
February 9, 2000

Java 2D Graphics, the Graphics2D Class

Java Programming, Lecture Notes # 304

by Richard G. Baldwin

baldwin@austin.cc.tx.us

 Introduction

 Coordinates

 David Flanagan to the Rescue!

 The Rendering Process

 What is a Shape?

 Types of Rendering Operations

 The Stroke Interface

 Shape Operations

 Text Operations

 Image Operations

 Rendering Attributes

 Additional Details and Compatibility Issues

 Sample Programs

o Program Graphics2D01.java

o Program Graphics2D02.java

o Complete Program Listings

Introduction

The Graphics2D class, which was released with JDK 1.2, extends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and

text layout. Beginning with JDK 1.2, this is the fundamental class for rendering two-dimensional

shapes, text and images.

Because it extends the Graphics class, the capabilities of the Graphics class that existed in

earlier versions of the JDK continue to be available.

Unfortunately, without understanding the behavior of other classes and interfaces such as Shape,

AffineTransform, GraphicsConfiguration, PathIterator, and Stroke, it is not possible to fully

understand the inner workings of the Graphics2D class.

Setter methods

The manner in which Graphics2D renders shapes, text, and images depends on the current

values of several properties of the Graphics2D object. The values of these properties are

controlled using standard setter methods of the class. This and subsequent lessons will discuss

the following methods that are used to set the properties of the object.

 setComposite()

 setPaint()

 setRenderingHint()

 setStroke()

 setTransform()

This lesson provides an overview of Graphics2D and discusses transforms. It illustrates the use

of the setTransform() method for setting an Affine transform.

Information about the other classes listed above, and additional information about Graphics2D

will be provided in subsequent lessons.

Coordinates

A system of device-independent coordinates (called User Space) is used to pass all coordinate

information to the methods of a Graphics2D object. An AffineTransform object (see definition

below) is contained in the Graphics2D object as part of its state. This AffineTransform object

defines how to convert coordinates from user space to device-dependent coordinates in Device

Space.

What is an Affine transform?

According to Sun:

The AffineTransform class represents a

2D Affine transform that performs a

linear mapping from 2D coordinates to

other 2D coordinates that preserves the

"straightness" and "parallelness" of lines.

Affine transformations can be

constructed using sequences of

translations, scales, flips, rotations, and

shears.

 The transformation of coordinate information from User Space to Device Space may consist

either of

 Transformation to a space representing individual pixels on a device of known resolution,

or

 Transformation into a graphics metafile for playback on a device of unknown physical

resolution at a later time.

 In the latter case, the Graphics2D transform is set up to transform user coordinates to a virtual

device space that approximates the expected resolution of the target device. If the estimate

proves to be incorrect, it might be necessary to apply further transformations at playback time.

All Graphics2D methods take user space coordinates.

GraphicsConfiguration object

Every Graphics2D object is associated with a target that defines where rendering takes place

(such as the screen or a printer), and the same rendering target is used throughout the life of a

Graphics2D object. A GraphicsConfiguration object defines the characteristics of the

rendering target, such as pixel format and resolution.

 According to Sun:

The GraphicsConfiguration class

describes the characteristics of a graphics

destination such as a printer or

monitor. There can be many

GraphicsConfiguration objects

associated with a single graphics device.

For example, on X11 windowing

systems, each visual is a different

GraphicsConfiguration. On PCs and

Macintoshes, the different screen

resolution/color resolution combinations

would be different

GraphicsConfiguration objects.

According to the Sun documentation, when the Graphics2D object is created, a default

transform for the target of the Graphics2D (a Component or Image) is specified by the

GraphicsConfiguration. This default transform is used to map the user space coordinate

system to screen or printer device coordinates. The origin maps to the upper left hand corner of

the target region of the device. Increasing X coordinates extend to the right and increasing Y

coordinates extend downward.

What, me worry?

According to Java 2D Graphics, by Jonathan Knudsen,

“In general, you don’t ever have to worry about the details of a particular device. Your

applications live in User Space. As long as you remember that User Space, by default, has 72

coordinates per inch, Java 2D will ensure that everything is the right size on your output

devices.”

In other words, it seems that Sun and Knudsen are saying that if I create a square whose

dimensions are 72 units by 72 units, that square will be rendered on my output device as a square

with dimensions of one inch on each side. The idea is to stop thinking about dimensions in terms

of pixels and to start thinking of dimensions in User Space with 72 units per inch.

