
March 6, 2000

Java 2D Graphics, The Shape Interface, Part 2

Java Programming, Lecture Notes # 310

by Richard G. Baldwin

baldwin@austin.cc.tx.us

 Introduction

 What is a Shape?

 What is a PathIterator Object?

 What is a GeneralPath Object?

 Sample Program GeneralPath01

 Sample Program PathIterator01

 Summary

 Complete Program Listings

Introduction

In an earlier lesson, I explained that the Graphics2D class extends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and

text layout. Beginning with JDK 1.2, Graphics2D is the fundamental class for rendering two-

dimensional shapes, text and images.

I also explained that without understanding the behavior of other classes and interfaces such as

Shape, AffineTransform, GraphicsConfiguration, PathIterator, and Stroke, it is not possible

to fully understand the inner workings of the Graphics2D class.

This and an earlier lesson are intended to give you the necessary understanding of the Shape

interface and the PathIterator class.

What is a Shape?

As I reported in the earlier lesson, according to Sun:

“The Shape interface provides

definitions for objects that represent

some form of geometric shape. The

Shape is described by a PathIterator

object, which can express the outline of

the Shape as well as a rule for

determining how the outline divides the

mailto:baldwin@austin.cc.tx.us

2D plane into interior and exterior

points. Each Shape object provides

callbacks to get the bounding box of

the geometry, determine whether points

or rectangles lie partly or entirely

within the interior of the Shape, and

retrieve a PathIterator object that

describes the trajectory path of the

Shape outline.”

What is a PathIterator Object?

The Shape interface provides four groups of overloaded methods that make it possible to

perform the following tasks:

 Get a bounding box that is guaranteed to enclose a specified Shape object.

 Determine if a specified Shape object completely contains a specified point or rectangle.

 Determine if a specified Shape intersects a specified rectangle

 Get a PathIterator object that can be used to obtain the path that makes up the boundary

of a Shape object.

I discussed the first three capabilities in the earlier lesson. I told you that I was going to defer a

discussion of the PathIterator to this lesson. This lesson is dedicated the PathIterator

interface, but in order to understand the behavior of that class, it will be instructive to provide a

brief discussion and illustration of the GeneralPath class. You might consider the PathIterator

and the GeneralPath to be opposite sides of the same coin.

This is part of what Sun has to say about PathIterator.

The PathIterator interface provides the

mechanism for objects that implement

the Shape interface to return the

geometry of their boundary by allowing a

caller to retrieve the path of that

boundary a segment at a time.

In other words, PathIterator makes it possible for code in a program to obtain information about

the geometric outline of an object that implements the Shape interface.

What is a GeneralPath Object?

Here is part of what Sun has to say about GeneralPath.

“The GeneralPath class represents a

geometric path constructed from straight

lines, and quadratic and cubic (Bezier)

curves. It can contain multiple subpaths.

The winding rule specifies how the

interior of a path is determined. There are

two types of winding rules: EVEN_ODD

and NON_ZERO.

An EVEN_ODD winding rule...”

I plan to discuss the GeneralPath class in much more detail in a subsequent lesson. In this

lesson, I will simply show you how to create a geometric shape using GeneralPath. Then I will

show you how to use PathIterator to analyze that shape and to replicate it with an offset.

Let’s listen to David Flanagan

Here is what Java Foundation Classes in a Nutshell, by David Flanagan, has to say about

GeneralPath.

“This class represents an arbitrary path or

shape that consists of any number of line

segments and quadratic and cubic Bezier

curves. After creating a GeneralPath

object, you must define a current point

by calling moveTo(). Once an initial

current point is established, you can

create the path by calling lineTo(),

quadTo(), and curveTo(). These

methods draw line segments, quadratic

curves, and cubic curves from the current

point to a new point (which becomes the

new current point).

The shape defined by a GeneralPath

need not be closed, although you may

close it by calling the closePath()

method, which appends a line segment

between the current point and the initial

point... The append() method allows you

to add a Shape or PathIterator to a

GeneralPath, optionally connecting it to

the current point with a straight line.”

