels per inch, the outer square will be one inch on each

side.

The text string “Exit->” should be superimposed on the squares with the bottom left-hand corner

of the letter “E” being located at the center of the innermost square.

Enable the scaling transform

If you then enable the scaling update shown in Figure 4 (while leaving the other three updates

disabled) recompile, and rerun the program, you should see the same five concentric squares, but

this time they should be centered in the four-inch by four-inch Frame object.

 System.out.println("Add Scale Transform");

 g2.scale((double)res/72,(double)res/72);

 displayMatrix(g2.getTransform());

Figure 4

The outer square should be one inch on each side, and the distance between the squares should

be 0.1 inch.

This should be true regardless of the resolution of your screen because the parameters being

passed to the scale() method are designed to compensate for the difference between actual screen

resolution and the default resolution of 72 pixels per inch.

The convenience method named scale() makes it possible to provide scaling between user space

and device space without having to be concerned as to how the scaling is actually accomplished

from a matrix algebra viewpoint. The same is true for each of the other four convenience

methods that I will discuss.

Note that you have independent control over the scaling to be applied to the horizontal axis and

the scaling to be applied to the vertical axis. Each of these is a different parameter that you pass

to the scale() method.

Enable the translation transform

If you leave the above scaling enabled and then enable the translation update shown in Figure 5

(with shear and rotation still disabled), you should see that the entire pattern of concentric

squares and the text has been translated to the right and down by 0.25 inch.

 System.out.println("Add Translate Transform");

 g2.translate(0.25*ds,0.25*ds);

 displayMatrix(g2.getTransform());

Figure 5

Although it isn’t obvious, what has actually happened is that the origin has been translated from

the upper left-hand corner of the Frame object to a location that is 0.25 inches to the right and

0.25 inches below the upper left-hand corner of the Frame object.

Then when the squares are drawn with respect to the new origin, they appear to have moved in a

similar fashion relative to the outer boundaries of the Frame object. It is important to keep in

mind, however, that the squares are still being drawn in the same position relative to the

origin. It is the origin that has moved relative to the outer boundaries of the Frame.

Enable the shear transform

Next, I recommend that you disable translation, enable the shear update shown in Figure 6, and

leave scaling enabled. If you recompile and run the program in that configuration, you should

see something like Mr. Knudsen’s shear example except that in this case, it occurs in both the

horizontal and vertical dimensions.

 System.out.println("Add Shear Transform");

 g2.shear(0.05,0.1);

 displayMatrix(g2.getTransform());

Figure 6

For example, the squares have all been converted to parallelograms. The bottom ends of what

used to be vertical lines are now further to the right than the top ends of the same lines. The right

ends of what used to be horizontal lines are now lower than the left ends of the same lines. The

shapes of the characters in the text string are modified accordingly.

This picture also confirms what Mr. Flanagan has to say about Affine transforms:

 Straight lines remain straight

 Parallel lines remain parallel

You might also want to modify the values of the parameters being passed to the shear() method

and observe the output. Be careful and don’t make the values too large. If you do, you will push

the entire graphic out of the Frame and won’t be able to see it.

A bad case of the “jaggies”

Depending on your screen resolution, you may have noticed that the lines in the graphic output

have a bad case of the “jaggies.” In other words, the lines are not smooth, but rather have a stair

step appearance. This is more properly referred to aliasing. A subsequent lesson will explain

how to use the anti-aliasing feature of Java 2D to reduce the undesirable visual effect of this

phenomenon.

Enable the rotation transform

Next, I recommend that you disable the shear update and enable the rotation update shown in

Figure 7, while keeping the scaling update enabled. For me, at least, it is very difficult to

separate the visual results of combined shear and rotation, so it is better to view them separately.

 System.out.println("Add Rotate Transform");

 //Rotate 11.25 degrees about center

 g2.rotate(Math.PI/16,2.0*ds, 2.0*ds);

 displayMatrix(g2.getTransform());

Figure 7

Now you should see the same five concentric squares plus the superimposed text string, rotated

clockwise by 11.25 degrees around the center of the innermost square.

As mentioned earlier, you have the ability to specify the angle of rotation in radians as well as

the x and y coordinate values of the point around which the rotation will take place.