Something isn’t working!

While the above may be true of output devices such as printers, I don’t find it to be true for

screen output. For example, the computer that I am working on right now reports a screen

resolution of 120 pixels per inch. If I draw a 72x72 square on the screen using the Rectangle2D

class, the square is rendered at a size of about 0.6 inch on each side. In other words, the square is

rendered on the screen as a square that is 72 pixels on each side, and not one inch on each side.

Is there a workaround?

Obviously I can use the getScreenResolution() method of the Toolkit class (that returns the

screen resolution in pixels per inch) to scale my coordinate values, but the requirement to do that

doesn’t seem to be consistent with the above discussion. (A sample program later in this tutorial

lesson shows how to do that.)

At least I could do that if the

getScreenResolution() method would

return the correct value for actual screen

resolution. As it turns out, this method

always returns 120 on my machine no

matter what the actual resolution is. This

value is fairly close for a screen size of

1280 by 1024, but isn’t even close for

other screen settings.

I am going to assume that this is a bug,

or at least an incompatibility between

JDK 1.2.2, WinNT Workstation 4.0, and

the driver software for my screen, and

proceed through these lessons as if the

method getScreenResolution() returns

the correct value. Hopefully, someday it

will.

By the way, the method getScreenSize()

of the Toolkit class does return the

correct values for total horizontal and

vertical size in pixels.

Also, I can define and set a modified AffineTransform object that compensates for the

difference in the actual screen resolution and the assumed default screen resolution of 72 pixels

per inch. Then I can forget about pixels and think in terms of User Space coordinates with 72

units per inch. This also doesn’t seem to be consistent with the explanation given earlier because

it still requires me to deal explicitly with actual screen resolution. (Another sample program

later in this lesson shows how to do this as well.)

David Flanagan to the Rescue!

Just when I was beginning to feel distraught because my experience wasn’t matching what Sun

and Knudsen seemed to be saying, one of my favorite authors, David Flanagan came to the

rescue. In Java Foundation Classes in a Nutshell, Flanagan tells us,

“When drawing to a screen or an off-screen image, X and Y coordinates are measured in

pixels. When drawing to a printer or other high-resolution device, however, X and Y coordinates

are measured in points instead of pixels (and there are 72 points in one inch).”

Flanagan goes on to tell us

“By default, when drawing to a screen or image, user space is the same as device

space. However, the Graphics2D class defines methods that allow you to trivially modify the

default coordinate system... By default, when drawing to the screen, one unit in user space

corresponds to one pixel in device space. The scale() method changes this. If you scale the

coordinate system by a factor of 10, one unit of user space corresponds to 10 pixels in device

space...”

A new AffineTransform object

Although the sample programs in this lesson don’t make use of the scale() method as described

by Flanagan, one of the programs does take a similar approach by creating a new

AffineTransform object to provide the necessary scaling from user space to device space on the

screen.

On a related subject, in the same section, Flanagan discusses how Graphics2D provides

improved graphics capability for high-resolution devices, such as printers, by allowing us to

specify coordinate values as either float or double, rather than being required to specify them as

integers, as has been the case prior to the release of Graphics2D.

Flanagan has published another excellent book in Java Foundation Classes in a Nutshell, and I

highly recommend it.

The Rendering Process

According to the Sun documentation, the rendering process consists of the following four steps

that are controlled by the Graphics2D rendering attributes:

 Determine what to render.

 Constrain the rendering operation to the current Clip (see below).

 Determine what colors to render.

 Apply the colors to the destination drawing surface using the current Composite attribute

in the Graphics2D context.

The Clip refers to a defined region outside of which nothing is drawn. Additional information

from Sun about the Clip follows:

The Clip is specified by a Shape in user

space and is controlled by the program

using the various clip manipulation

methods of Graphics and Graphics2D.

This user clip is transformed into device

space by the current Transform and

combined with the device clip, which is

defined by the visibility of windows and

device extents. The combination of the

user clip and device clip defines the

composite clip, which determines the

final clipping region. The user clip is not

modified by the rendering system to

reflect the resulting composite clip.

The Composite attribute defines how the colors of the new item are combined with the existing

colors in the location where the item is to be rendered. There are a variety of choices here that I

will discuss in a subsequent lesson. For example, this is where you can control the transparency

to cause the new item to completely cover an existing item, or to allow the pixels of an existing

item to partially show through the new item being rendered at that location.