Since my purpose in using GeneralPath in this lesson is to provide background for

understanding PathIterator, I will keep it simple and deal only with the following methods of

GeneralPath:

 moveTo()

 lineTo()

 closePath()

What does Jonathan Knudsen have to say?

This is what Jonathan Knudsen has to say on the subject in his excellent book entitled Java 2D

Graphics, from O’Reilly.

“Lurking behind the Shape interface,

there’s a handy toolbox of shapes in the

java.awt.geom package – rectangles,

ellipses, and so on. I’ll discuss these

soon. If you want to draw pentagons,

decagons, stars, or something completely

different, you’ll have to describe the path

yourself using a

java.awt.geom.GeneralPath. This class

implements the Shape interface and

allows you to build a path, segment by

segment.”

So, what’s the bottom line?

The bottom line is that a Shape object is constructed from segments consisting of moves (pen

up), lines, curves, and an optional closure. GeneralPath can be used to construct such a Shape,

one segment at a time.

The Shape object remembers how it was originally constructed in terms of the types of

segments, their coordinate values, etc. The object can tell us how it was originally

constructed. The PathIterator is used to extract that information from the Shape object.

The two following programs show how to construct a simple Shape consisting of moves, lines,

and a closure, and how to extract the necessary information from the Shape to replicate it with

an offset. I didn’t use Bezier curves. The topic of Bezier curves is sufficiently complex as to

merit a lesson of its own. I will be discussing the use of Bezier curves in a subsequent lesson.

Sample Program GeneralPath01

This first sample program illustrates the use of the GeneralPath class to construct a simple

Shape object.

The program draws a four-inch by four-inch Frame on the screen. Then it translates the origin

to the center of the Frame. It draws a pair of X and Y-axes centered on the origin.

This discussion of dimensions in inches

on the screen depends on the method

named getScreenResolution() returning

the correct value. However, the

getScreenResolution() method always

seems to return 120 on my computer

regardless of the actual screen resolution

settings.

Then the program uses GeneralPath to create a diamond Shape and draw it on the Frame. The

vertices of the diamond shape are at plus and minus one-half inch on each of the axes. When

viewed on the screen, the vertices are at the North, South, East, and West positions and the

diamond is centered on the origin.

The program was tested using JDK 1.2.2 under WinNT Workstation 4.0.

Will discuss in fragments

As is usually the case, I will discuss this program in fragments. The controlling class and the

constructor for the GUI class are essentially the same as you have seen in several previous

lessons, so, I won’t bore you by repeating that discussion here. You can view this material in the

complete listing of the program at the end of the lesson.

All of the interesting action takes place in the overridden paint() method, so I will begin the

discussion there.

Overridden paint() method

The beginning portions of the overridden paint() method should be familiar to you by now as

well. So, I am simply going to let the comments in Figure 1 speak for themselves.

 public void paint(Graphics g){

 //Downcast the Graphics object to a

 // Graphics2D object

 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches

 // on the screen

 // based on actual screen resolution.

 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame

 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis

 g2.draw(new Line2D.Double(

 -1.5*ds,0.0,1.5*ds,0.0));

 //Draw y-axis

 g2.draw(new Line2D.Double(

 0.0,-1.5*ds,0.0,1.5*ds));

Figure 1

The interesting part

Now we have arrived at the interesting part. Figure 2 begins by instantiating a new object of the

GeneralPath class.

 GeneralPath thePath = new GeneralPath();

 thePath.moveTo(0.5f*ds,0.0f*ds);

Figure 2

Then it invokes the moveTo() method to establish the current point (as described above by

Flanagan).

An analogy

As a practical matter (see the caveat below), if you think of the creation and population of a

GeneralPath object as analogous to creating a line drawing using a pen and paper, invocation of

the moveTo() method corresponds to moving the drawing pen without the tip of the pen

touching the paper.

