
Understanding the 2D Discrete Cosine Transform in Java,

Part 2

Learn how to sub-divide an image before applying a forward and inverse 2D-Discrete Cosine

Transform similar to the way it is done in the JPEG image compression algorithm. Also learn

some of the theory behind and some of the reasons for sub-dividing images, such as improved

speed.

Published: October 3, 2006

By Richard G. Baldwin

Java Programming Notes # 2448

 Preface

 General Background Information

 Preview

 Discussion

 Sample Code

o The Program Named ImgMod35a

o The Class Named ForwardDCT02

o The Program Named ImgMod35

 Run the Program

 Summary

 What's Next?

 References

 Complete Program Listings

Preface

This lesson is part of a series designed to teach you about the inner workings of data and image

compression. The first lesson in the series was lesson number 2440 entitled Understanding the

Lempel-Ziv Data Compression Algorithm in Java.

An earlier lesson entitled Understanding the Discrete Cosine Transform in Java taught you about

the one-dimensional Discrete Cosine Transform. The previous lesson, Part 1 of this two-part

lesson, deals with the two-dimensional Discrete Cosine Transforms (2D-DCT).

JPEG image compression

One of the objectives of this series is to teach you about the inner workings of JPEG image

compression. According to Wikipedia,

mailto:Baldwin@DickBaldwin.com
http://www.developer.com/java/data/article.php/3586396
http://www.developer.com/java/data/article.php/3586396
http://www.developer.com/java/other/article.php/3619081
http://www.developer.com/java/data/article.php/3634156
http://en.wikipedia.org/wiki/JPEG

"... JPEG ... is a commonly used standard method of lossy compression for

photographic images. ... JPEG/JFIF is the most common format used for storing

and transmitting photographs on the World Wide Web."

Central components

One of the central components of JPEG image compression is entropy encoding. Huffman

encoding, which was the primary topic of the earlier lesson entitled Understanding the Huffman

Data Compression Algorithm in Java, is a common form of entropy encoding.

Another central component of JPEG compression is the two-dimensional Discrete Cosine

Transform (2D-DCT). This is the primary topic of this lesson. In Part 1 of this lesson, I taught

you how to use the forward 2D-DCT to compute and display the frequency spectrum of an

image. I also taught you how to apply the inverse 2D-DCT to the spectral data to reconstruct a

replica of the original image.

In this part of the lesson, I will teach you how to sub-divide the image before applying the 2D-

DCT in a manner similar to the way it is done in the JPEG image compression algorithm. I will

also discuss some of the theory behind and some of the reasons for such sub division

A third central component of the JPEG image compression algorithm is selective spectral re-

quantization. This will be the primary topic of a future lesson.

In order to understand JPEG ...

In order to understand JPEG image compression, you must understand Huffman encoding, the

2D-DCT, image sub-division, selective spectral re-quantization, and perhaps some other topics

as well. I plan to teach you about the different components of JPEG in separate lessons, and then

to provide a lesson that teaches you how they work together to produce "the most common

format used for storing and transmitting photographs on the World Wide Web."

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Entropy_coding
http://www.developer.com/java/other/article.php/3603066
http://www.developer.com/java/other/article.php/3603066
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/dct.html
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/dct.html
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/JPEG
http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/

In preparation for understanding the material in this lesson, I recommend that you also study the

lessons referred to in the References section.

General Background Information

In earlier lessons, I have explained that the JPEG image compression algorithm transforms the

original image into the frequency domain using a 2D-DCT. The primary purpose of the

transformation is to transform the information into a form that is more amenable to compression

than is the form of the original image.

In Part 1 of this lesson, I explained that rather than to perform the 2D-DCT on the entire image,

the JPEG image compression algorithm sub-divides the image into 8x8 blocks of pixels and

performs the 2D-DCT on each block independently. However, I didn't tell you why that is done.

I can't tell you all of the reasons that the members of the Joint Photographic Experts Group

decided to do that, but I can tell you that one of the primary reasons probably had to do with

speed. Sub-dividing the image into a set of smaller contiguous images and processing them

independently can improve the processing speed significantly in two different ways:

 Reducing the total number of multiply-add operations (MADs) required to perform the

transform.

 Eliminating the requirement to evaluate the cosine of many different arguments.

Reducing the total number of MADs

If an image is sub-divided into a contiguous set of smaller images and the 2D-DCT is performed

on each of the smaller images independently of the others, a significant reduction in the total

number of MADs can be achieved relative to the number of MADs required to transform the

original image.

Reduction by the square root of the ratio

For example, if the dimensions of the larger image are an even multiple of the dimensions of the

smaller image, the total number of MADs required to sub-divide and then transform is reduced

by the square root of the ratio of the number of pixels in the large image to the number of pixels

in the small image.

(If the dimensions of the large image are not an even multiple of the dimensions of

small image, it is necessary to expand the dimensions of the large image to force

it to be an even multiple. This can reduce the gain slightly, but the gain can still

be significant.)

A numeric example

For example, if a square image having 320 pixels on each side is sub-divided into 1600 small

images having 8 pixels on each side, the total number of MADs required to transform the 1600

Java2444.htm#References
http://www.developer.com/java/data/article.php/3634156
http://www.jpeg.org/committee.html

small images will be a factor of 40 less than the total number of MADs required to transform the

large image.

(According to my calculations, 196,608,000 MADs are required to transform all

three color planes for a square image that is 320 pixels on each side. By contrast,

if that image is sub-divided into square images that are 8 pixels on each side, only

4,915,200 MADs are required to transform all of the small images. This reduces

the computational effort by a factor of 40, which is very significant. Furthermore,

the gain increases as the ratio of the size of the large image to the small image

becomes even larger.)

Eliminating the requirement to evaluate the cosine function

If you write a program to perform a 2D-DCT on an image of any arbitrary size, you must

repetitively evaluate the cosine function millions of times for many different arguments. The

actual arguments that must be used in the evaluation of the cosine function depend on the

dimensions of the image.

On the other hand, if you write a program to perform a 2D-DCT on an image of a fixed size, you

can determine in advance the arguments that must be used in the evaluation of the cosine

function. This makes it possible to evaluate the cosine function for that set of arguments in

advance, and to code the cosine values for that set of arguments directly into a lookup table in

the program. This makes it possible to eliminate the requirement to repeatedly evaluate the

cosine function, substituting a table-lookup operation instead.

The 8x8-pixel image size used by the JPEG image compression algorithm requires a cosine table

containing only 64 values. The use of a table-lookup operation as an alternative to actually

evaluating a cosine function should also provide a significant speed improvement.

(The programs that you will see later use table lookup when the size of the image

is 8x8 and evaluates the cosine function for other image sizes.)

Sub-dividing an image

Consider the pair of images shown in Figure 1.

Figure 1

The image in the bottom panel of Figure 1 was originally the same as the image in the top

panel. However, I sub-divided the image in the bottom panel into 8x8 blocks of pixels and

purposely modified the color of every pixel in each block so as to cause the blocks to be visually

distinguishable from one another. The idea was to enforce the concept that any image can be

sub-divided into smaller images.

Disassembly and reassembly

For example, I could sub-divide a large image into blocks of pixels of a uniform size and send

each block to you as an attachment to a separate email message. You could then reassemble the

blocks into a replica of the original image provided you knew the correct location for each block.

The point is that it doesn't do any harm to sub-divide an image into blocks of pixels and then to

reassemble them later into a replica of the original image. If it serves a useful purpose, that is a

perfectly good operation.

Similar to JPEG compression algorithm

This is similar to part of what the JPEG image compression algorithm does. It sub-divides the

original image into a set of 8x8-pixel blocks and transforms each block independently of all the

other blocks. Then it modifies each block of spectral data using selective re-quantization to

make it more suitable for compression. The transformed and modified spectral data is then

compressed.

A lossy algorithm

Later, the data is uncompressed. An inverse transform is performed on each uncompressed

spectral block, creating a lossy replica of the original image block. The replicas of each image

block are then reassembled into a lossy replica of the original image. The lossy nature of the

algorithm apparently occurs mainly at the stage where the spectral data blocks are modified

through selective re-quantization to make them more suitable for compression.

Two different programs

I will present and explain two different programs in this lesson. The first program, named

ImgMod35A makes it possible for a user to sub-divide an image into blocks of a user-specified

size, and to perform a forward 2D-DCT on each block. The frequency spectra of the blocks are

then normalized to make them suitable for being displayed as ordinary images, and the

normalized spectra are displayed in an image format.

The bottom panel in Figure 2 shows the individual 8x8 normalized frequency spectra that

represent the top image in Figure 2.

Figure 2

Figure 6 shows another example where the image was processed in square blocks where each

block was twenty pixels on each side.

The second program

The second program, named ImgMod35 subdivides an image into a set of 8x8-pixel blocks. It

performs a forward 2D-DCT on each individual block producing a set of 8x8 spectral

blocks. Then it performs an inverse 2D-DCT on each spectral block producing a replica of each

of the original image blocks. The replicas are then reassembled into a replica of the original

image, which is displayed in the format shown in Figure 3.

(An option is provided to mark the individual blocks as shown in Figure 1 so as to

identify the individual blocks. This option requires the user to modify and

recompile the source code for the program. This option obviously corrupts the

image and should be used for illustration purposes only.)

Example output from ImgMod35

Figure 3 shows the result of running this program on the same image as shown in the top panels

of Figure 1 and Figure 2 without exercising the option to mark the individual blocks.

Figure 3

The image in the bottom panel of Figure 3 was produced by performing an inverse 2D-DCT on

the 8x8 spectral blocks shown in the bottom panel of Figure 2 and reassembling the resulting

8x8-pixel image blocks into the full image. As you can see, the result is a very good replica of

the original image shown in the top panel of Figure 3.

(Note, however, that the individual 8x8 spectral blocks were not modified through

selective re-quantization as is the case with JPEG compression. Selective re-

quantization of the spectral data will be the subject of a future lesson.)

Preview

ImgMod35a

The first program that I will present and explain in this lesson is named ImgMod35a. This

program sub-divides an image into square blocks of pixels and performs a forward DCT on each

block producing and displaying square blocks of spectral data. The size of the blocks is

specified by entering the block size into the text field shown in Figure 4 and pressing the Replot

button shown at the bottom of Figure 5.

Processing the color planes

Each color plane is individually processed. The program performs a forward 2D-DCT on each

color plane converting each of the three color planes into spectral planes. The three spectral

planes are normalized so as to make them suitable for being displayed as standard image

data. The normalization includes transformation of the spectral data to log base 10 (scaled

decibels) and scaling to cause the values to fall between 0 and 255 inclusive.