What is a Shape?

I will have more to say about the Shape interface in a subsequent lesson. However, for the time

being, the following information should suffice. According to Sun:

The Shape interface provides definitions

for objects that represent some form of

geometric shape. The Shape is described

by a PathIterator object, which can

express the outline of the Shape as well as

a rule for determining how the outline

divides the 2D plane into interior and

exterior points. Each Shape object

provides callbacks to get the bounding box

of the geometry, determine whether points

or rectangles lie partly or entirely within

the interior of the Shape, and retrieve a

PathIterator object that describes the

trajectory path of the Shape outline.

The Shape interface is implemented by the following classes (and possibly others as

well). These are classes from which geometric objects can be instantiated: Polygon,

RectangularShape, Rectangle, Line2D, CubicCurve2D, Area, GeneralPath, and

QuadCurve2D.

Other geometric classes, such as Rectangle2D extend these geometric classes, thus leading to

other classes that implement the Shape interface indirectly. The bottom line is that the Shape

interface completely permeates the Java 2D Graphics API.

Types of Rendering Operations

According to Sun, there are three types of rendering operations:

 Shape operations

 Text operations

 Image operations

Each of these types will be discussed briefly in the following sections. (More detailed

discussions will be provided in subsequent lessons.) However, before getting into the operations,

it will be necessary to provide some information about the Stroke interface.

The Stroke Interface

This is what Sun has to say about the Stroke interface.

The Stroke interface allows a Graphics2D

object to obtain a Shape that is the

decorated outline, or stylistic

representation of the outline, of the

specified Shape. Stroking a Shape is like

tracing its outline with a marking pen of

the appropriate size and shape. The area

where the pen would place ink is the area

enclosed by the outline Shape.

The methods of the Graphics2D interface

that use the outline Shape returned by a

Stroke object include draw and any other

methods that are implemented in terms of

that method, such as drawLine, drawRect,

drawRoundRect, drawOval, drawArc,

drawPolyline, and drawPolygon.

You need to read this very carefully to make sure that you understand it. What this says to me is

that the Stroke interface is used to produce a Shape that forms the outline of another Shape.

A simple example

For example, consider tracing the complete outline of a star, on a piece of tracing paper, using a

wide marking pen. The drawing that you produce on the tracing paper can itself be considered to

be a shape, consisting of a pair of (approximately) parallel lines,

 whose color is the same as the color of the ink in the pen,

 which connect at their ends to form two closed, non-intersecting contours, and

 which are filled in between with the color of the ink in the marking pen.

At least, I think that is what this means.

Shape Operations

Rendering operations of the Shape variety consist briefly of the following steps:

 If the rendering operation is a draw(Shape) operation, create a new Shape object that

represents the outline of the Shape being rendered.

 Transform the new Shape from user space to device space using the current Transform

in the Graphics2D context.

 Extract the outline of the Shape using the getPathIterator() method of the Shape

interface. This returns a PathIterator object that iterates along the boundary of the

Shape.

 In those cases where the Graphics2D object can’t handle the curved segments that the

PathIterator object returns, an alternative getPathIterator() method of Shape, which

redefines the shape as a series of straight line segments, can be used.

 Query the current Paint in the Graphics2D context for a PaintContext, which specifies

the colors to render in device space.

I will be discussing PathIterator, Paint, and PaintContext in a subsequent lesson.

Text Operations

Rendering operations of the Text variety consist briefly of the following steps:

 Determine the set of glyphs required to render the indicated String. There are several

possibilities here that I will discuss in subsequent lessons.

 Query the current Font to obtain outlines for the indicated glyphs. These outlines are

treated as shapes in user space relative to the position of each glyph that was determined

in step 1.

 Fill the character outlines as indicated above under Shape operations.

 Query the current Paint for a PaintContext, which specifies the colors to render in

device space.

That brings us to the third type of rendering operation, which is an Image operation.

Image Operations

Rendering operations of the Image variety consist briefly of the following steps:

 Get the region of interest, which is defined by the bounding box of the source Image.

This bounding box is specified in Image Space, which is the Image object's local

coordinate system.

 Use the AffineTransform that is passed to drawImage(Image, AffineTransform,

ImageObserver) to transform the bounding box from image space to user space. If no

AffineTransform is supplied, treat the bounding box as if it is already in user space.