Create some lines

Continuing with our pen and paper analogy, the program invokes the lineTo() method three

times in succession to draw three straight lines on the paper. Given the coordinates shown in

Figure 3, these lines form three sides of a diamond shape.

 thePath.lineTo(0.0f*ds,0.5f*ds);

 thePath.lineTo(-0.5f*ds,0.0f*ds);

 thePath.lineTo(0.0f*ds,-0.5f*ds);

Figure 3

Close the path

Finally, the program invokes the closePath() method to draw a single straight line from the

current point back to the current point established by the original moveTo() method call. This

line forms the fourth side of a diamond shape. See Figure 4 for this code fragment.

 thePath.closePath();

Figure 4

The analogy is a problem!

The problem with using the pen and paper analogy to describe the process is that the process

implemented in the above fragments really doesn’t draw anything (not anything that a human can

see, anyway). Rather, it creates and populates an object that implements the Shape interface that

exist only in the computer’s memory.

This is a very important point that we must keep in mind. Creating a Shape object in the

computer’s memory is not the same thing as rendering that object on a graphics display

device. The object doesn’t become visible until it is rendered. However, the fact that it isn’t

visible doesn’t mean that it doesn’t exist. That just means that it hasn’t been rendered.

The Shape object can be rendered onto an output device using the draw(Shape) method shown

in Figure 5.

 g2.draw(thePath);

Figure 5

When the virtual object created and populated by the previous fragments is rendered, it will look

like a diamond shape, centered on the origin, with the vertices at the North, South, East, and

West positions. The shape of the object and its location is controlled by the coordinate

information passed to the moveTo(), and lineTo() methods in the above fragments, and the

attributes of the AffineTransform object currently associated with the Graphics2D object.

Now that we know how to create and populate a GeneralPath object, the next program will

illustrate how to extract the necessary information from that object to replicate it.

Sample Program PathIterator01

The purpose of this program is to illustrate the use of the getPathIterator() method of the Shape

interface, and the PathIterator object returned by that method. The program uses that object to

learn all that there is to know about an object that implements the Shape interface.

The program creates and populates a GeneralPath object identical to that in the previous

program.

Then the program invokes getPathIterator() on that GeneralPath object to obtain a

PathIterator object that provides access to information about the GeneralPath object.

Then the program invokes various methods on the PathIterator object to extract the pertinent

information about the GeneralPath object that it represents. This information is used to

replicate the original object, offset by one inch in both directions. The segment information is

also displayed on the command-line screen so that you can compare it with what you know to be

true about the original object.

Then the program draws the new object in red.

Discuss in fragments

I will discuss this program in fragments. This program is identical to the previous program down

to the point where the original GeneralPath object has been created, populated, and displayed

on a Frame object. Therefore, I won’t repeat the discussion of that material. You can view the

code that accomplishes this in the complete listing of the program at the end of the lesson.

For continuity, this fragment picks up at the point in the overridden paint() method where the

original object, referred to by thePath, is being rendered on the Frame. Once the following

fragment has been executed, the original object has been rendered on the screen. See Figure 6

for the code fragment.

 // black

 g2.draw(thePath);

Figure 6

Get a PathIterator object

Figure 7 invokes the getPathIterator() method on the original object to get a PathIterator

object that represents it.

 PathIterator theIterator =

 thePath.getPathIterator(null);

Figure 7

Note that this program passes null to the getPathIterator() method. It is also possible to pass a

reference to an AffineTransform object to the method. In that case, the PathIterator object

will represent a transformed version of the target object with the nature of the transformation

being determined by the AffineTransform object.

Since my objective here is to reproduce the original object with an offset in both the horizontal

and vertical directions, I could have passed a translation transform object as a parameter. Then

the PathIterator that is returned would represent the original object translated to a different

location in the 2D space. However, I elected to perform the translation numerically when

populating a new GeneralPath object instead. Therefore, I passed null as a parameter to

getPathIterator().