Optimized for 8x8 block size

This program can handle any block size from one pixel per block up to the size of the original

image. However, it is optimized for block sizes of 8x8 pixels. When the block size is 8x8

pixels, the program uses an 8x8 cosine lookup table instead of computing the cosine value every

time it is needed. This should cause the program to run faster than would otherwise be the case

if it were necessary to compute the cosine value every time that it is needed.

Instructions for running the program

This program class is designed to be driven by the class named ImgMod02a. Enter the

following at the command line to run this program:

java ImgMod02a ImgMod35a ImageFileName

where ImageFileName is the name of a .gif or .jpg file, including the extension.

When the user presses the Replot button, the process is repeated using the value in the text field

of Figure 4 for the block size. The new results are displayed in the format shown in Figure 5.

Class files required

This program requires access to the following class files plus some inner classes that are defined

inside these classes:

 ImgIntfc02.class

 ImgMod02a.class

 ImgMod35a.class

 ForwardDCT02.class

The source code for ImgMod02a and ImgIntfc02 can be found in the earlier lessons entitled

Processing Image Pixels Using Java: Controlling Contrast and Brightness and Processing Image

Pixels using Java, Getting Started.

The source code for ImgMod35a is provided in Listing 17. The source code for ForwardDct02

is provided in Listing 18.

ImgMod35

The second program that I will present and explain in this lesson is named ImgMod35. This

program performs a forward 2D-DCT on an image converting the three color planes into spectral

planes. Then it performs an inverse 2D-DCT on the three spectral planes converting them back

into image color planes. Then the original image and the reconstructed image are both displayed

in the format shown in Figure 3.

No modification to the spectral data

Nothing is done to the spectral planes following the forward DCT and before the inverse DCT as

is the case in JPEG compression. However, additional processing, such as re-quantization and

compression, followed by decompression could be inserted at that point.

Update to an earlier program

This is an update to the program named ImgMod34 that was explained in Part 1 of this

lesson. This update sub-divides the image into blocks of 8x8-pixels and performs the forward

2D-DCT on each block producing 8x8 blocks of spectral coefficient data. Then it performs an

inverse 2D-DCT on each of the 8x8 spectral blocks, producing replicas of the original the 8x8

pixel blocks.

A composite of all the reconstructed 8x8-pixel blocks is created to produce a replica of the

original image.

Zero padding at the edges

Zero padding is applied to the right and bottom edges of the image to force each dimension of

the image to be a multiple of 8 pixels. This padding is trimmed from the resulting composite

image before the processed composite image is returned to the calling method. This process

doesn't appear to have a detrimental impact on the quality of the image at the edges.

Block structure can be shown

http://www.developer.com/java/other/article.php/3441391
http://developer.com/java/other/article.php/3403921
http://developer.com/java/other/article.php/3403921
http://www.developer.com/java/data/article.php/3634156

For illustration purposes only, the method named inverseXform8x8Plane contains a statement

that can be activated to cause the 8x8 block structure of the entire process to become visible in

the final image as shown in Figure 1. This feature should be disabled by default because it badly

corrupts the visual quality of the image when it is enabled.

Improved speed

This program is significantly faster than the program named ImgMod034 that was presented and

explained in Part 1 of this lesson. The program named ImgMod034 does not sub-divide the

image into 8x8-pixel blocks, but rather does the forward and inverse transforms on the entire

image. This program named ImgMod035 does sub-divide the image into 8x8-pixel blocks

before performing the forward and inverse transforms. In addition, it uses an 8x8 cosine lookup

table instead of computing the cosine value every time the cosine value is needed.

The use of a lookup table is probably one factor in the speed improvement. Another factor is the

fact that less arithmetic is required to perform the transform when the image is sub-divided into

blocks and the transforms are performed on the individual blocks instead of transforming the

entire image as a whole.

Instructions for running the program

The class named ImgMod035 is designed to be driven by the class named ImgMod02a. Enter

the following at the command line to run this program:

java ImgMod02a ImgMod35 ImageFileName

where ImageFileName is the name of a .gif or .jpg file, including the extension.

When you click the Replot button shown in Figure 3, the process will be repeated and the results

will be re-displayed. However, because there is no opportunity for user input after the program

is started, the Replot button is of little value to this program.

Class files required

This program requires access to the following class files plus some inner classes that are defined

inside these classes:

 ImgIntfc02.class

 ImgMod02a.class

 ImgMod35.class

 ForwardDCT02.class

 InverseDCT02.class

The source code for ImgMod02a and ImgIntfc02 can be found in the earlier lessons entitled

Processing Image Pixels Using Java: Controlling Contrast and Brightness and Processing Image

Pixels using Java, Getting Started.

http://www.developer.com/java/data/article.php/3634156
http://www.developer.com/java/other/article.php/3441391
http://developer.com/java/other/article.php/3403921
http://developer.com/java/other/article.php/3403921

The source code for ImgMod35 is provided in Listing 19. The source code for ForwardDct02

is provided in Listing 18, and the source code for InverseDCT02 is provided in Listing 20.

Program testing

All of the programs discussed in this document were tested using J2SE 5.0 and WinXP.

Discussion

Experimental results for ImgMod35a

Before getting into the details of the code, I want to show you some experimental results. I will

begin with experimental results for the program named ImgMod35a.

The display format

The program named ImgMod35a displays results in the format shown in Figure 2. The top

panel in Figure 2 shows the original image. The bottom panel in Figure 2 shows the set of

contiguous two-dimensional spectra produced by applying the 2D-DCT individually to

contiguous 8x8-pixel blocks from the original image, (as identified by the blocks in the bottom

panel in Figure 1).

The spectral origin

The value of the spectrum at a frequency of zero appears at the upper-left corner of each two-

dimensional spectral block with higher-frequency components appearing to the right and down

from that corner. The energy at a frequency of zero is often the highest point in the spectrum

(represented by a bright color in the display). Therefore, most of the bright dots in Figure 2

correspond to the upper-left corners of individual 2D-DCT spectral blocks.

The user interface

Figure 4 shows the user interface panel that is produced by the program named ImgMod35a.

Figure 4

The initial block size

When the program first starts running, the text field shown in Figure 4 is initialized with a value

of 8. This causes the program to sub-divide the image into 8x8-pixel blocks (as indicated by the

bottom panel in Figure 1) and to compute and display the 2D-DCT for each of the 8x8-pixel

blocks as shown in Figure 2 and Figure 5.

Figure 5

As mentioned earlier, most of the bright dots in the bottom panel of Figure 5 indicate the upper-

left corners of individual 8x8 2D-DCT spectral blocks.

Re-running with a different block size

After startup, whenever the Replot button in Figure 5 is pressed, the process is rerun using the

current value in the text field of Figure 4 to specify the size of the blocks. For example,

changing the value in the text field to 20 and pressing the Replot button produces the output

shown in Figure 6.

Figure 6

If you compare Figure 6 with Figure 5, you will see that each individual spectrum in the bottom

panel of Figure 6 is 2.5 times larger than the size of the individual spectra in Figure 5.

Nothing magic about an 8x8 block size

As near as I have been able to determine, there was nothing magic about the selection of a block

size of 8x8 pixels for the JPEG image compression algorithm. The process would probably work

for just about any block size as long as it is large enough to satisfy the data compression

objectives.

Smaller blocks mean more speed

However, as I explained earlier, the speed of the process can be improved by reducing the block

size. Therefore, the members of the JPEG design committee were probably looking for the

smallest block size that would do the job insofar as compression and quality of results is

concerned, and they settled on a block size of 8x8 to meet that criterion.

(The compression algorithm that is used depends on being able to identify and to

modify high-frequency components in the 2D-DCT spectrum. Therefore, the

spectral block must be large enough to distinguish between low-frequency and

high-frequency components. An 8x8 spectral block provides eight spectral

samples between zero and the Nyquist folding frequency.)

What are we seeing in Figure 6?

It is good to remember what we are actually seeing in Figure 6. Each individual 20x20 spectral

block in Figure 6 does not represent the true wave-number spectrum of the corresponding block

of 20x20 pixels. Rather, each 20x20 spectral block represents the true wave-number spectrum of

a modified version of the 20x20 block of pixels. As I explained in Part 1 of this lesson, each

20x20 block of pixels is implicitly extended to the left and above the origin (at the upper-left

corner of the block) producing a new image that is symmetrical about the origin and four times

as large.

(This symmetrical extension eliminates the requirement to perform complex

arithmetic when computing the transform. It also modifies the results relative to

the true wave-number spectrum of the block. In other words, the spectral blocks

shown in Figure 6 are not true wave-number spectra of the original blocks of

pixels.)

A true wave-number spectrum is not needed

However, the members of the JPEG committee weren't necessarily looking to compute the true

wave-number spectrum of the block of image pixels. Rather, they were simply looking for a

transformation that would accomplish their purpose and one that is economical to

compute. They apparently concluded that the Discrete Cosine Transform meets that criterion.

(If they had wanted the true wave number spectrum of the block, they would

probably have used the Fourier transform instead of the Discrete Cosine

Transform.)

Why choose the Discrete Cosine Transform?

The 2D-DCT is simple and easy to compute. That was probably an important consideration in

the original design of the JPEG image compression algorithm.

The 2D-DCT is reversible, meaning that computing the forward and inverse 2D-DCT on a block

of pixels produces a very good replica of the original block of pixels. That is an absolute

requirement of the algorithm.

And probably most important, the results of the 2D-DCT contribute greatly to the

compressibility of the image data.

How does it contribute to compressibility?

Somewhere along the way, someone determined that you can significantly corrupt the values of

the higher-frequency spectral components resulting from the 2D-DCT of an image block and the

http://en.wikipedia.org/wiki/Nyquist_frequency
http://www.developer.com/java/data/article.php/3634156

image that results from performing an inverse 2D-DCT on the corrupted spectral data will still

produce an acceptable, but not perfect replica of the original image block.

The JPEG committee determined that corrupting the higher-frequency spectral components

through selective re-quantization would make the data more compressible while still producing

acceptable results when an inverse 2D-DCT is performed on the corrupted spectral data.

(As mentioned earlier, selective re-quantization will be the topic of a future

lesson.)

The bottom line is that the 2D-DCT serves the purpose well

Although the 2D-DCT does not produce the true wave-number spectrum of the original image

block, it does a very good job of satisfying the need to compress the image for transport and

storage while still producing acceptable results when the image is reconstructed from the

compressed spectral data.

An extreme case

I want to show you the results of two more experimental cases using ImgMod35a to help you

better understand what's going on here. Figure 7 shows the result of setting the block size to 1

and re-computing and displaying the spectral results in the bottom panel.

