
March 1, 2000

Java 2D Graphics, The Shape Interface, Part 1

Java Programming, Lecture Notes # 308

by Richard G. Baldwin

baldwin@austin.cc.tx.us

 Introduction

 What is a Shape?

 What is a PathIterator Object?

 Geometric Objects Implement Shape

 What Does This Lesson Cover?

 Sample Program

 Summary

 Complete Program Listing

Introduction

In an earlier lesson, I explained that the Graphics2D class extends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and

text layout. Beginning with JDK 1.2, Graphics2D is the fundamental class for rendering two-

dimensional shapes, text and images.

I also explained that without understanding the behavior of other classes and interfaces such as

Shape, AffineTransform, GraphicsConfiguration, PathIterator, and Stroke, it is not possible

to fully understand the inner workings of the Graphics2D class.

This and a subsequent lesson are intended to give you the necessary understanding of the Shape

interface.

What is a Shape?

According to Sun:

“The Shape interface provides definitions

for objects that represent some form of

geometric shape. The Shape is described

by a PathIterator object, which can

express the outline of the Shape as well as

a rule for determining how the outline

divides the 2D plane into interior and

mailto:baldwin@austin.cc.tx.us

exterior points. Each Shape object

provides callbacks to get the bounding box

of the geometry, determine whether points

or rectangles lie partly or entirely within

the interior of the Shape, and retrieve a

PathIterator object that describes the

trajectory path of the Shape outline.”

What is a PathIterator Object?

A subsequent lesson will be dedicated entirely to the PathIterator interface, so I won’t go into

detail on PathIterator in this lesson. For the time being, this is part of what Sun has to say

about PathIterator.

The PathIterator interface provides the

mechanism for objects that implement the

Shape interface to return the geometry of

their boundary by allowing a caller to

retrieve the path of that boundary a

segment at a time.

In other words, PathIterator makes it possible for code in a program to obtain information about

the geometric outline of an object that implements the Shape interface.

Geometric Objects Implement Shape

A shape need not enclose an area

In his book, Java Foundation Classes in a Nutshell, David Flanagan tells us that the Java 2D

definition of a shape does not require the shape to enclose an area. In other words, a Shape

object can represent an open curve. According to Flanagan, if an open curve is passed to a

method that requires a closed curve (such as fill()), the curve is automatically closed by

connecting its end points with a straight line.

Graphics2D methods require Shape parameters

The following methods of the Graphics2D class require an object that implements the Shape

interface as a parameter:

 draw()

 fill()

 clip()

 hit()

I have illustrated the use of the draw() method in previous, and will illustrate the use of the other

methods listed above in subsequent lessons.

In addition, both the Graphics2D class and the AffineTransform class provide methods that

allow us to scale, rotate, translate, and shear objects that implement the Shape interface. I have

illustrated the use of these methods in previous lessons.

Shape is even used with text

The Shape interface even makes it way into the display of text, because the individual characters

can be viewed as Shape objects.

Many geometric classes implement Shape

Java 2D provides a number of classes in the java.awt.geom package that implement the Shape

interface, such as Rectangle2D.Double and Ellipse2D.Double. I have illustrated the use of

some of these classes in previous lessons, and undoubtedly will continue to illustrate them in

subsequent lessons. This lesson illustrates the use of the Line2D.Double, Rectangle2D.Double

and Ellipse2D.Double classes.

According to Java 2D Graphics by Jonathan Knudsen,

“Directly or indirectly, every geometric

class in Java 2D implements the Shape

interface. This means they can all be

passed to Graphic2D’s draw() and paint()

methods.”

Knudsen also points out that every Shape object has an interior and an exterior, and that we can

determine if a point or a rectangle is inside the Shape object.

He goes on to explain that what constitutes “inside” can be very complex for certain types of

complex shapes. There are some special rules, called winding rules that are used to determine if

a point is inside a Shape object. That is another topic that I will defer to a subsequent lesson.

The Area class combines Shape objects

Java 2D also provides an Area class that allows you to create new shapes by combining existing

objects that implement the Shape interface. The Area class supports union, intersection,

subtraction, and exclusive OR of Shape objects. I will defer a detailed discussion of those

capabilities until a subsequent lesson.