A flattened PathIterator object

The PathIterator object that is returned could contain segments consisting of Bezier

curves. That may not be what you want. Another overloaded version of

getPathIterator(AffineTransform at, double flatness) takes two parameters and returns a

PathIterator object in which all Bezier curves have been replaced by a series of straight-line

segments.

The flatness parameter defines how well the straight lines represent the curve. In particular, this

parameter defines the maximum distance that any point on the curve can deviate from the

straight line that represents the curve at that point. Thus, in general, the smaller the flatness

parameter, the more straight line segments will be generated to represent the curve, and the better

will be the straight line approximation of the curve.

Data storage

Later on, I am going to need some place to store two kinds of information about the segments

that represent the GeneralPath object. I will need to store the type of segment, which is of type

int. I will also need to store coordinate information about the segment.

Figure 8 declares two local variables that will be used later to store this information.

 //Use this array to store segment

 // coordinate data

 float[] theData = new float[6];

 int theType;//store type of segment here

Figure 8

Further explanation of these variables

I will be invoking the currentSegment() method on the PathIterator object to get information

about the segment. This method returns the type, which I will store in theType.

I will pass the array named theData to the currentSegment() method. The method will

populate the elements in the array with the coordinate information describing the segment. For

the case where the segment can be a Bezier curve, the size of this array needs to be six elements,

as described in the following information from Sun regarding the currentSegment() method

(note that there is also a version of this method that deals in coordinate data of type double).

“Returns the coordinates and type of

the current path segment in the

iteration. The return value is the path

segment type: SEG_MOVETO,

SEG_LINETO, SEG_QUADTO,

SEG_CUBICTO, or SEG_CLOSE.

A float array of length 6 must be

passed in and can be used to store the

coordinates of the point(s). Each point

is stored as a pair of float x, y

coordinates.

SEG_MOVETO and SEG_LINETO

types returns one point,

SEG_QUADTO returns two points,

SEG_CUBICTO returns 3 points and

SEG_CLOSE does not return any

points.”

Since I was the one who created the Shape object that this PathIterator object will represent,

and since I know that it doesn’t contain any SEG_QUADTO or SEG_CUBICTO segments, I

could have gotten by with a two-element array. However, to be more general, I used a six-

element array.

Instantiate a new GeneralPath object

My objective is to extract the necessary information from an existing Shape object to allow me

to replicate that object with a one-inch offset in the horizontal and vertical dimensions. For that,

I need a new GeneralPath object that I can populate with the information that I extract from the

existing object.

Figure 9 instantiates, but does not populate a new GeneralPath object.

 GeneralPath newPath =

 new GeneralPath();

Figure 9

Iterate and populate

At the risk of causing total confusion, I am going to do something unusual here. In particular, I

am going to show a code fragment that would ordinarily be a fairly long fragment, but I am

going to delete some of code interior to the fragment to make it more manageable. I will explain

the code that remains in the fragment after the deletion. Then I will come back in a subsequent

fragment and explain the code that I deleted from the fragment.

You can refer to the original code, fully intact, in the complete listing of the program at the end

of the lesson if this is confusing.

Use a while loop

Figure 10 uses a while loop to iterate on, and extract information from the existing Shape

object. This information is used to populate the new GeneralPath object inside a switch

statement, which was deleted from the fragment for brevity.

 while(!theIterator.isDone()){

 //while not done

 theType = theIterator.currentSegment(

 theData);

 //Populate a segment of the new

 // GeneralPath object.

 switch(theType){

 //... code deleted for brevity ...

 }//end switch

 theIterator.next();

 }//end while loop

Figure 10

The three key methods used in this fragment are:

 isDone()

 currentSegment()

 next()

Descriptions of the methods

The invocation of the isDone() method is used to provide the loop control parameter. This

method tests to determine if the iteration is complete. It returns true if all the segments have

been read and returns false otherwise.

Note that a not operator was used to cause the iteration to continue while the iteration is not

done.