Figure 7

Not a reconstructed image

The bottom panel in Figure 7 does not show a reconstructed version of the original image

produced by performing an inverse 2D-DCT on the spectral data as was the case in Figure

3. Rather, the bottom panel of Figure 7 shows the spectral data just like Figure 6, Figure 5, and

Figure 2.

Why does the spectral data look so much like the original image?

When the original image is sub-divided into 1x1-pixel blocks, each 2D-DCT is performed on a

single image pixel producing a 1x1 spectral block. When only one spectral value is computed, it

is the value at a frequency of zero.

Whenever the spectral value at a frequency of zero is computed, (regardless of the size of the

image block), the result is simply the (possibly scaled) average of all the pixel values. When

there is only one pixel value involved, the average is simply the (possibly scaled) value of the

pixel.

A scaled version of the pixel value

Thus, each of the 1x1 spectral values in Figure 7 is simply a scaled version of the corresponding

pixel in the 1x1 pixel block. Displaying those spectral values reproduces the original image.

(However, the scaling that has been applied to the spectral values through the

normalization process causes the colors to be washed out as shown in the bottom

image of Figure 7. The normalization process includes a log base 10

transformation that tends to flatten the spectral surface.)

Including the entire image in the block

In contrast, Figure 8 shows the result of setting the block size to the height of the image, causing

the entire image to be included in one block of pixels.

Figure 8

As a result, the bottom panel in Figure 8 shows the 2D-DCT spectrum for the entire image taken

as a whole.

Spectral energy near the origin

Most of the spectral energy is concentrated in the lighter portions of the spectrum near the origin

in the upper-left corner. Although it isn't obvious, (due to the adjacent white background), there

is probably a very bright dot at the origin of the spectrum in Figure 8.

(Each of the individual spectra shown in Figure 7, Figure 6, Figure 5, and Figure

2 are simply smaller versions of Figure 8 where each of the individual spectra

represent the information in a small block of corresponding image pixels.)

Resemblance to the original image

The bottom panel in Figure 8 doesn't look anything like the original image because it represents

the information for the entire image in a different form.

Figure 7, on the other hand, consisting of more than 50,000 individual single-point spectra looks

a lot like the original image because each of the spectra in the bottom panel of Figure 7

corresponds to a single pixel in the original image.

The spectra in the bottom panels of Figure 2 and Figure 5 bear some resemblance to a grayscale

version of the original image because each of the spectra represents the information in the

corresponding small 8x8-pixel block of the image.

The spectra in the bottom panel of Figure 6 looks less like the image than Figure 5, but more like

the image than Figure 8. Each of the individual spectra in Figure 6 represents the information in

the corresponding 20x20-pixel block of the original image.

Individual spectra don't resemble corresponding image blocks

Except for the unique case of the single-point spectra shown in Figure 7, none of the individual

spectra look much like the image blocks that they represent, and this is to be expected. In

general, the frequency spectrum doesn't look like the image that it represents.

(Recall the section entitled An analogy in Part 1 of this lesson. Ice and liquid

water both represent water, and it is relatively easy to transform the material

back and forth between those two states. However, they don't look much alike.)

The spatial organization

However, the spatial organization of the spectra listed above, particularly Figure 2 and Figure 5,

provides a strong hint as to the organization of the information in the image.

Very little high-frequency energy

For example, the spectra that correspond to the large blank areas of the image in Figure 5 consist

mainly of a peak at the origin with very little in the way of high-frequency energy. (There are

blank areas both inside and outside the coin.) This causes those spectra to be mainly black.

Lots of high-frequency energy

On the other hand, the spectra for those areas of the image containing lots of detail, such as

President Lincoln's hair and beard in Figure 5, exhibit considerably more high-frequency

energy. This causes those spectra to have a much whiter appearance.

The spectral format

Once again, each of these spectra is a miniature version of the spectral format shown in the

bottom panel of Figure 8. The energy at a frequency of zero is shown at the origin, which is at

the upper-left corner of the spectral block. (There is typically a bright dot at that point.) The

higher-frequency energy is shown to the right and below the origin.

(For example, the tip of President Lincoln's nose in Figure 5 and Figure 6 has a

strong component at zero frequency and considerable energy in the low-frequency

triangular area that makes up the upper-left portion of the spectral block. The

http://www.developer.com/java/data/article.php/3634156

high-frequency triangular area that makes up the bottom-right portion of the

spectral block is largely black.)

Experimental results for ImgMod35

As explained earlier, the program, named ImgMod35 subdivides an image into a set of 8x8-pixel

blocks. (The block size for this program is not an input parameter. It is fixed at 8x8

pixels.) The program performs a forward 2D-DCT on each individual block producing a set of

8x8 spectral blocks. Then it performs an inverse 2D-DCT on each spectral block producing a

replica of each of the original image blocks. The replicas of the small image blocks are then

reassembled into a replica of the original image, which is displayed in the format shown in

Figure 3.

Figure 3 shows the result of running ImgMod35 on the same image shown in the top panels of

Figure 1 and Figure 2 without exercising the option to mark the individual blocks as was done in

Figure 1.

As another example, Figure 9 shows result of applying ImgMod35 to the same image shown in

the top panel of Figure 5.

Figure 9

Whereas the bottom panel of Figure 5 shows the individual 8x8 spectral blocks, the bottom panel

of Figure 9 shows the results of performing an inverse 2D-DCT on each of the 8x8 spectral

blocks and using the resulting 8x8 image blocks to reconstruct the original image. As you can

see, the reconstructed image is a very good replica of the original image.

Sample Code

The Program Named ImgMod35a

I will discuss this program in fragments. The first fragment, shown in Listing 1, shows the

beginning of the class definition along with the declaration and initialization of a couple of

instance variables.

class ImgMod35a extends Frame implements

ImgIntfc02{

 TextField subSizeField = new TextField("8");

 Label instructions = new Label(

 "Enter sub-image size and

click Replot");

Listing 1

The two instance variables provide the label and the text field shown in Figure 4.

The TextField variable

This text field supports the interactive nature of the program. The user can enter a value into the

text field and then click the Replot button shown at the bottom of Figure 5. This causes the

image to be broken down into square blocks of pixels where the number of pixels on each side of

the block matches the value entered into the text field by the user. Then the image is processed

one block at a time producing spectral results as shown in Figure 6.

The interface named ImgIntfc02

Note that the class implements the interface named ImgIntfc02. This is necessary to support the

graphic display aspects of the program as explained in the earlier lesson entitled Processing

Image Pixels using Java, Getting Started.

The constructor

The constructor for the class is shown in its entirety in Listing 2.

 ImgMod35a(){//constructor

 add(instructions,BorderLayout.CENTER);

 add(subSizeField,BorderLayout.SOUTH);

 setTitle("Copyright 2006, R.G.Baldwin");

http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3403921

 setBounds(400,0,250,75);

 setVisible(true);

 }//end constructor

Listing 2

The code in Listing 2 is straightforward and shouldn't require further explanation.

The processImg method

Because this class implements the ImgIntfc02 interface, and because that interface declares the

processImg method, this class must define the method named processImg.

The signature for the method named processImg is shown in Listing 3.

 public int[][][] processImg(int[][][]

threeDPix,

 int imgRows,

 int imgCols){

Listing 3

As mentioned above, this method is required by ImgIntfc02. As explained in the earlier lesson

entitled Processing Image Pixels using Java, Getting Started, the method is called at the

beginning of the run and each time thereafter that the user clicks the Replot button shown at the

bottom of Figure 6.

The block size

Also as explained earlier, the image is broken down into square blocks for processing. The

dimensions of the blocks are specified by the value stored in the variable named imgSubSize

shown in Listing 4.

 int imgSubSize = Integer.parseInt(

subSizeField.getText());

Listing 4

Straightforward code from an earlier lesson

The comments in Listing 5, in conjunction with information provided in the earlier lesson,

should suffice to explain the code in Listing 5.

 //Create an empty output array of the same

size as the

 // incoming array.

 int[][][] output = new

http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3403921

int[imgRows][imgCols][4];

 //Make a working copy of the 3D pixel array

as type

 // double to avoid making permanent changes

to the

 // original image data. Also, all

processing will be

 // performed as type double.

 double[][][] working3D =

copyToDouble(threeDPix);

 //The following code can be enabled to set

any of the

 // three colors to black, thus removing

them from the

 // output.

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

// working3D[row][col][1] = 0;//Red

// working3D[row][col][2] = 0;//Green

// working3D[row][col][3] = 0;//Blue

 }//end inner loop

 }//end outer loop

Listing 5

Performing a forward DCT

Listing 6 begins the process of extracting and performing a forward DCT on the red color plane

of the image, one block at a time.

 double[][] redPlane =

extractPlane(working3D,1);

Listing 6

The extractPlane method

Listing 6 invokes the method named extractPlane to extract the red color plane from the

image. The purpose of the extractPlane method is to extract a color plane from the double

version of an image and to return it as a 2D array of type double. The method is straightforward

and shouldn't require further explanation. It can be viewed in its entirety in Listing 17 near the

end of the lesson.

The expandPlane method

Listing 7 invokes the expandPlane method to expand the plane such that both dimensions are a

multiple of imgSubSize.

 redPlane =

expandPlane(redPlane,imgSubSize);

Listing 7

The extra rows and columns of pixel data (if any) that are required to cause the dimensions of the

plane to be a multiple of imgSubSize are filled with pixel values of zero. Otherwise, the

expandPlane method is straightforward and shouldn't require further explanation. The method

can be viewed in its entirety in Listing 17 near the end of the lesson.

The forwardXformPlane method

Listing 8 invokes the forwardXformPlane method to perform the forward DCT on the red plane

turning it into a spectral plane where each individual spectrum stored in the plane is a square

block with dimensions of imgSubSize.

 forwardXformPlane(redPlane,imgSubSize);

Listing 8

Ultimately, the spectra for all three color planes are combined and displayed in an image format

as shown in Figure 6. To see the spectra for the individual color planes, you can disable all but

one color plane as instructed by the comments in Listing 5.

At this point, I will set the processImg method aside for awhile and discuss the

forwardXformPlane method. Before doing that, however, I want to review some of the

concepts that you learned about in Part 1 of this lesson.

A separable transform

As was explained in Part 1 of this lesson, one of the significant attributes of the two-dimensional

Discrete Cosine Transform (2D-DCT) is that it is separable. What this means in practice is that

to compute the DCT for a block in a color plane of a 2D image, you can begin by performing a

one-dimensional DCT on each row of the block, creating a new 2D structure where each row of

the new structure contains the DCT of the corresponding row of the block of pixel data. Then

you can perform a one-dimensional DCT on each column of the new 2D structure creating a

third 2D structure containing the 2D-DCT of the original block.