 Transform the bounding box of the source Image from user space into device space using

the current Transform.

 Use the Image object, sampled according to the source to destination coordinate mapping

specified by the current Transform and the optional image transform to determine what

colors to render

I will have a lot more to say about images in subsequent lessons.

Rendering Attributes

As the author of the program, you have control over a number of rendering attributes. The

default rendering attributes are given below:

 Paint: The color of the Component.

 Font: The Font of the Component.

 Stroke: A square pen with a line width of 1, no dashing, miter segment joins and square

end caps (will provide more information in subsequent lessons).

 Transform: The getDefaultTransform for the GraphicsConfiguration of the

Component.

 Composite: The AlphaComposite.SRC_OVER rule.

 Clip: No rendering Clip, the output is clipped to the Component.

I am providing this information here simply as a very brief introduction to the topic of rendering

attributes. I will have much more to say about this topic in subsequent lessons.

Additional Details and Compatibility Issues

There is a great deal more detailed, and sometimes complex information involved in a complete

understanding of the Graphics2D class, particularly with respect to compatibility issues between

Graphics2D and legacy code written under the earlier JDK 1.1. While I will be covering many

aspects of Graphics2D in subsequent lessons, I won’t spend much time dealing with

compatibility issues and legacy code. You are encouraged to visit the Sun documentation for

information on compatibility issues.

Sample Programs

I don’t have the final answers to the apparent ambiguity surrounding the automatic

transformation from user space to device space with respect to screen coordinates. However, I

can show you a couple of ways to write code that will deal with the required

transformation. Two programs follow that contain this information.

Program Graphics2D01.java

This program illustrates the use of the Graphics2D class and the Rectangle2D class. The screen

width, screen height, and screen resolution are obtained by the program and displayed on the

screen following the command line. For the particular computer that I am using at the time of

this writing, the screen output is:

120 pixels per inch
1280 pixels wide

1024 pixels high

This program should run successfully on your computer also, except that you may get different

values for the resolution, width, and height of the screen.

The program produces a Frame object on the screen that is two inches on each side. The screen

resolution (in pixels per inch) is used to establish the size of the Frame object in inches. In

addition, the screen resolution is used to draw a square that is one inch on each side, centered in

the Frame.

This program is structured to make it as easy to follow as possible (For the most part, I have tried

to avoid the use of cryptic constructs such as Inner Classes). I will break this program up and

discuss it in fragments. A complete listing of the program is provided at the end of the lesson.

The controlling class

Figure 1 shows the import directives and the entire controlling class. As you can see, the main()

method in the controlling class does nothing but instantiate an object of another class named

GUI. All of the action occurs in the GUI class.

/*Graphics2D01.java 12/12/99

Copyright 1999, R.G.Baldwin

Tested using JDK 1.2.2 under WinNT Workstation 4.0

**************************************/

import java.awt.geom.*;

import java.awt.*;

import java.awt.event.*;

class Graphics2D01{

 publicstaticvoid main(String[] args){

 GUI guiObj = new GUI();

 }//end main

}//end controlling class Graphics2D01

Figure 1

The GUI class

Figure 2 shows the beginning of the GUI class. Note that this class extends the Frame

class. This is necessary so that I can override the paint() method to make it possible to use a

Graphics2D object to render the desired graphics on the screen.

class GUI extends Frame{

 int res;//store screen resolution here

 int width;//store screen width here

 int height;//store screen height here

Figure 2

This class declares three instance variables that are later used to store information about the

resolution, width, and height of the computer screen.

The constructor for the GUI class

Figure 3 shows the beginning of the constructor including the code used to get and display the

resolution, width, and height of the computer on which the program is executing. Hopefully this

is “old stuff” to you by now, because it really has nothing to do with the Java 2D Graphics API.

 GUI(){//constructor

 //Get screen resolution, width, and height

 res = Toolkit.getDefaultToolkit().

 getScreenResolution();

 width = Toolkit.getDefaultToolkit().

 getScreenSize().width;

 height = Toolkit.getDefaultToolkit().

 getScreenSize().height;

 //Display screen resolution,

 // width, and height

 System.out.println(res + " pixels per inch");

 System.out.println(width + " pixels wide");

 System.out.println(height + " pixels high");

Figure 3

Using screen resolution data

Figure 4 continues the constructor and shows the use of the screen resolution information to

cause the size of the Frame object to be two inches on each side. It also causes the Frame to

become visible, and places a title in the title bar on the Frame.