A description of the currentSegment() method was given above. Briefly, it uses a return value

and an array parameter to return information about the current segment of the Shape object on

which the iteration is being performed. This information is used to populate a segment in the

new Shape object during each iteration.

According to Sun, the next() method

“Moves the iterator to the next segment of the path forwards along the primary direction

of traversal as long as there are more points in that direction.”

All in all, this is a fairly standard iteration process, not unlike the use of the Enumeration

interface that I discussed in detail in an earlier lesson. If enumeration, or iteration is new to you,

you might want to go back and review the material in that lesson.

Populate the new Shape object

Now it’s time to go back and discuss the switch statement that was deleted from the previous

fragment. Remember, this statement occurs inside the while loop of the previous fragment. In

that fragment, the currentSegment() method is used to extract information from the original

Shape object. That information is used in the following switch statement to populate the new

object that was instantiated outside the while loop.

Figure 11 begins with a repeat of the invocation of the currentSegment() method from the

previous fragment just to get you oriented. Then it picks up with the beginning of the switch

statement.

 theType = theIterator.currentSegment(

 theData);

 switch(theType){

 case PathIterator.SEG_MOVETO :

 System.out.println("SEG_MOVETO");

 newPath.moveTo(theData[0]+1.0f*ds,

 theData[1]+1.0f*ds);

 break;

Figure 11

The switch statement compares the segment type returned by the currentSegment() method

against the five possible segment types. The statement uses the information returned in the array

by the currentSegment() method to populate the new Shape object whenever a match is found.

The code also displays the type of segment on the command-line screen. I will show you the

complete output on the command-line screen following the next segment.

Populate a SEG_MOVETO segment

The code in Figure 11 will be executed whenever the type of segment returned by the

currentSegment() method is SEG_MOVETO. By this, I mean when the int value returned by

the method matches the symbolic constant SEG_MOVETO defined in the PathIterator

interface.

This code invokes the moveTo() method on the new GeneralPath object to store a segment of

that type in the path. The coordinate values passed to the moveTo() method are the coordinate

values extracted from the original Shape object with a one-inch offset in both the horizontal and

vertical directions.

The code also displays the type of the segment on the command-line screen, but this is for

information only, and is not critical to the process.

Command-line screen output

The execution of the switch statement inside the execution of the while loop produces the

following output on the command line screen.

SEG_MOVETO
SEG_LINETO
SEG_LINETO
SEG_LINETO
SEG_CLOSE

You will note that, as expected, this is an exact match for the types of segments that were created

when the original Shape object was created using the methods of the GeneralPath class. Thus,

as mentioned earlier, a Shape object knows about its segment types and coordinate values. It

can provide that information to us for whatever purpose we may need it.

Populate a SEG_LINETO segment

Figure 12 does essentially the same thing as the previous fragment. This code is executed when

there is a match for SEG_LINETO.

 case PathIterator.SEG_LINETO :

 System.out.println("SEG_LINETO");

 newPath.lineTo(theData[0]+1.0f*ds,

 theData[1]+1.0f*ds);

 break;

Figure 12

What about SEG_QUADTO and SEG_CUBICTO

Since I was the person who created the original Shape object that is being replicated here, and

since I knew that the object being replicated did not contain any Bezier curves, I didn’t provide

the ability to support those segment types. However, I did include those types in the switch

statement to make it general in nature, as shown in Figure 13.

 case PathIterator.SEG_QUADTO :

 System.out.println(

 "Not supported here");

 break;

 case PathIterator.SEG_CUBICTO :

 System.out.println(

 "Not supported here");

 break;

Figure 13

Populate a SEG_CLOSE segment

Finally, Figure 14 creates a SEG_CLOSE segment in the new Shape object whenever a

matching segment type is found in the object being replicated.

 case PathIterator.SEG_CLOSE :

 System.out.println("SEG_CLOSE");

 newPath.closePath();

 break;

 }//end switch

Figure 14

And that is the end of the switch statement.