GeneralPath class can create custom Shape objects

Another class, named GeneralPath, makes it possible for you to describe a Shape as a sequence

of line segments and curves. I will also defer the discussion of that class until a subsequent

lesson.

What Does This Lesson Cover?

So, having deferred several topics to subsequent lessons, what will I cover in this lesson?

The Shape interface provides four groups of overloaded methods that make it possible to

perform the following tasks:

 Get a bounding box that is guaranteed to enclose a specified Shape object.

 Determine if a specified Shape object completely contains a specified point or rectangle.

 Determine if a specified Shape intersects a specified rectangle

 Get a PathIterator object that can be used to obtain the path that makes up the boundary

of a Shape object.

I will discuss the first three capabilities in this lesson, and defer a discussion of the PathIterator

to a subsequent lesson.

Why should you care about the Shape interface?

You might be saying that you don’t care about doing any of these four things, so why should you

care about the Shape interface. Even if you don’t care about bounding boxes, PathIterator

objects, etc., you still need to know about the Shape interface.

As I explained earlier in this lesson, beginning with JDK 1.2, Graphics2D is the fundamental

class for rendering two-dimensional shapes, text and images. Many of the capabilities

introduced in the Graphics2D class are available only when working with objects that

implement the Shape interface.

Also, as I explained in an earlier lesson, the AffineTransform class is used to transform graphic

coordinate information between user space and device space. Similarly, most of the capabilities

of the AffineTransform class are available only when working with objects that implement the

Shape interface.

Shape interface is “new” to JDK 1.2

Flanagan tells us that even though the Shape interface was first defined in JDK 1.1,

“The interface is so central to Java 2D and

has grown so much since the Java 1.1

version, ... it should generally be

considered to be new in Java 1.2.”

Sample Program

This sample program, named Shape03.java illustrates the use of the Shape interface for

 Getting a bounding box that encloses a Shape object of the class Ellipse2D.Double.

 Determining if the Shape object completely contains a specified rectangle.

 Determining if the Shape intersects a specified rectangle

The Shape object, as well as the bounding rectangle, and three rectangles used in the tests are

displayed in a Frame object in different colors.

Start with a Frame object

The program draws a four-inch by four-inch Frame on the screen. It translates the origin to the

center of the Frame. Then it draws a pair of X and Y-axes centered on the new origin.

This discussion of dimensions in inches on

the screen depends on the method named

getScreenResolution() returning the correct

value. However, the getScreenResolution()

method always seems to return 120 on my

computer regardless of the actual screen

resolution settings.

After this, it draws a black circle with a diameter of one inch, centered on the new origin. Then

it gets the bounding rectangle for the circle and draws it in red.

After this, it draws a green half-inch square completely inside the circle. Then it draws a blue

half-inch square partially inside and partially outside the circle. Finally, it draws a magenta half-

inch square completely outside the circle.

Test for contains() and intersects()

Then it tests the bounding rectangle and the three half-inch squares to determine if they are

contained in the circle. It displays the results on the standard output device.

Finally, it tests the bounding rectangle and the three half-inch squares to determine if they

intersect the circle, and displays the results on the standard output device.

In addition to drawing the circle and the squares in the Frame, the following output is presented

on the command-line screen:

theCircle contains theBoundingBox: false
theCircle contains theInsideBox: true
theCircle contains theIntersectingBox: false
theCircle contains theOutsideBox: false

theCircle intersects theBoundingBox: true
theCircle intersects theInsideBox: true
theCircle intersects theIntersectingBox: true
theCircle intersects theOutsideBox: false

The program was tested using JDK 1.2.2 under WinNT Workstation 4.0.

Will discuss in fragments

As is my practice, I will discuss the program in fragments. The entire program is presented

intact at the end of the lesson for your review.

The controlling class and the constructor for the GUI class are almost identical to similar code

that I have discussed in earlier lessons. Therefore, I won’t discuss that code in this lesson. You

might want to take a quick look at the complete listing at the end of the lesson. If you see

something there that you don’t understand, you should go back and review the previous lessons

in this series on the Java 2D API.