An in-place transform

Also important, at least from a memory utilization viewpoint, is the fact that you can perform the

transforms "in-place" using the original color plane for intermediate and final data storage

without a requirement to allocate memory for the new structures.

Don't need a new DCT program

http://www.developer.com/java/data/article.php/3634156
http://www.developer.com/java/data/article.php/3634156
http://documents.wolfram.com/applications/digitalimage/UsersGuide/ImageTransforms/ImageProcessing8.4.html

What this means for me is that I don't need to develop a new DCT program to handle the 2D

case. Rather, I could perform all the necessary DCT transforms that I need using the static one-

dimensional forward DCT method named transform belonging to the class named

ForwardDCT01. I developed and explained that class in the earlier lesson entitled

Understanding the Discrete Cosine Transform in Java.

New version for optimization

Note however that I did develop an optimized version of the transform method that is optimized

for speed for the case where the image is divided into 8x8 blocks of pixels prior to performing

the transform.

The forwardXformPlane method

The forwardXformPlane method is shown in its entirety in Listing 9.

 void forwardXformPlane(double[][] plane,int

imgSubSize){

 int pixRows = plane.length;

 int pixCols = plane[0].length;

 //Loop on rows of blocks

 for(int segRow = 0;segRow <

pixRows/imgSubSize;

segRow++){

 //Loop on cols of blocks

 for(int segCol = 0;segCol <

pixCols/imgSubSize;

segCol++){

 double[][] theSubPlane =

getSubPlane(plane,segRow,segCol,imgSubSize);

forwardXformSubPlane(theSubPlane,imgSubSize);

 insertSubPlane(plane,

 theSubPlane,

 segRow,

 segCol,

 imgSubSize);

 }//end inner loop

 }//end outer loop

 }//end forwardXformPlane

Listing 9

The forwardXformPlane method breaks a double color plane down into square blocks of size

imgSubSize and performs a forward DCT on each block. Then it assembles the resulting

spectral data blocks into a spectral plane.

http://www.developer.com/java/other/article.php/3619081

(The method assumes that the dimensions of the color plane are multiples of

imgSubSize.)

Invokes three methods in succession

The code in Listing 9 does its job by invoking the following three methods in succession inside a

nested for loop:

 getSubPlane - Extracts and returns a square block of size imgSubSize from a double 2D

plane

 forwardXformSubPlane - performs a forward DCT on a square block of pixels of size

imgSubSize received as an incoming parameter.

 insertSubPlane - Inserts a square block of size imgSubSize into a double 2D plane

The first and third methods in the above list are completely straightforward and shouldn't require

any explanation beyond the comments contained in the code. You can view the code for those

methods in Listing 17 near the end of the lesson.

The method named forwardXformSubPlane

The method named forwardXformSubPlane, which performs a forward DCT on a square block

of pixels of size imgSubSize, is shown in its entirety in Listing 10.

 void forwardXformSubPlane(double[][]

theSubPlane,

 int imgSubSize){

 int imgRows = imgSubSize;

 int imgCols = imgSubSize;

 //Extract each row from the block and

perform

 // a forward DCT on the row. Then insert

the

 // transformed row back into the block. At

that point,

 // the row no longer contains color pixel

data, but

 // has been transformed into a row of

spectral data.

 for(int row = 0;row < imgRows;row++){

 double[] theRow =

extractRow(theSubPlane,row);

 double[] theXform = new

double[theRow.length];

 //Perform the forward transform.

 ForwardDCT02.transform(theRow,theXform);

 //Insert the transformed row back into

the block.

 insertRow(theSubPlane,theXform,row);

 }//end for loop

 //The block now contains the results of

doing the

 // horizontal DCT one row at a time. The

block no

 // longer contains color pixel data.

Rather, it

 // contains spectral data for the

horizontal dimension

 // only.

 //Extract each column from the block and

perform a

 // forward DCT on the column. Then insert

the

 // transformed column back into the block.

 for(int col = 0;col < imgCols;col++){

 double[] theCol =

extractCol(theSubPlane,col);

 double[] theXform = new

double[theCol.length];

 ForwardDCT02.transform(theCol,theXform);

 insertCol(theSubPlane,theXform,col);

 }//end for loop

 //The square block of size imgSubSize has

now been

 // converted into a square block of

spectral

 // coefficient data of the same size.

 }//end forwardXformSubPlane

Listing 10

Very similar to a method from Part 1

The method named forwardXformSubPlane is very similar to the method named processPlane

that I explained in Part 1 of this lesson. Therefore, an explanation should not be required in this

lesson.

The main difference

The main difference between the method named forwardXformSubPlane in Listing 10 and the

method named processPlane in Part 1 of this lesson has to do with the method that is called to

perform the actual DCT.

Optimized for speed

http://www.developer.com/java/data/article.php/3634156
http://www.developer.com/java/data/article.php/3634156

The method in the earlier lesson calls the transform method in the class named

ForwardDCT01, whereas the method in Listing 10 calls the transform method in the class

named ForwardDCT02. I will explain the difference between the two later. For now, suffice it

to say that the latter method was optimized for speed for the case where the block size is 8x8

pixels.

Back to the processImg method

Returning once again to the explanation of the processImg method, and picking up where

Listing 8 left off, Listing 11 invokes the normalize method to normalize the data in the 2D

double plane to make it compatible with being displayed as an image plane.

 normalize(redPlane);

Listing 11

The normalize method

Normalizing data for display purposes is almost always problematic. The display will often look

very different depending on how you perform the normalization. The approach to normalization

used in the normalize method performs the following steps in order:

1. All negative values are converted to positive values. This is equivalent to the

computation of the magnitude of the spectrum for purely real data.

2. All values are converted to log base 10 (scaled decibels) to preserve the dynamic range of

the plotting system. All negative results (if any) are set to 0.

3. All values that are below X-percent of the maximum value are set to X-percent of the

maximum value producing a floor for the values where the value of X is determined by a

hard-coded scale factor.

4. All values are biased (slid toward 0) so that the minimum value (the floor) becomes 0.

5. All values are scaled so that the maximum value becomes 255. As a result, all values

range from 0 as a minimum to 255 as a maximum.

Once the normalizing rationale has been established, the code to establish the normalization is

relatively straightforward. You can view the normalize method in its entirety in Listing 17.

The insertPlane method

Listing 12 invokes the insertPlane method to insert the spectral plane back into the 3D array.

 insertPlane(working3D,redPlane,1);

Listing 12

The insertPlane method also trims off any extra rows and columns created by expanding the

dimensions to a multiple of imgSubSize earlier in Listing 7. The code in the insertPlane

method is straightforward. The method can be viewed in its entirety in Listing 17.

Process green and blue color planes

Listing 13 executes essentially the same code as that explained above to extract and perform

forward Discrete Cosine Transforms on the green and blue color planes.

 double[][] greenPlane =

extractPlane(working3D,2);

 greenPlane =

expandPlane(greenPlane,imgSubSize);

 forwardXformPlane(greenPlane,imgSubSize);

 normalize(greenPlane);

 insertPlane(working3D,greenPlane,2);

 double[][] bluePlane =

extractPlane(working3D,3);

 bluePlane =

expandPlane(bluePlane,imgSubSize);

 forwardXformPlane(bluePlane,imgSubSize);

 normalize(bluePlane);

 insertPlane(working3D,bluePlane,3);

Listing 13

All three color planes have been transformed

At this point, all three color planes have now been transformed into spectral planes where each

spectral plane is composed of a potentially large number of contiguous square spectral data

blocks of size imgSubSize.

Convert to type int and return

Listing 14 invokes the copyToInt method to convert the image color planes to type int. Then

Listing 14 returns the array of pixel data to the calling method where it is displayed as shown in

the bottom panel of Figure 5.

 output = copyToInt(working3D);

 return output;

 }//end processImg method

Listing 14

You can view the copyToInt method, along with a few other utility methods not discussed above

in Listing 17.

The Class Named ForwardDCT02

As mentioned earlier, whereas the program in Part 1 of this lesson used the transform method in

the class named ForwardDCT01 to perform the DCT, this program uses the transform method

of the class named ForwardDCT02 to perform the DCT.

The static method named transform performs a forward DCT on an incoming series and returns

the DCT spectrum.

Optimized for 8x8 blocks

The transform method of the ForwardDCT01 class is a general purpose version that works for

images of different sizes. The transform method of the ForwardDCT02 class will also work

with images of any size, but it is optimized for use with images with a size of 8x8 pixels.

Uses a cosine lookup table

When transforming an 8x8-pixel image, the transform method of the ForwardDCT02 class

uses an 8x8 cosine lookup table instead of calling the cos function. If the image size is anything

other than 8x8 pixels, the method simply calls the cosine function during each iteration.

It is probably faster to use the lookup table than it is to call the cosine function every time a

cosine value is needed.

The class named ForwardDCT02 is shown in its entirety in Listing 18 near the end of this

lesson. The manner in which the cosine table is created and then used is well documented. If

you understood the transform method of the ForwardDCT01 class in Part 1 of this lesson, you

should have no difficulty understanding the transform method of the class named

ForwardDCT02.

The Program Named ImgMod35

This program performs a forward DCT on an image converting the three color planes into

spectral planes. Then it performs an inverse DCT on the three spectral planes converting them

back into image color planes.

A rather detailed description of the program was provided earlier in this lesson. I will refer you

back to that description and will not repeat that description here.

Note that this version of the program is significantly faster than the version named ImgMod034

from Part 1 of this lesson. The reasons for the improvement in speed were also explained earlier.

Experimental results

Figure 3 and Figure 9 show examples of the results produced by this program.

Similar code

http://www.developer.com/java/data/article.php/3634156
http://www.developer.com/java/data/article.php/3634156
http://www.developer.com/java/data/article.php/3634156

Much of the code in this program is the same as, or very similar to the code in the program

named ImgMod35a, which I explained earlier. Therefore, I won't repeat the explanation for that

code. I will only explain the code that is significantly different. The code that I will explain will

be explained in fragments. You can view a listing of the entire program in Listing 19 near the

end of the lesson.

The first interesting code fragment begins in Listing 15, which extracts the red color plane and

performs a forward DCT on that plane.

 double[][] redPlane =

extractPlane(working3D,1);

 redPlane = expandPlane(redPlane);

 forwardXformPlane(redPlane);

 insertPlane(working3D,redPlane,1);

Listing 15

The expandPlane method

Having extracted the red color plane, Listing 15 invokes the expandPlane method to expand the

plane such that both dimensions are an even multiple of 8 pixels.