These are only suggestions

The scenarios that I have been suggesting are simply that, suggestions. At this point, you might

want to go back and experiment further with different combinations of transform types. Also,

don’t forget to experiment with the order in which the transforms take place because the same

transforms executed in a different order will often produce different results.

Drawing the picture

None of the code discussed so far has actually caused anything to be displayed on the screen

(except for perhaps an empty Frame object). Rather, that code was executed for the purpose of

establishing the behavior of the transform that is applied to any graphic that is subsequently

drawn in the Frame.

Figure 8 causes five concentric squares to be drawn in the Frame object. If the scaling

transform described above is applied (with no shear or translation), the outer-most square will be

one-inch on each side. The squares will be separated by 0.1 inch, and the entire group of squares

will be centered at a coordinate position of two inches horizontally and two inches vertically.

 double delta = 0.1;
 for(int cnt = 0; cnt < 5; cnt++){
 g2.draw(new Rectangle2D.Double(
 (1.5+cnt*delta)*ds, (1.5+cnt*delta)*ds,
 (1.0-cnt*2*delta)*ds, (1.0-cnt*2*delta)*ds));
 }//end for loop

Figure 8

The application of different scaling factors, the application of shear, the application of

translation, or the application of rotation will cause different results to be produced.

Figure 9 superimposes the text string “Exit->” on the squares with the bottom left-hand corner of

the letter “E” located at the center of the innermost square. I will have a lot more to say about

how Graphics2D handles text in subsequent lessons. The main reason I put it here is to provide

orientation information to help you keep track of what’s going on if you implement large rotation

angles.

 g2.drawString("Exit ->",2.0f*ds,2.0f*ds);

 }//end overridden paint()

Figure 9

That ends the definition of the overridden paint() method.

Displaying the six numeric values

Figure 10 shows the beginning of the definition of a convenience method that I wrote for the

purpose of displaying the six values stored in an AffineTransform object.

void displayMatrix(

 AffineTransform theTransform){

 double[] theMatrix = newdouble[6];

 theTransform.getMatrix(theMatrix);

Figure 10

This method receives a reference to an AffineTransform object, on which it invokes the

getMatrix() method.

When the getMatrix() method is invoked, a reference to a double array object having at least six

elements is passed as a parameter. The getMatrix() method places the six values of interest in

the first six elements of that array in a particular order and then returns.

I’m not going to go into the order in which the six values are placed in the array. I will simply

refer you to the Sun documentation for that information.

 //Display first row of values by displaying every
 // other element in the array starting with element
 // zero.
 for(int cnt = 0; cnt < 6; cnt+=2){
 System.out.print(theMatrix[cnt] + " ");
 }//end for loop

 //Display second row of values displaying every
 // other element in the array starting with element

 // number one.
 System.out.println();//new line
 for(int cnt = 1; cnt < 6; cnt+=2){
 System.out.print(theMatrix[cnt] + " ");
 }//end for loop
 System.out.println();//end of line
 System.out.println();//blank line

 }//end displayMatrix
}//end class GUI

Figure 11

However, you can probably figure it out from Figure 11 that uses two sequential for loops to

extract the information from the array and display it in the following order.

An arbitrary AffineTransform can be

mathematically expressed by six numbers

in a matrix like this:

 sx shx tx

shy sy ty

Note that this is a partial reproduction of information that I provided earlier in this lesson and

you will find the definition of each of the terms, such as sx and shy provided there.

Conclusion

Because of the availability of the convenience methods named scale(), translate(), shear(), and

rotate(), it is very easy to implement Affine transformations of these four standard types.

These are linear transforms, and the end result is the cumulative effect of applying the transforms

in a sequential fashion. Keep in mind that the order in which you apply the transforms may have

a significant impact on the results.

If you need to implement more complex transforms, you can do so by creating your own six-

element matrix of values and using that matrix to set the transform for a particular application.

Complete Program Listing

A complete listing of the program is provided in Figure 12.

/*Affine01.java 12/12/99
Copyright 1999, R.G.Baldwin

Illustrates use of the Affine transforms, and the
methods of the Graphics2D class that allow for applying
transforms of the following types:

Scale
Translate
Rotate
Shear

Also gets and displays the values in the AffineTransform
object after the transform has been applied by invoking
methods with the same names.

In addition to displaying a GUI that visually
illustrates the effects of the transforms, the program
also displays the following information on the screen.