Overridden paint() method

All of the interesting action in this program takes place in the overridden paint() method. Figure

1 shows the beginning of that method, including a reminder that it is necessary to downcast the

incoming Graphics reference in order to gain access to the capabilities of the Graphics2D class.

 public void paint(Graphics g){

 Graphics2D g2 = (Graphics2D)g;

Figure 1

Update the AffineTransform object

Figure 2 updates the AffineTransform object in the Graphics2D object to:

1. Compensate for the difference in actual screen resolution and assumed screen resolution

of 72 units per inch.

2. Translate the origin to the center of the Frame object.

 g2.scale((double)res/72,(double)res/72);

 g2.translate((hSize/2)*ds,(vSize/2)*ds);

Figure 2

If you don’t understand this fragment, you should go back and review an earlier lesson that

discussed Affine transforms in detail.

Draw the axes

Figure 3 draws a horizontal line and a vertical line through the origin to represent the X and Y-

axes in the 2D plane. This should be pretty intuitive. If it isn’t clear what is happening here, you

should take a look at the Sun documentation, particularly with respect to the parameters passed

to the constructor for the Line2D.Double class.

//Draw x-axis

g2.draw(new Line2D.Double(

 -1.5*ds,0.0,1.5*ds,0.0));

//Draw y-axis

g2.draw(new Line2D.Double(

 0.0,-1.5*ds,0.0,1.5*ds));

Figure 3

Instantiate a circle object

Figure 4 instantiates a circle object as an object of the Ellipse2D.Double class. Again, you

might want to take a look at the Sun documentation, particularly with regard to the parameters

being passed to the constructor.

 Ellipse2D.Double theCircle = new

 Ellipse2D.Double(

 -0.5*ds, -0.5*ds, 1.0*ds, 1.0*ds);

Figure 4

When creating an object of this class, the parameters that are passed are actually the location,

width, and height of a bounding rectangle for the ellipse. If the rectangle is a square (as in this

case), the ellipse becomes a circle. If the rectangle is centered on the origin (as in this case), the

circle is also centered on the origin.

Instantiates but doesn’t render

Note that this fragment simply instantiates the object of the class Ellipse2D.Double. This

fragment doesn’t actually render that object onto the screen. This is an important point because

we sometimes tend to overlook the difference between instantiating a Shape object and passing

that object to a method of the Graphics2D class to actually render it on the output device.

Rendering the circle

Figure 5 passes the reference to the Shape (circle) object to the draw() method to have it

rendered on the output device. Recall that the rendering process implements the current state of

the AffineTransform object.

 g2.draw(theCircle);

Figure 5

In this case, the transform provides scaling to convert from user space units to inches on the

screen.

The transform also translates the origin to the center of the Frame object. Therefore, the circle

is drawn centered in the Frame object with a diameter of one inch.

The circle is drawn in the default drawing color, which is black.

If you manually resize the Frame, the size and location of the circle doesn’t change.

Get the bounding box

Figure 6 invokes the getBounds2D() method of the Shape interface to get the bounding

rectangle for the circle. Since the Shape is a circle, the bounding rectangle is actually a square

whose horizontal and vertical dimensions are the same the diameter of the circle.

 Rectangle2D theBoundingBox =

 theCircle.getBounds2D();

Figure 6

A reference to the bounding box is saved in the reference variable named theBoundingBox

because it will be needed later.

Set the Color property

The Graphics2D object has several properties that are used to control certain aspects of the

rendering process. One of those properties is Color. This property defines the actual drawing

color that is used when the draw() method is invoked and passed a reference to a Shape object

as a parameter.

Figure 7 uses a standard setter method to change the drawing color to red. Then it invokes the

draw() method to draw theBoundingBox in red.

 g2.setColor(Color.red);//change drawing color

 g2.draw(theBoundingBox);

Figure 7

The test boxes

The next fragment instantiates three objects of the class Rectangle2D.Double that will be used

later to illustrate the contains() method and the intersects() method of the Shape interface.

The contains() method

Here is part of what Sun has to say about the contains() method:

“Tests if the interior of the Shape entirely

contains the specified rectangular area. All

coordinates that lie inside the rectangular

area must lie within the Shape for the

entire rectangular area to be considered

contained within the Shape.”