(Unlike the expandPlane method in the previous program named ImgMod35a,

the expandPlane method in this program does not accept an incoming parameter

that specifies the block size. Rather, the block size is fixed at 8x8 pixels in this

program.)

The forwardXformPlane method

Then Figure 15 invokes the forwardXformPlane method to perform a forward DCT on the red

plane turning it into a spectral plane where each individual spectrum stored in the plane is an 8x8

square.

The method named forwardXformPlane breaks a double color plane down into 8x8-pixel

blocks and performs a forward DCT on each block. Then it assembles the resulting spectral data

blocks into a spectral plane. The method is hard-coded to assume that the dimensions of the color

plane are multiples of 8.

The insertPlane method

Finally, Listing 15 invokes the insertPlane method to insert the spectral plane back into the 3D

array. This method also trims off any extra rows and columns that may have been created by

expanding the dimensions to a multiple of 8.

Process the green and blue color planes

Then the program performs essentially the same operations on the green and blue color

planes. Once that is completed, all three color planes have been transformed into spectral planes

where each spectral plane is composed of a potentially large number of contiguous 8x8 spectral

data blocks.

(Note that because there is no requirement to display the spectral planes, they are

not normalized to values between 0 and 255 as is the case with the program

named ImgMod035a.)

Transform back into image color planes

Following this, the program transforms the spectral planes back into image color planes. The

inverse transform on the red spectral plane consists of the four method calls shown in Listing 16.

 redPlane = extractPlane(working3D,1);

 redPlane = expandPlane(redPlane);

 inverseXformPlane(redPlane);

 insertPlane(working3D,redPlane,1);

Listing 16

The process begins by invoking the extractPlane method to extract the red spectral plane from

the 3D array. This method has been used in numerous previous lessons and can be found in

Listing 19.

Then Listing 16 invokes the expandPlane method to expand the plane such that both dimensions

are an even multiple of 8. There is nothing new here.

Then Listing 16 invokes the inverseXformPlane method to perform the inverse DCT on the red

plane. The only thing new here is that the inverseXformPlane method calls a method named

inverseXform8x8Plane, which uses the transform method of the InverseDCT02 class to

perform the inverse transform.

Optimized for 8x8 spectral blocks

This transform method is essentially the same as the transform method of the class named

InverseDCT01, which was explained in Part 1 of this lesson, except that the transform method

of the InverseDCT02 class is optimized for speed when applied to spectra having a size of 8x8

spectral coefficient values. Basically, it uses a cosine lookup table rather than invoking the cos

method each time a cosine value is needed.

A complete listing of the class named InverseDCT02 is provided in Listing 20 near the end of

the lesson.

Finally, Listing 16 invokes the insertPlane method to insert the new red image plane back into

the working 3D array.

http://www.developer.com/java/data/article.php/3634156

Process the green and blue spectral planes

Following this, the program performs essentially the same inverse transform operations on the

green and blue spectral planes to produce the green and blue image planes.

Then the new image color planes are converted to type int and returned to the calling method for

display as shown in the bottom panel of Figure 3 and Figure 9.

Run the Program

I encourage you to copy the code from the listings in the section entitled Complete Program

Listings. Compile the code and run it. Experiment with the code, making changes, and

observing the results of your changes.

For example, you might want to make modifications to the image data prior to performing the

forward transforms and observe the impact of those modifications on the spectral data.

Similarly, you might want to make modifications to the spectral data prior to performing the

inverse transform, and observe the impact of those modifications on the resulting images.

See instructions here and here on how to run the programs.

Whatever you do, have fun and learn as much as you can about the use of the 2D-DCT with

image data.

Summary

In Part 1 of this lesson I taught you how to use the forward two-dimensional Discrete Cosine

Transform (2D-DCT) to compute and display the wave-number spectrum of an image. I also

taught you how to apply the inverse 2D-DCT to the spectral data to reconstruct and display a

replica of the original image.

In this document (Part 2), I taught you how to sub-divide the image before applying the forward

and inverse 2D-DCTs in a manner similar to the way it is done in the JPEG image compression

algorithm.

I showed that sub-dividing the image can result in a significant improvement in transform speed

while still preserving the visual quality of the original image.

I also explained some of the theory behind and some of the reasons for sub-dividing images in

that manner.

What's Next?

http://www.developer.com/java/data/article.php/3634156

Future lessons in this series will explain the inner workings behind several data and image

compression schemes, including the following:

 Run-length data encoding

 GIF image compression

 JPEG image compression

Along the way, I will probably also branch off and show you how to use the 2D-DCT to create

hidden watermarks on images.

References

General

2440 Understanding the Lempel-Ziv Data Compression Algorithm in Java

2442 Understanding the Huffman Data Compression Algorithm in Java

2444 Understanding the Discrete Cosine Transform in Java

2446 Understanding the 2D Discrete Cosine Transform in Java, Part 1

1468 Plotting Engineering and Scientific Data using Java

1478 Fun with Java, How and Why Spectral Analysis Works

1482 Spectrum Analysis using Java, Sampling Frequency, Folding Frequency, and the FFT

Algorithm

1483 Spectrum Analysis using Java, Frequency Resolution versus Data Length

1484 Spectrum Analysis using Java, Complex Spectrum and Phase Angle

1485 Spectrum Analysis using Java, Forward and Inverse Transforms, Filtering in the Frequency

Domain

1486 Fun with Java, Understanding the Fast Fourier Transform (FFT) Algorithm

1489 Plotting 3D Surfaces using Java

1490 2D Fourier Transforms using Java

1491 2D Fourier Transforms using Java, Part 2

Discrete Cosine Transform equations

Discrete cosine transform - Wikipedia, the free encyclopedia

The Data Analysis Briefbook - Discrete Cosine Transform

National Taiwan University - DSP Group - Discrete Cosine Transform

Complete Program Listings

Complete listings of the programs discussed in this lesson are shown in Listing 17 through

Listing 20 below.

/*File ImgMod35a.java

Copyright 2005, R.G.Baldwin

This is a modification of ImgMod35 to normalize and display

http://www.developer.com/java/data/article.php/3586396
http://www.developer.com/java/other/article.php/3603066
http://www.developer.com/java/other/article.php/3619081
http://www.developer.com/java/data/article.php/3634156
http://www.developer.com/java/other/article.php/10936_1554511_1
http://www.developer.com/java/other/article.php/3374611
http://www.developer.com/java/other/article.php/3380031
http://www.developer.com/java/other/article.php/3392871
http://www.developer.com/java/other/article.php/3411041
http://www.developer.com/java/other/article.php/3436341
http://www.developer.com/java/other/article.php/3457251
http://www.developer.com/java/other/article.php/3508706
http://www.developer.com/java/other/article.php/3519441
http://www.developer.com/java/other/article.php/3526241
http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
http://rkb.home.cern.ch/rkb/AN16pp/node61.html
http://www.ntu.edu.tw/
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/dct.html

wave-number spectra instead of constructing a replica of

the original image. In addition, whereas ImgMod35 uses a

fixed block size of 8x8 pixels, this program allows the

user to specify the block size.

This program performs a forward DCT on an image converting

the three color planes into spectral planes. The three

spectral planes are normalized so as to make them suitable

for being displayed as standard image data. The

normalization includes transformation of the spectral data

to log base 10 and scaling to cause the values to fall

between 0 and 255 inclusive.

This program breaks the image down into square blocks of

pixels and performs a forward DCT on each block producing

and displaying square blocks of spectral data. The size of

the blocks is specified by the user by entering the size

into a text field and pressing the Replot button.

Each color plane is individually processed.

Note that for small block sizes, this version of the

program is significantly faster than the version named

ImgMod034a, which does not break the image down into

blocks, but rather does the forward DCT on the entire

image.

This program can handle any block size up to the size of

the original image. However, it is optimized for block

sizes of 8x8 pixels. When the block size is 8x8 pixels,

the program uses an 8x8 cosine lookup table instead of

computing the cosine value every time it is needed. This

should cause the program to run faster.

The class is designed to be driven by the class named

ImgMod02a.

Enter the following at the command line to run this

program:

java ImgMod02a ImgMod35a ImageFileName

where ImageFileName is the name of a .gif or .jpg file,

including the extension.

When the user clicks the Replot button, the process is

repeated using the potentially new value for block size

and the new results are displayed.

This program requires access to the following class files

plus some inner classes that are defined inside the

following classes:

ImgIntfc02.class

ImgMod02a.class

ImgMod35a.class

ForwardDCT02.class

Tested using J2SE 5.0 and WinXP. J2SE 5.0 or later is

required due to the use of static imports.

**/

import java.awt.*;

import java.io.*;

import static java.lang.Math.*;

class ImgMod35a extends Frame implements ImgIntfc02{

 //The user can enter a value into the following field and

 // then click the Replot button. The image will be

 // broken down into square blocks of pixels where the

 // number of pixels on each side matches the value

 // entered by the user. Then the image will be

 // processed one block at a time.

 TextField subSizeField = new TextField("8");

 Label instructions = new Label(

 "Enter sub-image size and click Replot");

 //---//

 ImgMod35a(){//constructor

 add(instructions,BorderLayout.CENTER);

 add(subSizeField,BorderLayout.SOUTH);

 setTitle("Copyright 2006, R.G.Baldwin");

 setBounds(400,0,250,75);

 setVisible(true);

 }//end constructor

 //---//

 //This method is required by ImgIntfc02. It is called at

 // the beginning of the run and each time thereafter that

 // the user clicks the Replot button on the Frame

 // containing the images.

 public int[][][] processImg(int[][][] threeDPix,

 int imgRows,

 int imgCols){

 //The image is broken down into square blocks where the

 // following value specifies the dimensions of the

 // blocks.

 int imgSubSize = Integer.parseInt(

 subSizeField.getText());

 //Create an empty output array of the same size as the

 // incoming array.

 int[][][] output = new int[imgRows][imgCols][4];

 //Make a working copy of the 3D pixel array as type

 // double to avoid making permanent changes to the

 // original image data. Also, all processing will be

 // performed as type double.

 double[][][] working3D = copyToDouble(threeDPix);

 //The following code can be enabled to set any of the

 // three colors to black, thus removing them from the

 // output.