 //Set Frame size to two-inch by two-inch

 this.setSize(2*res,2*res);

 this.setVisible(true);

 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.

 this.addWindowListener(new WindowAdapter(){

 publicvoid windowClosing(WindowEvent e){

 System.exit(0);}});

 }//end constructor

Figure 4

I know that I promised to avoid cryptic code, but I couldn’t resist the use of an anonymous Inner

Class to create and register a Listener object to terminate the program when the user clicks the

close button on the top of the Frame. This is a very standard use of anonymous Inner Classes,

and hopefully you know all about this sort of thing by this point in your Java studies.

Finally, the Graphics2D class

Finally (thanks for your patience), I am going to talk about Graphics2D. The following code

fragment shows the beginning of a paint() method that is overridden to draw a square, one inch

on each side, which is centered in the Frame object. Note that, as was the case in JDK 1.1, the

overridden paint() method always receives a reference to an object of the class Graphics. Thus,

for backward compatibility, all of the methods of the Graphics class are still available.

Downcast is required

However, the Graphics2D class extends the Graphics class, and in order to gain access to the

new capabilities of the Graphics2D class, it is necessary to downcast the incoming reference to

Graphics2D as shown in Figure 5.

 public void paint(Graphics g){

 Graphics2D g2 = (Graphics2D)g;

Figure 5

Invoking the draw(Shape) method

Having downcast the reference to Graphics2D, I can now invoke the draw(Shape) method of

the Graphics2D class on that reference. Invoking this method strokes the outline of the Shape

using the settings of the current Graphics2D context. The rendering attributes that are applied

include the Clip, Transform, Paint, Composite and Stroke attributes. I will have more to say

about these attributes in subsequent lessons.

Figure 6 instantiates and draws an object of the Rectangle2D class that is centered in the Frame

object. The size of the Rectangle2D object is one inch on each side. The rectangle is centered

in the Frame by placing its upper left-hand corner at a position that is one-half inch to the right

and one-half inch below the upper left-hand corner of the Frame.

 g2.draw(new Rectangle2D.Double(

 res*0.5,res*0.5,res*1.0,res*1.0));

 }//end overridden paint()

}//end class GUI

Figure 6

Actually this is a Rectangle2D.Double object

Note that the actual rectangle object is instantiated from the Rectangle2D.Double class. If you

are not familiar with this terminology, see the first lesson in this series on the Java 2D Graphics

API for an explanation of just what this means.

Note also that the screen resolution in pixels per inch is used in the expressions that convert the

dimensions in inches to dimensions in pixels for drawing on the screen. Thus, although the

draw() method is new to the 2D API, the sizing and positioning of the rectangle does not use the

new features of the 2D API. This same approach can be used with JDK 1.1 to size and locate an

object in screen space.

The next sample program will make more significant use of the new features of the 2D API.

Program Graphics2D02.java

As with the previous program, this program illustrates the use of the Graphics2D class and the

Rectangle2D class. However, unlike the previous program, this program also illustrates the use

of the AffineTransform class.

Compensating for actual screen resolution

A newly instantiated object of the AffineTransform class is used to compensate for the

difference in actual screen resolution on my computer (120 pixels per inch) and the default

screen resolution (72 pixels per inch) used the 2D API.

As before, this program uses the actual screen resolution to place a Frame object on the screen

that is two inches on each side. It then uses the AffineTransform object mentioned above to

draw a square that is one inch on each side, centered in the Frame.

The drawing of the square inside the Frame is based on inches scaled by the default resolution

used by the 2D API of 72 pixels per inch (or 72 printer points per inch). The resulting square is

scaled by the AffineTransform that compensates for the difference in actual screen resolution

and the default resolution to produce a square that is one inch on each side.

As usual, I will discuss the program in fragments. A complete listing of the program is provided

at the end of the lesson.

The entire controlling class plus some

Figure 7 contains the entire controlling class, along with the constructor for the GUI class. This

code is essentially the same as in the previous program, so I won’t discuss it further.