Render the new object in red

Figure 15 sets the drawing color to red, and draws the new object on the Frame object. When

you run this program, you should see the original Shape object appearing as a diamond, drawn in

black, and centered on the origin. The new Shape object, which is an offset replica of the

original object, is drawn in red, one inch down and one inch to the right of the original

object. (Your output may not match the dimensions in inches, depending on actual screen

resolution.)

 g2.setColor(Color.red);

 g2.draw(newPath);

Figure 15

Summary

That brings us to the end of this lesson. In this lesson, I have shown you how to use the

GeneralPath class to create a new Shape object consisting of lines and spaces. I did not show

you how to include Bezier curves in your new object. I plan to do that in a subsequent lesson.

The GeneralPath class was used in this lesson to support the primary objective of the lesson –

learning how to get and use a PathIterator object that represents another object that implements

the Shape interface.

In this lesson, I have shown you

 How to create a simple Shape object with the GeneralPath class, and

 How to extract information from, and replicate that object using the getPathIterator()

method and the PathIterator object that the method returns.

Complete Program Listings

Complete listings of both programs are provided in Figure 16 and Figure 17.

/*GeneralPath01.java 12/12/99
Copyright 1999, R.G.Baldwin

Illustrates use of the GeneralPath class.

Draws a 4-inch by 4-inch Frame on the screen.

Translates the orgin to the center of the Frame.

Draws a pair of X and Y-axes centered on the new origin.

Draws a GeneralPath object on the Frame. The
object is
a diamond whose vertices are at plus and minus
one-half
inch on each of the axes. The vertices are
located at
the N, S, E, and W positions.

Tested using JDK 1.2.2 under WinNT Wkstn 4.0
************************************/
import java.awt.geom.*;
import java.awt.*;
import java.awt.event.*;

class GeneralPath01{
 public static void main(String[] args){
 GUI guiObj = new GUI();
 }//end main
}//end controlling class GeneralPath01

class GUI extends Frame{
 int res;//store screen resolution here
 //default scale, 72 units/inch
 static final int ds = 72;
 //horizonal size = 4 inches
 static final int hSize = 4;
 //vertical size = 4 inches
 static final int vSize = 4;
 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();
 //Set Frame size
 this.setSize(hSize*res,vSize*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 public void windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor

 //Override the paint() method
 public void paint(Graphics g){
 //Downcast the Graphics object to a
 // Graphics2D object
 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on
 // the screen
 // based on actual screen resolution.
 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame
 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis
 g2.draw(new Line2D.Double(
 -1.5*ds,0.0,1.5*ds,0.0));
 //Draw y-axis
 g2.draw(new Line2D.Double(
 0.0,-1.5*ds,0.0,1.5*ds));

 //Use the GeneralPath class to instantiate a
 // diamond
 // object whose vertices are at plus and minus
 // one-half inch on each of the axes. The

 // vertices in the N, S, E, and W positions,
 // centered
 // about the origin.
 GeneralPath thePath = new GeneralPath();
 thePath.moveTo(0.5f*ds,0.0f*ds);
 thePath.lineTo(0.0f*ds,0.5f*ds);
 thePath.lineTo(-0.5f*ds,0.0f*ds);
 thePath.lineTo(0.0f*ds,-0.5f*ds);
 thePath.closePath();

 //Now draw the diamond on the screen
 g2.draw(thePath);

 }//end overridden paint()

}//end class GUI
//==================================//

Figure 16

/*PathIterator01.java 12/12/99
Copyright 1999, R.G.Baldwin

Illustrates use of the GeneralPath class and the
PathIterator class.

Draws a 4-inch by 4-inch Frame on the screen.

Translates the orgin to the center of the Frame.

Draws a pair of X and Y-axes centered on the new origin.

Draws a GeneralPath object on the Frame. The object is
a diamond whose vertices are at plus and minus one-half
inch on each of the axes. The vertices are located at
the N, S, E, and W positions.

Uses getPathIterator() to get a PathIterator on the
GeneralPath (diamond) object.