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

// working3D[row][col][1] = 0;//Red

// working3D[row][col][2] = 0;//Green

// working3D[row][col][3] = 0;//Blue

 }//end inner loop

 }//end outer loop

 //Extract and do a forward DCT on the red color plane,

 // one block at a time.

 double[][] redPlane = extractPlane(working3D,1);

 //Expand the plane such that both dimensions are a

 // multiple of imgSubSize.

 redPlane = expandPlane(redPlane,imgSubSize);

 //Do the forward DCT on the redPlane turning it into a

 // spectral plane where each individual spectrum

 // stored in the plane is a square block with

 // dimensions of imgSubSize.

 //To see the individual spectra, disable all but one

 // color plane above.

 forwardXformPlane(redPlane,imgSubSize);

 //Normalize the data in a 2D double plane to make it

 // compatible with being displayed as an image plane.

 // See the comments in the normalize method for an

 // explanation as to how the normalization is

 // accomplished.

 normalize(redPlane);

 //Insert the spectral plane back into the 3D array.

 // This method also trims off any extra rows and

 // columns created by expanding the dimensions to a

 // multiple of imgSubSize.

 insertPlane(working3D,redPlane,1);

 //Extract and do a forward DCT on the green color

 // plane using the same procedure used for the red

 // plane above.

 double[][] greenPlane = extractPlane(working3D,2);

 greenPlane = expandPlane(greenPlane,imgSubSize);

 forwardXformPlane(greenPlane,imgSubSize);

 normalize(greenPlane);

 insertPlane(working3D,greenPlane,2);

 //Extract and do a forward DCT on the blue color plane

 // using the same procedure used for the red plane

 // above..

 double[][] bluePlane = extractPlane(working3D,3);

 bluePlane = expandPlane(bluePlane,imgSubSize);

 forwardXformPlane(bluePlane,imgSubSize);

 normalize(bluePlane);

 insertPlane(working3D,bluePlane,3);

 //All three color planes have now been transformed into

 // spectral planes where each spectral plane is

 // composed of a potentially large number of contiguous

 // square spectral data blocks of size imgSubSize.

 //Convert the image color planes to type int and return

 // the array of pixel data to the calling method.

 output = copyToInt(working3D);

 //Return a reference to the output array.

 return output;

 }//end processImg method

 //---//

 //The purpose of this method is to extract a specified

 // row from a double 2D plane and to return it as a one-

 // dimensional array of type double.

 double[] extractRow(double[][] colorPlane,int row){

 int numCols = colorPlane[0].length;

 double[] output = new double[numCols];

 for(int col = 0;col < numCols;col++){

 output[col] = colorPlane[row][col];

 }//end outer loop

 return output;

 }//end extractRow

 //---//

 //The purpose of this method is to insert a specified

 // row of double data into a double 2D plane.

 void insertRow(double[][] colorPlane,

 double[] theRow,

 int row){

 int numCols = colorPlane[0].length;

 double[] output = new double[numCols];

 for(int col = 0;col < numCols;col++){

 colorPlane[row][col] = theRow[col];

 }//end outer loop

 }//end insertRow

 //---//

 //The purpose of this method is to extract a specified

 // col from a double 2D plane and to return it as a one-

 // dimensional array of type double.

 double[] extractCol(double[][] colorPlane,int col){

 int numRows = colorPlane.length;

 double[] output = new double[numRows];

 for(int row = 0;row < numRows;row++){

 output[row] = colorPlane[row][col];

 }//end outer loop

 return output;

 }//end extractCol

 //---//

 //The purpose of this method is to insert a specified

 // col of double data into a double 2D color plane.

 void insertCol(double[][] colorPlane,

 double[] theCol,

 int col){

 int numRows = colorPlane.length;

 double[] output = new double[numRows];

 for(int row = 0;row < numRows;row++){

 colorPlane[row][col] = theCol[row];

 }//end outer loop

 }//end insertCol

 //---//

 //The purpose of this method is to extract a color plane

 // from the double version of an image and to return it

 // as a 2D array of type double.

 public double[][] extractPlane(

 double[][][] threeDPixDouble,

 int plane){

 int numImgRows = threeDPixDouble.length;

 int numImgCols = threeDPixDouble[0].length;

 //Create an empty output array of the same

 // size as a single plane in the incoming array of

 // pixels.

 double[][] output =new double[numImgRows][numImgCols];

 //Copy the values from the specified plane to the

 // double array.

 for(int row = 0;row < numImgRows;row++){

 for(int col = 0;col < numImgCols;col++){

 output[row][col] =

 threeDPixDouble[row][col][plane];

 }//end loop on col

 }//end loop on row

 return output;

 }//end extractPlane

 //---//

 //The purpose of this method is to insert a double 2D

 // plane into the double 3D array that represents an

 // image. This method also trims off any extra rows and

 // columns in the double 2D plane.

 public void insertPlane(double[][][] threeDPixDouble,

 double[][] colorPlane,

 int plane){

 int numImgRows = threeDPixDouble.length;

 int numImgCols = threeDPixDouble[0].length;

 //Copy the values from the incoming color plane to the

 // specified plane in the 3D array.

 for(int row = 0;row < numImgRows;row++){

 for(int col = 0;col < numImgCols;col++){

 threeDPixDouble[row][col][plane] =

 colorPlane[row][col];

 }//end loop on col

 }//end loop on row

 }//end insertPlane

 //---//

 //This method copies an int version of a 3D pixel array

 // to an new pixel array of type double.

 double[][][] copyToDouble(int[][][] threeDPix){

 int imgRows = threeDPix.length;

 int imgCols = threeDPix[0].length;

 double[][][] new3D = new double[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 new3D[row][col][0] = threeDPix[row][col][0];

 new3D[row][col][1] = threeDPix[row][col][1];

 new3D[row][col][2] = threeDPix[row][col][2];

 new3D[row][col][3] = threeDPix[row][col][3];

 }//end inner loop

 }//end outer loop

 return new3D;

 }//end copyToDouble

 //---//

 //This method copies a double version of a 3D pixel array

 // into a new pixel array of type int.

 int[][][] copyToInt(double[][][] threeDPixDouble){

 int imgRows = threeDPixDouble.length;

 int imgCols = threeDPixDouble[0].length;

 int[][][] new3D = new int[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 new3D[row][col][0] =

 (int)threeDPixDouble[row][col][0];

 new3D[row][col][1] =

 (int)threeDPixDouble[row][col][1];

 new3D[row][col][2] =

 (int)threeDPixDouble[row][col][2];

 new3D[row][col][3] =

 (int)threeDPixDouble[row][col][3];

 }//end inner loop

 }//end outer loop

 return new3D;

 }//end copyToInt

 //---//

 //Expand a double 2D plane such that both dimensions are

 // a multiple of imgSubSize.

 double[][] expandPlane(double[][] plane,int imgSubSize){

 int rows = plane.length;

 int cols = plane[0].length;

 double[][] output;

 int rowsRem = rows%imgSubSize;

 int colsRem = cols%imgSubSize;

 if((rowsRem == 0) && (colsRem == 0)){

 //No expansion is required.

 return plane;

 }else{

 //An expansion is required. Copy the data from the

 // incoming array to a new expanded array, leaving

 // pad values of 0.0 at the right and bottom edges.

 output = new double[rows + (imgSubSize - rowsRem)]

 [cols + (imgSubSize - colsRem)];

 for(int row = 0;row < rows;row++){

 for(int col = 0;col < cols;col++){

 output[row][col] = plane[row][col];

 }//end inner loop

 }//end outer loop

 return output;

 }//end else

 }//end expandPlane

 //---//

 //Extracts and returns a square block of size imgSubSize

 // from a double 2D plane

 double[][] getSubPlane(double[][] colorPlane,

 int segRow,

 int segCol,

 int imgSubSize){

 double[][] theSubPlane =

 new double[imgSubSize][imgSubSize];

 for(int bigRow = segRow * imgSubSize,smallRow = 0;

 bigRow < (segRow * imgSubSize + imgSubSize);

 bigRow++,smallRow++){

 for(int bigCol = segCol * imgSubSize,smallCol = 0;

 bigCol < segCol * imgSubSize + imgSubSize;

 bigCol++,smallCol++){

 theSubPlane[smallRow][smallCol] =

 colorPlane[bigRow][bigCol];

 }//end inner loop

 }//end outer loop

 return theSubPlane;

 }//end getSubPlane

 //---//

 //Inserts square block of size imgSubSize into a double

 // 2D plane

 void insertSubPlane(double[][] colorPlane,

 double[][] theSubPlane,

 int segRow,

 int segCol,

 int imgSubSize){

 for(int bigRow = segRow * imgSubSize,smallRow = 0;

 bigRow < (segRow * imgSubSize + imgSubSize);

 bigRow++,smallRow++){

 for(int bigCol = segCol * imgSubSize,smallCol = 0;

 bigCol < segCol * imgSubSize + imgSubSize;

 bigCol++,smallCol++){

 colorPlane[bigRow][bigCol] =

 theSubPlane[smallRow][smallCol];

 }//end inner loop

 }//end outer loop

 }//end insertSubPlane

 //---//

 //Breaks a double color plane down into square blocks

 // of size imgSubSize and does a forward DCT xform on

 // each block.

 //Assembles the resulting spectral data blocks into a

 // spectral plane.

 //Assumes that the dimensions of the color plane are

 // multiples of imgSubSize.

 void forwardXformPlane(double[][] plane,int imgSubSize){

 int pixRows = plane.length;

 int pixCols = plane[0].length;

 //Loop on rows of blocks

 for(int segRow = 0;segRow < pixRows/imgSubSize;

 segRow++){

 //Loop on cols of blocks

 for(int segCol = 0;segCol < pixCols/imgSubSize;

 segCol++){

 double[][] theSubPlane =

 getSubPlane(plane,segRow,segCol,imgSubSize);

 forwardXformSubPlane(theSubPlane,imgSubSize);

 insertSubPlane(plane,

 theSubPlane,

 segRow,

 segCol,

 imgSubSize);

 }//end inner loop

 }//end outer loop

 }//end forwardXformPlane

 //---//

 //This method does a forward DCT on a square block of

 // pixels of size imgSubSize received as an incoming

 // parameter.

 void forwardXformSubPlane(double[][] theSubPlane,

 int imgSubSize){

 int imgRows = imgSubSize;

 int imgCols = imgSubSize;

 //Extract each row from the block and perform

 // a forward DCT on the row. Then insert the

 // transformed row back into the block. At that point,

 // the row no longer contains color pixel data, but

 // has been transformed into a row of spectral data.

 for(int row = 0;row < imgRows;row++){

 double[] theRow = extractRow(theSubPlane,row);

 double[] theXform = new double[theRow.length];

 //Perform the forward transform.