/*Graphics2D02.java 12/12/99

Copyright 1999, R.G.Baldwin

Tested using JDK 1.2.2 under WinNT Workstation 4.0

**************************************/

import java.awt.geom.*;

import java.awt.*;

import java.awt.event.*;

class Graphics2D02{

 publicstaticvoid main(String[] args){

 GUI guiObj = new GUI();

 }//end main

}//end controlling class Graphics2D02

class GUI extends Frame{

 int res;//store screen resolution here

 GUI(){//constructor

 //Get screen resolution

 res = Toolkit.getDefaultToolkit().

 getScreenResolution();

 System.out.println(res + " pixels per inch");

 //Set Frame size to two-inches by two-inches

 this.setSize(2*res,2*res);

 this.setVisible(true);

 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.

 this.addWindowListener(new WindowAdapter(){

 publicvoid windowClosing(WindowEvent e){

 System.exit(0);}});

 }//end constructor

Figure 7

Overridden paint() method

Figure 8 shows the overridden paint() method in the GUI class. As before, this fragment

downcasts the incoming reference to type Graphics2D to provide access to the new features of

the Graphics2D class.

 publicvoid paint(Graphics g){

 Graphics2D g2 = (Graphics2D)g;

Figure 8

The next fragment is where the differences begin to show up between this program and the

previous program.

Using the setTransform() method

The setTransform() method of the Graphics2D class can be used to set the transform that is

used to transform from user space to device space. This method requires a reference to an object

of the AffineTransform class.

If you know about matrix algebra, you can use any of several overloaded constructors to

instantiate an AffineTransform objects to accomplish different kinds of linear transforms.

Even if you don’t know about matrix algebra, certain specialized AffineTransform objects are

relatively easy to produce.

Factory methods of the AffineTransform class

The AffineTransform class provides several static factory methods that can be used to produce

transform objects. Some of them are listed below. These methods each return an instance of the

AffineTransform class designed to perform a specific type of transform (rotate, scale, shear, and

translate). I will have a lot more to say about these transforms in subsequent lessons.

 getRotateInstance(double theta)

 getScaleInstance(double sx, double sy)

 getShearInstance(double shx, double shy)

 getTranslateInstance(double tx, double ty)

In this program, I am interested in scaling the coordinates of the rectangle when transforming it

from user space to device (screen) space to compensate for the difference in actual screen

resolution and the assumed screen resolution of 72 pixels per inch that is used in the 2D API.

A scaling instance of the AffineTransform class

Figure 9 gets a scaling instance of the AffineTransform class, and passes it to the

setTransform() method of the Graphics2D object.

 g2.setTransform(AffineTransform.getScaleInstance(
 (double)res/72,(double)res/72));

Figure 9

The scale factors that are set into the transform object are the ratio of the actual screen resolution

(res) to the assumed screen resolution of the 2D API (72 pixels per inch). This transform will

then properly convert user space coordinates in inches (that assume 72 units per inch) to actual

inches on the computer screen. This should work on any computer screen regardless of the

actual resolution of the screen.

Default resolution is 72 units per inch

Figure 10 begins by declaring and initializing a local variable to the value of 72 units per

inch. (A more robust approach would have been to make this a public static final instance

variable of the class. Then it would have been impossible to corrupt it.)

 int ds = 72;//default scale = 72 units per inch

 g2.draw(new Rectangle2D.Double(

 0.5*ds, 0.5*ds, 1.0*ds, 1.0*ds));

 }//end overridden paint()

}//end class GUI

Figure 10

In any event, this variable serves as a scale factor for producing user space coordinate values

with 72 units per inch.

Drawing a one-inch square

Then the fragment draws a new Rectangle2D.Double object, one inch on each side and centered

in the Frame object. As before, the centering is accomplished by locating the upper left corner

of the rectangle at 0.5 inch by 0.5 inch relative to the upper left-hand corner of the Frame. This

is accomplished by the first two parameters to the constructor.

The size of the rectangle, 1.0 inch by 1.0 inch, is accomplished by the second two parameters to

the constructor for the rectangle. In all four cases, the multiplicative factor (ds) is used to

account for the fact that user space is assumed to be in inches where each inch is assumed to be

divided into 72 parts.

So there you have it. An introduction to the use of the Graphics2D class along with a number of

associated other aspects of the Java 2D Graphics API.

Complete Program Listings

Complete listings of both programs are provided in Figure 11 and Figure 12.

/*Graphics2D01.java 12/12/99
Copyright 1999, R.G.Baldwin

Illustrates use of the Graphics2D class and the
Rectangle2D class.

Illustrates getting and displaying screen width, height,
and resolution.

Illustrates using screen resolution to produce a Frame
that is two inches on each side containing a square that
is one inch on each side, centered in the Frame.