Sun goes on to explain some cases when this method might return false when the answer is really

true due to arithmetic accuracy issues. If this is of interest to you, take a look at the Sun

documentation.

The intersects() method

Here is part of what Sun has to say about the intersects() method:

“Tests if the interior of the Shape

intersects the interior of a specified

rectangular area. The rectangular area is

considered to intersect the Shape if any

point is contained in both the interior of the

Shape and the specified rectangular area.”

Again, Sun provides some caveats having to do with arithmetic accuracy that may be of interest

to you as well. If so, refer to the Sun documentation.

Instantiate the test boxes

Figure 8 instantiates three boxes. Given the coordinates passed as parameters to the constructor,

one box is clearly contained in the circle. One box intersects the circle, and the third box is

clearly outside the circle.

 Rectangle2D.Double theInsideBox = new

 Rectangle2D.Double(-0.25*ds, -0.25*ds,

 0.5*ds, 0.5*ds);

 Rectangle2D.Double theIntersectingBox = new

 Rectangle2D.Double(0.3*ds, 0.3*ds,

 0.5*ds, 0.5*ds);

 Rectangle2D.Double theOutsideBox = new

 Rectangle2D.Double(-1.25*ds, -1.25*ds,

 0.5*ds, 0.5*ds);

Figure 8

Draw the boxes in the Frame

Figure 9 draws the three boxes in colors of green, blue, and magenta.

 g2.setColor(Color.green);

 g2.draw(theInsideBox);//theInsideBox is green

 g2.setColor(Color.blue);

 g2.draw(theIntersectingBox);//blue

 g2.setColor(Color.magenta);

 g2.draw(theOutsideBox);//magenta

Figure 9

Perform the contains() test and display results

Figure 10 invokes the contains() method on theCircle to determine if theBoundingBox is

contained in the circle. If so, the method returns true. Otherwise, the method returns false.

 //Now perform the tests and display the results

 // on the command-line screen.

 System.out.println(

 "theCircle contains theBoundingBox: "

 + theCircle.contains(theBoundingBox));

Figure 10

The return value is formatted along with some explanatory text and displayed on the standard

output device. In this case, the method returns false because theBoundingBox is not contained

in theCircle.

I am going to skip over three other almost identical statements that test the other three boxes to

see if they are contained in the circle. You can view these statements in the complete listing of

the program at the end of the lesson.

Perform the intersects() test and display results

Figure 11 invokes the intersects() method on theCircle to determine if theBoundingBox

intersects the circle.

 System.out.println(

 "theCircle intersects theBoundingBox: "

 + theCircle.intersects(theBoundingBox));

Figure 11

In this case, the screen output was

theCircle intersects theBoundingBox: true

This means that the bounding box has some coordinate values in common with the

circle. Because of the symmetry involved, it is probably reasonable to think that there are four

points on the circle that are common with the bounding box.

Again, I am going to skip over three other almost identical statements that test the other three

boxes to see if they intersect the circle. You can view those statements at the end of the lesson.

 Summary

That brings us to the end of this lesson. We now know how to use three of the four primary

capabilities of the Shape interface: getBounds(), contains(), and intersects().

I will discuss the fourth primary capability, getPathIterator() in a subsequent lesson.

Complete Program Listing

A complete listing of the program is provided in Figure 12.

/*Shape03.java 12/12/99
 Copyright 1999, R.G.Baldwin

 Illustrates use of the Shape interface.

 Draws a 4-inch by 4-inch Frame on the screen.

 Translates the origin to the center of the Frame.

 Draws a pair of X and Y-axes centered on the new origin.

 Draws a black circle on the screen with a diameter of
 one inch centered at the origin.

 Gets the bounding box for the circle and draws it
 in red.

 Draws a one-half inch green square completely inside
 of the circle.

 Draws a one-half inch blue square partial inside and
 partially outside the circle.

 Draws a one-half magenta square completely outside the
 circle.

 Tests the bounding box and the three one-half inch
 squares to determine if they are contained in the circle.
 Displays the results on the command-line screen.

 Tests the bounding box and the three one-half inch
 squares to determine if they intersect the circle.
 Displays the results on the command-line screen.