Default Transform
1.0 0.0 0.0
0.0 1.0 0.0

Add Scale Transform
1.6666666666666667 0.0 0.0
0.0 1.6666666666666667 0.0

Add Translate Transform
1.6666666666666667 0.0 30.0
0.0 1.6666666666666667 30.0

Add Shear Transform
1.6666666666666667 0.08333333333333334 30.0
0.16666666666666669 1.6666666666666667 30.0

Add Rotate Transform
1.6508996608400615 -0.2434184299932779 79.32270275806317
0.4886147500940855 1.6021270803360292 -7.066823581936546

The visual display consists of five concentric squares
with the text string "Exit->" superimposed on the
squares. This visual display illustrates the effects of
the transforms pretty well.

This program is intended to be used to experiment with
Affine transforms. By using comment indicators "//"
to disable statements of the form:

 System.out.println("Add Translate Transform");
 g2.translate(0.25*ds,0.25*ds);
 displayMatrix(g2.getTransform());

and by rearranging those statements, the student can see
the individual and cumulative effects of applying the
transforms.

Tested using JDK 1.2.2 under WinNT Workstation 4.0
**************************************/
import java.awt.geom.*;
import java.awt.*;
import java.awt.event.*;

class Affine01{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
}//end controlling class Affine01

class GUI extends Frame{
 int res;//store screen resolution here
 staticfinalint ds = 72;//default scale, 72 units/inch

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();

 //Set Frame size to four-inches by four-inches
 this.setSize(4*res,4*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor

 //Override the paint() method to draw and manipulate a
 // square.
 publicvoid paint(Graphics g){
 //Downcast the Graphics object to a Graphics2D object
 Graphics2D g2 = (Graphics2D)g;

 //Display contents of default AffineTransform object
 System.out.println("Default Transform");
 displayMatrix(g2.getTransform());

 //Update transform to include a scale component,
 // and display the values.
 System.out.println("Add Scale Transform");
 g2.scale((double)res/72,(double)res/72);
 displayMatrix(g2.getTransform());

 //Update transform to include a translate component,
 // and display the values.
 System.out.println("Add Translate Transform");
 g2.translate(0.25*ds,0.25*ds);
 displayMatrix(g2.getTransform());

 //Update transform to include a shear component,
 // and display the values.
 System.out.println("Add Shear Transform");
 g2.shear(0.05,0.1);
 displayMatrix(g2.getTransform());

 //Update transform to provide rotation and display,
 // the transform values.
 System.out.println("Add Rotate Transform");
 //11.25 degrees about center
 g2.rotate(Math.PI/16,2.0*ds, 2.0*ds);
 displayMatrix(g2.getTransform());

 //Draw five concentric squares and apply the transform
 // that results from the above transform updates. If
 // the above scale transform is applied, the outer
 // square is one inch on each side, and the squares
 // are separated by 0.1 inch
 double delta = 0.1;
 for(int cnt = 0; cnt < 5; cnt++){
 g2.draw(new Rectangle2D.Double(
 (1.5+cnt*delta)*ds, (1.5+cnt*delta)*ds,
 (1.0-cnt*2*delta)*ds, (1.0-cnt*2*delta)*ds));
 }//end for loop

 //Superimpose some text on the squares with the
 // lower left corner of the first character at the
 // center of the squares.
 g2.drawString("Exit ->",2.0f*ds,2.0f*ds);
 }//end overridden paint()

 //This method receives a reference to an AffineTransform

 // and displays the six controllable values in the
 // transform matrix
 void displayMatrix(AffineTransform theTransform){
 double[] theMatrix = newdouble[6];
 theTransform.getMatrix(theMatrix);

 //Display first row of values by displaying every
 // other element in the array starting with element
 // zero.
 for(int cnt = 0; cnt < 6; cnt+=2){
 System.out.print(theMatrix[cnt] + " ");
 }//end for loop

 //Display second row of values displaying every
 // other element in the array starting with element
 // number one.
 System.out.println();//new line
 for(int cnt = 1; cnt < 6; cnt+=2){
 System.out.print(theMatrix[cnt] + " ");
 }//end for loop
 System.out.println();//end of line
 System.out.println();//blank line

 }//end displayMatrix
}//end class GUI
//==============================//

Figure 12

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin@austin.cc.tx.us

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

-end-

http://www.geocities.com/Athens/7077/scoop/onjava.html