Tested using JDK 1.2.2 under WinNT Workstation 4.0
**/
import java.awt.geom.*;
import java.awt.*;
import java.awt.event.*;

class Graphics2D01{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
}//end controlling class Graphics2D01

class GUI extends Frame{
 int res;//store screen resolution here
 int width;//store screen width here
 int height;//store screen height here

 GUI(){//constructor
 //Get screen resolution, width, and height
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();
 width = Toolkit.getDefaultToolkit().
 getScreenSize().width;
 height = Toolkit.getDefaultToolkit().
 getScreenSize().height;

 //Display screen resolution,
 // width, and height.
 System.out.println(res + " pixels per inch");
 System.out.println(width + " pixels wide");
 System.out.println(height + " pixels high");

 //Set Frame size to two-inch by two-inch
 this.setSize(2*res,2*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor

 //Override the paint() method to draw a one-inch by
 // one-inch rectangle centered in the Frame.
 publicvoid paint(Graphics g){
 //Downcast the Graphics object to a Graphics2D object
 // to make the features of the Graphics2D class
 // available
 Graphics2D g2 = (Graphics2D)g;

 //Instantiate and draw an object of the
 // Rectangle2D.Double class that is centered in the
 // Frame and is one inch on each side. Center the
 // rectangle in the Frame by placing its upper left-
 // hand corner at a position that is one-half inch to
 // the right and one-half inch below the upper left-hand
 // corner of the Frame. Note that the screen
 // resolution in pixels per inch is used to establish
 // the location and size of the rectangle in inches.
 g2.draw(new Rectangle2D.Double(
 res*0.5,res*0.5,res*1.0,res*1.0));
 }//end overridden paint()
}//end class GUI
//===================================//

Figure 11

/*Graphics2D02.java 12/12/99
Copyright 1999, R.G.Baldwin

Illustrates use of the Graphics2D class, the
Rectangle2D class, and an object of the AffineTransform
class.

The object of the AffineTransform class is used to
compensate for the difference in actual screen resolution
and the default screen resolution of 72 pixels per inch
used by the API.

Illustrates using the default screen resolution and an
AffineTransform based on the actual screen resolution to
produce a Frame that is two inches on each side containing
a square that is one inch on each side, centered in the
Frame.

The size of the Frame is based on the actual screen
resolution in pixels per inch. The drawing of the square
inside the frame is based on inches scaled by the default
resolution of 72 pixels per inch, with the resulting
square scaled by an AffineTransform that compensates for
the difference in default screen resolution and actual
screen resolution.

Tested using JDK 1.2.2 under WinNT Workstation 4.0
***/

import java.awt.geom.*;
import java.awt.*;
import java.awt.event.*;

class Graphics2D02{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
}//end controlling class Graphics2D02

class GUI extends Frame{
 int res;//store screen resolution here

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();

 System.out.println(res + " pixels per inch");

 //Set Frame size to two-inches by two-inches
 this.setSize(2*res,2*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor

 //Override the paint() method to draw a one-inch by
 // one-inch square centered in the Frame.
 publicvoid paint(Graphics g){
 //Downcast the Graphics object to a Graphics2D object
 // to make the features of the Graphics2D class
 // available
 Graphics2D g2 = (Graphics2D)g;

 //Set the transform to a scaling transform that
 // compensates for the difference in actual screen
 // resolution and the default screen resolution of
 // 72 pixels per inch used in the API
 g2.setTransform(AffineTransform.getScaleInstance(
 (double)res/72,(double)res/72));

 int ds = 72;//default scale = 72 pixels per inch

 //Instantiate and draw an object of the
 // Rectangle2D.Double class that is centered in the
 // Frame and is one inch on each side. Center the
 // rectangle in the Frame by placing its upper left-
 // hand corner at a position that is one-half inch to
 // the right and one-half inch below the upper
 // left-hand corner of the Frame. Note that the
 // default screen resolution of 72 pixels per inch is
 // used to establish the location and size of the
 // rectangle in inches.
 g2.draw(new Rectangle2D.Double(
 0.5*ds, 0.5*ds, 1.0*ds, 1.0*ds));
 }//end overridden paint()
}//end class GUI
//===================================//

Figure 12

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin@austin.cc.tx.us

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

-end-

http://www.geocities.com/Athens/7077/scoop/onjava.html