 ForwardDCT02.transform(theRow,theXform);

 //Insert the transformed row back into the block.

 insertRow(theSubPlane,theXform,row);

 }//end for loop

 //The block now contains the results of doing the

 // horizontal DCT one row at a time. The block no

 // longer contains color pixel data. Rather, it

 // contains spectral data for the horizontal dimension

 // only.

 //Extract each column from the block and perform a

 // forward DCT on the column. Then insert the

 // transformed column back into the block.

 for(int col = 0;col < imgCols;col++){

 double[] theCol = extractCol(theSubPlane,col);

 double[] theXform = new double[theCol.length];

 ForwardDCT02.transform(theCol,theXform);

 insertCol(theSubPlane,theXform,col);

 }//end for loop

 //The square block of size imgSubSize has now been

 // converted into a square block of spectral

 // coefficient data of the same size.

 }//end forwardXformSubPlane

 //---//

 //Normalizes the data in a 2D double plane to make it

 // compatible with being displayed as an image plane.

 //First all negative values are converted to positive

 // values.

 //Then all values are converted to log base 10 to

 // preserve the dynamic range of the plotting system.

 // All negative values are set to 0 at this point.

 //Then all values that are below X-percent of the maximum

 // value are set to X-percent of the maximum value

 // producing a floor for the values.

 //Then all values are biased so that the minimum value

 // (the floor) becomes 0.

 //Then all values are scaled so that the maximum value

 // becomes 255.

 void normalize(double[][] plane){

 int rows = plane.length;

 int cols = plane[0].length;

 //Begin by converting all negative values to positive

 // values. This is equivalent to the computation of

 // the magnitude for purely real data.

 for(int row = 0;row < rows;row++){

 for(int col = 0;col < cols;col++){

 if(plane[row][col] < 0){

 plane[row][col] = - plane[row][col];

 }//end if

 }//end inner loop

 }//end outer loop

 //Convert the values to log base 10 to preserve the

 // dynamic range of the plotting system. Set negative

 // values to 0.

 //First eliminate or change any values that are

 // incompatible with log10 method.

 for(int row = 0;row < rows;row++){

 for(int col = 0;col < cols;col++){

 if(plane[row][col] == 0.0){

 plane[row][col] = 0.0000001;

 }else if(plane[row][col] == Double.NaN){

 plane[row][col] = 0.0000001;

 }else if(plane[row][col] ==

 Double.POSITIVE_INFINITY){

 plane[row][col] = 9999999999.0;

 }//end else

 }//end inner loop

 }//end outer loop

 //Now convert the data to log base 10 setting all

 // negative results to 0.

 for(int row = 0;row < rows;row++){

 for(int col = 0;col < cols;col++){

 plane[row][col] = log10(plane[row][col]);

 if(plane[row][col] < 0){

 plane[row][col] = 0;

 }//end if

 }//end inner loop

 }//end outer loop

 //Now set everything below X-percent of the maximum

 // value to X-percent of the maximum value where X is

 // determined by the value of scale.

 double scale = 1.0/7.0;

 //First find the maximum value.

 double max = Double.MIN_VALUE;

 for(int row = 0;row < rows;row++){

 for(int col = 0;col < cols;col++){

 if(plane[row][col] > max){

 max = plane[row][col];

 }//end if

 }//end inner loop

 }//end outer loop

 //Now set everything below X-percent of the maximum to

 // X-percent of the maximum value and slide

 // everything down to cause the new minimum to be

 // at 0.0

 for(int row = 0;row < rows;row++){

 for(int col = 0;col < cols;col++){

 if(plane[row][col] < scale * max){

 plane[row][col] = scale * max;

 }//end if

 plane[row][col] -= scale * max;

 }//end inner loop

 }//end outer loop

 //Now scale the data so that the maximum value is 255.

 //First find the maximum value

 max = Double.MIN_VALUE;

 for(int row = 0;row < rows;row++){

 for(int col = 0;col < cols;col++){

 if(plane[row][col] > max){

 max = plane[row][col];

 }//end if

 }//end inner loop

 }//end outer loop

 //Now scale the data.

 for(int row = 0;row < rows;row++){

 for(int col = 0;col < cols;col++){

 plane[row][col] = plane[row][col] * 255.0/max;

 }//end inner loop

 }//end outer loop

 }//end normalize

 //---//

}//end class ImgMod35a

Listing 17

Listing 18

/*File ForwardDCT02.java

Copyright 2006, R.G.Baldwin

Rev 01/19/06

THIS VERSION IS OPTIMIZED FOR USE WITH 8x8 IMAGES.

See ForwardDCT01 for a general purpose version that works

for images of different sizes. This version will also

work with images of any size, but it is optimized for use

with 8x8-pixel images.

When transforming an 8x8-pixel image, this version uses an

8x8 cosine lookup table instead of calling the cos

function. Otherwise, it calls the cosine function during

each iteration. It is probably faster to use the lookup

table than it is to call the cosine function.

The static method named transform performs a forward

Discrete Cosine Transform (DCT) on an incoming series

and returns the DCT spectrum.

See http://en.wikipedia.org/wiki/Discrete_cosine_transform

#DCT-II and http://rkb.home.cern.ch/rkb/AN16pp/node61.html

for background on the DCT.

This formulation is from

http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/

coding/transform/dct.html

Incoming parameters are:

 double[] x - incoming real data

 double[] y - outgoing real data

Tested using J2SE 5.0 under WinXP. Requires J2SE 5.0 or

later due to the use of static import of Math class.

**/

import static java.lang.Math.*;

public class ForwardDCT02{

 //Enable the following statement to count and display

 // the number of computations.

 //static long callCount = 0;

 public static void transform(double[] x,double[] y){

 //The following values for the cosine table were obtained

 // by running the program with the call to the cos

 // function intact, printing the cosine of the argument,

 // capturing it, and then inserting the values here.

 // These are the cosine values used for transforming a

 // series containing 8 values.

 double[][] cosineTable = {

 {1.0,

 1.0,

 1.0,

 1.0,

 1.0,

 1.0,

 1.0,

 1.0},

 {0.9807852804032304,

 0.8314696123025452,

 0.5555702330196023,

 0.19509032201612833,

 -0.1950903220161282,

 -0.555570233019602,

 -0.8314696123025453,

 -0.9807852804032304},

 {0.9238795325112867,

 0.38268343236508984,

 -0.3826834323650897,

 -0.9238795325112867,

 -0.9238795325112868,

 -0.38268343236509034,

 0.38268343236509,

 0.9238795325112865},

 {0.8314696123025452,

 -0.1950903220161282,

 -0.9807852804032304,

 -0.5555702330196022,

 0.5555702330196018,

 0.9807852804032304,

 0.19509032201612878,

 -0.8314696123025451},

 {0.7071067811865476,

 -0.7071067811865475,

 -0.7071067811865477,

 0.7071067811865474,

 0.7071067811865477,

 -0.7071067811865467,

 -0.7071067811865471,

 0.7071067811865466},

 {0.5555702330196023,

 -0.9807852804032304,

 0.1950903220161283,

 0.8314696123025456,

 -0.8314696123025451,

 -0.19509032201612803,

 0.9807852804032307,

 -0.5555702330196015},

 {0.38268343236508984,

 -0.9238795325112868,

 0.9238795325112865,

 -0.3826834323650899,

 -0.38268343236509056,

 0.9238795325112867,

 -0.9238795325112864,

 0.38268343236508956},

 {0.19509032201612833,

 -0.5555702330196022,

 0.8314696123025456,

 -0.9807852804032307,

 0.9807852804032304,

 -0.831469612302545,

 0.5555702330196015,

 -0.19509032201612858}

 };

 //Enable the following statement to count and display

 // the number of computations.

 //long count = 0;

 int N = x.length;

 if(N == 8){

 //Run optimized version by using cosine lookup table

 // instead of computing cosine values for each

 // iteration.

 //Outer loop interates on frequency values.

 for(int k=0; k < N;k++){

 double sum = 0.0;

 //Inner loop iterates on time-series values.

 for(int n=0; n < N; n++){

 double cosine = cosineTable[k][n];

 double product = x[n]*cosine;

 sum += product;

 //Enable the following statement to count and

 //display the number of computations.

 //count++;

 }//end inner loop

 double alpha;

 if(k == 0){

 alpha = 1.0/sqrt(2);

 }else{

 alpha = 1;

 }//end else

 y[k] = sum*alpha*sqrt(2.0/N);

 }//end outer loop

 }else{

 //Run regular version by computing cosine values for

 // each iteration.

 //Outer loop interates on frequency values.

 for(int k=0; k < N;k++){

 double sum = 0.0;

 //Inner loop iterates on time-series values.

 for(int n=0; n < N; n++){

 double arg = PI*k*(2.0*n+1)/(2*N);

 double cosine = cos(arg);

 double product = x[n]*cosine;

 sum += product;

 //Enable the following statement to count and

 //display the number of computations.

 //count++;

 }//end inner loop

 double alpha;

 if(k == 0){

 alpha = 1.0/sqrt(2);

 }else{

 alpha = 1;

 }//end else

 y[k] = sum*alpha*sqrt(2.0/N);

 }//end outer loop

 }//end else

 //Enable the following two statements to count and

 //display the number of computations.

 //callCount++;

 //System.out.println(callCount + " " + count + " "

 // + callCount*count);

 }//end transform method

 //---//

}//end class ForwardDCT02

Listing 18

Listing 19

/*File ImgMod35.java

Copyright 2005, R.G.Baldwin

This program performs a forward DCT on an image converting

the three color planes into spectral planes. Then it

performs an inverse DCT on the three spectral planes

converting them back into image color planes.

Nothing is done to the spectral planes following the

forward DCT and before the inverse DCT. However,

additional processing, such as requantization and

compression, followed by decompression could be inserted at

that point.

This is an update to ImgMod34. This update breaks the

image down into blocks of 8x8-pixels and performs the

forward DCT on each block producing 8x8 blocks of spectral

coefficient data. Then it performs an inverse DCT on each

of the 8x8 spectral blocks, reproducing the 8x8 pixel

blocks. The composite of all the 8x8-pixel blocks

constitutes the total image. Zero padding is applied to

the right and bottom of the image to force each

dimension of the image to be a multiple of 8 pixels. This

padding is trimmed from the resulting spectral planes and

the resulting composite image before the processed

composite image is returned to the calling method. This

process doesn't appear to have a detrimental impact on the

quality of the image at the edges.

For illustration purposes only, the method named

inverseXform8x8Plane contains a statement that can be

activated to cause the 8x8 block structure of the entire

process to become visible in the final image. This feature

should be disabled by default because it badly corrupts the

visual quality of the image when it is enabled.