 The program produces the following output:

 theCircle contains theBoundingBox: false
 theCircle contains theInsideBox: true
 theCircle contains theIntersectingBox: false
 theCircle contains theOutsideBox: false

 theCircle intersects theBoundingBox: true
 theCircle intersects theInsideBox: true
 theCircle intersects theIntersectingBox: true
 theCircle intersects theOutsideBox: false

 Tested using JDK 1.2.2 under WinNT Workstation 4.0
 **************************************/
 import java.awt.geom.*;
 import java.awt.*;
 import java.awt.event.*;

 class Shape03{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
 }//end controlling class Shape03

 class GUI extends Frame{
 int res;//store screen resolution here
 staticfinalint ds = 72;//default scale, 72 units/inch
 staticfinalint hSize = 4;//horizonal size = 4 inches
 staticfinalint vSize = 4;//vertical size = 4 inches

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();

 //Set Frame size
 this.setSize(hSize*res,vSize*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor

 //Override the paint() method
 publicvoid paint(Graphics g){
 //Downcast the Graphics object to a Graphics2D object
 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on the screen
 // based on actual screen resolution.
 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame
 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis
 g2.draw(new Line2D.Double(-1.5*ds,0.0,1.5*ds,0.0));
 //Draw y-axis
 g2.draw(new Line2D.Double(0.0,-1.5*ds,0.0,1.5*ds));

 //Define a one-inch diameter circle centered about
 // its origin. Note that Ellipse2D implements Shape
 Ellipse2D.Double theCircle = new

 Ellipse2D.Double(-0.5*ds, -0.5*ds, 1.0*ds, 1.0*ds);

 //Draw theCircle in the Frame in the default
 // drawing color, black
 g2.draw(theCircle);

 //Get bounding box of theCircle
 Rectangle2D theBoundingBox =
 theCircle.getBounds2D();
 g2.setColor(Color.red);//change the drawing color
 //Draw the bounding box in the new color
 g2.draw(theBoundingBox);

 //Create boxes to test for contains and intersects
 Rectangle2D.Double theInsideBox = new
 Rectangle2D.Double(-0.25*ds, -0.25*ds,
 0.5*ds, 0.5*ds);
 Rectangle2D.Double theIntersectingBox = new
 Rectangle2D.Double(0.3*ds, 0.3*ds,
 0.5*ds, 0.5*ds);
 Rectangle2D.Double theOutsideBox = new
 Rectangle2D.Double(-1.25*ds, -1.25*ds,
 0.5*ds, 0.5*ds);

 //Draw the test boxes in new colors
 g2.setColor(Color.green);
 g2.draw(theInsideBox);//theInsideBox is green
 g2.setColor(Color.blue);
 g2.draw(theIntersectingBox);//theIntersectingBox blue
 g2.setColor(Color.magenta);
 g2.draw(theOutsideBox);//theOutsideBox is magenta

 //Now perform the tests and display the results
 // on the command-line screen.
 System.out.println(
 "theCircle contains theBoundingBox: "
 + theCircle.contains(theBoundingBox));
 System.out.println("theCircle contains theInsideBox: "
 + theCircle.contains(theInsideBox));
 System.out.println(
 "theCircle contains theIntersectingBox: "
 + theCircle.contains(theIntersectingBox));
 System.out.println("theCircle contains theOutsideBox: "
 + theCircle.contains(theOutsideBox));
 System.out.println();//blank line
 System.out.println(
 "theCircle intersects theBoundingBox: "
 + theCircle.intersects(theBoundingBox));
 System.out.println(
 "theCircle intersects theInsideBox: "
 + theCircle.intersects(theInsideBox));
 System.out.println(
 "theCircle intersects theIntersectingBox: "
 + theCircle.intersects(theIntersectingBox));
 System.out.println(
 "theCircle intersects theOutsideBox: "
 + theCircle.intersects(theOutsideBox));

 }//end overridden paint()

 }//end class GUI
 //=================================//

Figure 12

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin@austin.cc.tx.us

-end-

mailto:baldwin@austin.cc.tx.us
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin@austin.cc.tx.us