Extracts information from the PathIterator to populate
another GeneralPath object that is offset by one inch
from the original in both the X and Y directions.

Draws the new GeneralPath object in red.

Tested using JDK 1.2.2 under WinNT Workstation 4.0
***/
import java.awt.geom.*;
import java.awt.*;
import java.awt.event.*;

class PathIterator01{
 public static void main(String[] args){
 GUI guiObj = new GUI();
 }//end main
}//end controlling class PathIterator01

class GUI extends Frame{
 int res;//store screen resolution here
 static final int ds = 72;//default scale, 72 units/inch
 static final int hSize = 4;//horizonal size = 4 inches
 static final int vSize = 4;//vertical size = 4 inches

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();
 //Set Frame size
 this.setSize(hSize*res,vSize*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 public void windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor

 //Override the paint() method
 public void paint(Graphics g){
 //Downcast the Graphics object to a Graphics2D object
 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on the screen
 // based on actual screen resolution.
 g2.scale((double)res/72,(double)res/72);

 //Translate the origin to the center of the Frame
 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis
 g2.draw(new Line2D.Double(-1.5*ds,0.0,1.5*ds,0.0));
 //Draw y-axis
 g2.draw(new Line2D.Double(0.0,-1.5*ds,0.0,1.5*ds));

 //Use the GeneralPath class to instantiate a diamond
 // object whose vertices are at plus and minus
 // one-half inch on each of the axes. The
 // vertices in the N, S, E, and W positions, centered
 // about the origin.
 GeneralPath thePath = new GeneralPath();
 thePath.moveTo(0.5f*ds,0.0f*ds);
 thePath.lineTo(0.0f*ds,0.5f*ds);
 thePath.lineTo(-0.5f*ds,0.0f*ds);
 thePath.lineTo(0.0f*ds,-0.5f*ds);
 thePath.closePath();

 //Now draw the diamond on the screen in black
 g2.draw(thePath);

 //Get a PathIterator object on the diamond
 PathIterator theIterator =
 thePath.getPathIterator(null);
 //Use this array to store segment coordinate data
 float[] theData = new float[6];
 int theType;//store type of segment here

 //Get a new GeneralPath object. Populate it based on
 // coordinates and segment types extracted from the
 // original GeneralPath object but offset the
 // coordinate values by one inch in both X and Y.
 GeneralPath newPath = new GeneralPath();

 //Iterate on the original GeneralPath object and
 // get information to populate the new
 // GeneralPath object.
 while(!theIterator.isDone()){//while not done
 //Get type of segment and coordinate values
 // for the current segment
 theType = theIterator.currentSegment(theData);

 //Process the current segment to populate a new
 // segment of the new GeneralPath object.

 switch(theType){
 case PathIterator.SEG_MOVETO :
 System.out.println("SEG_MOVETO");
 newPath.moveTo(theData[0]+1.0f*ds,
 theData[1]+1.0f*ds);
 break;
 case PathIterator.SEG_LINETO :
 System.out.println("SEG_LINETO");
 newPath.lineTo(theData[0]+1.0f*ds,
 theData[1]+1.0f*ds);
 break;
 case PathIterator.SEG_QUADTO :
 System.out.println("Not supported here");
 //Will illustrate SEG_QUADTO in later lesson
 break;
 case PathIterator.SEG_CUBICTO :
 System.out.println("Not supported here");
 //Will illustrate SEG_CUBICTO in later lesson
 break;
 case PathIterator.SEG_CLOSE :
 System.out.println("SEG_CLOSE");
 newPath.closePath();
 break;
 }//end switch

 //Get the next segment
 theIterator.next();
 }//end while loop

 g2.setColor(Color.red);
 g2.draw(newPath);

 }//end overridden paint()

}//end class GUI
//==================================//

Figure 17

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

mailto:baldwin@austin.cc.tx.us
http://www.geocities.com/Athens/7077/scoop/onjava.html

baldwin@austin.cc.tx.us

-end-

mailto:baldwin@austin.cc.tx.us