Note that this version of the program is significantly

faster than the version named ImgMod034, which does not

break the image down into 8x8-pixel blocks, but rather does

the forward and inverse DCT on the entire image.

Among other things, this program uses an 8x8 cosine lookup

table instead of computing the cosine value every time it

is needed. This is probably one factor in the speed

improvement. Another factor is the simple fact that less

arithmetic is required to perform the transform when the

image is sub-divided into blocks and the transforms are

performed on the individual blocks instead of transforming

the entire image as a whole.

The class is designed to be driven by the class named

ImgMod02a.

Enter the following at the command line to run this

program:

java ImgMod02a ImgMod35 ImageFileName

where ImageFileName is the name of a .gif or .jpg file,

including the extension.

When you click the Replot button, the process will be

repeated and the results will be re-displayed. Because

there is no opportunity for user input after the program is

started, the Replot button is of little value to this

program.

This program requires access to the following class files

plus some inner classes that are defined inside the

following classes:

ImgIntfc02.class

ImgMod02a.class

ImgMod35.class

InverseDCT02.class

ForwardDCT02.class

Tested using J2SE 5.0 and WinXP. J2SE 5.0 or later is

required due to the use of static imports.

**/

import java.awt.*;

import java.io.*;

import static java.lang.Math.*;

class ImgMod35 implements ImgIntfc02{

 //This method is required by ImgIntfc02. It is called at

 // the beginning of the run and each time thereafter that

 // the user clicks the Replot button on the Frame

 // contaning the images.

 public int[][][] processImg(int[][][] threeDPix,

 int imgRows,

 int imgCols){

 //Create an empty output array of the same size as the

 // incoming array.

 int[][][] output = new int[imgRows][imgCols][4];

 //Make a working copy of the 3D pixel array as type

 // double to avoid making permanent changes to the

 // original image data. Also, all processing will be

 // performed as type double.

 double[][][] working3D = copyToDouble(threeDPix);

 //The following code can be enabled to set any of the

 // three colors to black, thus removing them from the

 // output.

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

// working3D[row][col][1] = 0;

// working3D[row][col][2] = 0;

// working3D[row][col][3] = 0;

 }//end inner loop

 }//end outer loop

 //Extract and do a forward DCT on the red color plane

 double[][] redPlane = extractPlane(working3D,1);

 //Expand the plane such that both dimensions are a

 // multiple of 8.

 redPlane = expandPlane(redPlane);

 //Do the forward DCT on the redPlane turning it into a

 // spectral plane where each individual spectrum stored

 // in the plane is an 8x8 square. To see the

 // individual spectra, disable all but one color plane

 // and disable the inverse transforms that are

 // performed later.

 forwardXformPlane(redPlane);

 //Insert the spectral plane back into the 3D array.

 // This method also trims off any extra rows and

 // columns created by expanding the dimensions to a

 // multiple of 8. Since those rows and columns

 // contain spectral data, the trimming could

 // conceivably cause problems with the quality of the

 // image at the right and bottom edges later. If so, I

 // will need to save the spectral plane somewhere else

 // without trimming it.

 insertPlane(working3D,redPlane,1);

 //Extract and do a forward DCT on the green color

 // plane.

 double[][] greenPlane = extractPlane(working3D,2);

 greenPlane = expandPlane(greenPlane);

 forwardXformPlane(greenPlane);

 //Insert the plane back into the 3D array

 insertPlane(working3D,greenPlane,2);

 //Extract and do a forward DCT on the blue color plane.

 double[][] bluePlane = extractPlane(working3D,3);

 bluePlane = expandPlane(bluePlane);

 forwardXformPlane(bluePlane);

 //Insert the plane back into the 3D array

 insertPlane(working3D,bluePlane,3);

 //All three color planes have now been transformed into

 // spectral planes where each spectral plane is

 // composed of a large number of contiguous 8x8

 // spectral data blocks.

 //Now transform the spectral planes back into image

 // color planes.

 //You can disable this section of code and disable two

 // of the three colors to get some idea as to what the

 // spectral planes look like. If you don't disable two

 // of the colors, you will see a composite of all three

 // spectral planes, which may or may not be

 // informative. At least, it shows the 8x8 block

 // structure of the spectral planes even if it is a

 // composite of three spectral planes.

 //Extract and do an inverse DCT on the red spectral

 // plane to produce a color image plane.

 redPlane = extractPlane(working3D,1);

 //Expand the plane such that both dimensions are a

 // multiple of 8.

 redPlane = expandPlane(redPlane);

 //Do the inverse DCT on the spectral plane producing a

 // color image plane.

 inverseXformPlane(redPlane);

 //Insert the color plane back into the 3D array. This

 // also trims off any extra rows and columns created by

 // expanding to a multiple of 8.

 insertPlane(working3D,redPlane,1);

 //Extract and do an inverse DCT on the green spectral

 // plane to produce a color image plane.

 greenPlane = extractPlane(working3D,2);

 greenPlane = expandPlane(greenPlane);

 inverseXformPlane(greenPlane);

 insertPlane(working3D,greenPlane,2);

 //Extract and do an inverse DCT on the blue spectral

 // plane to produce a color image plane.

 bluePlane = extractPlane(working3D,3);

 bluePlane = expandPlane(bluePlane);

 inverseXformPlane(bluePlane);

 insertPlane(working3D,bluePlane,3);

 //End of section that does the inverse transforms.

 //Convert the image color planes to type int and return

 // the array of pixel data to the calling method.

 output = copyToInt(working3D);

 //Return a reference to the output array.

 return output;

 }//end processImg method

 //---//

 //The purpose of this method is to extract a specified

 // row from a double 2D plane and to return it as a one-

 // dimensional array of type double.

 double[] extractRow(double[][] colorPlane,int row){

 int numCols = colorPlane[0].length;

 double[] output = new double[numCols];

 for(int col = 0;col < numCols;col++){

 output[col] = colorPlane[row][col];

 }//end outer loop

 return output;

 }//end extractRow

 //---//

 //The purpose of this method is to insert a specified

 // row of double data into a double 2D plane.

 void insertRow(double[][] colorPlane,

 double[] theRow,

 int row){

 int numCols = colorPlane[0].length;

 double[] output = new double[numCols];

 for(int col = 0;col < numCols;col++){

 colorPlane[row][col] = theRow[col];

 }//end outer loop

 }//end insertRow

 //---//

 //The purpose of this method is to extract a specified

 // col from a double 2D plane and to return it as a one-

 // dimensional array of type double.

 double[] extractCol(double[][] colorPlane,int col){

 int numRows = colorPlane.length;

 double[] output = new double[numRows];

 for(int row = 0;row < numRows;row++){

 output[row] = colorPlane[row][col];

 }//end outer loop

 return output;

 }//end extractCol

 //---//

 //The purpose of this method is to insert a specified

 // col of double data into a double 2D color plane.

 void insertCol(double[][] colorPlane,

 double[] theCol,

 int col){

 int numRows = colorPlane.length;

 double[] output = new double[numRows];

 for(int row = 0;row < numRows;row++){

 colorPlane[row][col] = theCol[row];

 }//end outer loop

 }//end insertCol

 //---//

 //The purpose of this method is to extract a color plane

 // from the double version of an image and to return it

 // as a 2D array of type double.

 public double[][] extractPlane(

 double[][][] threeDPixDouble,

 int plane){

 int numImgRows = threeDPixDouble.length;

 int numImgCols = threeDPixDouble[0].length;

 //Create an empty output array of the same

 // size as a single plane in the incoming array of

 // pixels.

 double[][] output =new double[numImgRows][numImgCols];

 //Copy the values from the specified plane to the

 // double array.

 for(int row = 0;row < numImgRows;row++){

 for(int col = 0;col < numImgCols;col++){

 output[row][col] =

 threeDPixDouble[row][col][plane];

 }//end loop on col

 }//end loop on row

 return output;

 }//end extractPlane

 //---//

 //The purpose of this method is to insert a double 2D

 // plane into the double 3D array that represents an

 // image. This method also trims off any extra rows and

 // columns in the double 2D plane.

 public void insertPlane(double[][][] threeDPixDouble,

 double[][] colorPlane,

 int plane){

 int numImgRows = threeDPixDouble.length;

 int numImgCols = threeDPixDouble[0].length;

 //Copy the values from the incoming color plane to the

 // specified plane in the 3D array.

 for(int row = 0;row < numImgRows;row++){

 for(int col = 0;col < numImgCols;col++){

 threeDPixDouble[row][col][plane] =

 colorPlane[row][col];

 }//end loop on col

 }//end loop on row

 }//end insertPlane

 //---//

 //This method copies an int version of a 3D pixel array

 // to an new pixel array of type double.

 double[][][] copyToDouble(int[][][] threeDPix){

 int imgRows = threeDPix.length;

 int imgCols = threeDPix[0].length;

 double[][][] new3D = new double[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 new3D[row][col][0] = threeDPix[row][col][0];

 new3D[row][col][1] = threeDPix[row][col][1];

 new3D[row][col][2] = threeDPix[row][col][2];

 new3D[row][col][3] = threeDPix[row][col][3];

 }//end inner loop

 }//end outer loop

 return new3D;

 }//end copyToDouble

 //---//

 //This method copies a double version of a 3D pixel array

 // into a new pixel array of type int.

 int[][][] copyToInt(double[][][] threeDPixDouble){

 int imgRows = threeDPixDouble.length;

 int imgCols = threeDPixDouble[0].length;

 int[][][] new3D = new int[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 new3D[row][col][0] =

 (int)threeDPixDouble[row][col][0];

 new3D[row][col][1] =

 (int)threeDPixDouble[row][col][1];

 new3D[row][col][2] =

 (int)threeDPixDouble[row][col][2];

 new3D[row][col][3] =

 (int)threeDPixDouble[row][col][3];

 }//end inner loop

 }//end outer loop

 return new3D;

 }//end copyToInt

 //---//

 //The purpose of this method is to clip all negative

 // color values in a double color plane to a value of 0.

 void clipToZero(double[][] colorPlane){

 int numImgRows = colorPlane.length;

 int numImgCols = colorPlane[0].length;

 //Do the clip

 for(int row = 0;row < numImgRows;row++){

 for(int col = 0;col < numImgCols;col++){

 if(colorPlane[row][col] < 0){

 colorPlane[row][col] = 0;

 }//end if

 }//end inner loop

 }//end outer loop

 }//end clipToZero

 //---//

 //The purpose of this method is to clip all color values

 // in a double color plane that are greater than 255 to

 // a value of 255.

 void clipTo255(double[][] colorPlane){

 int numImgRows = colorPlane.length;

 int numImgCols = colorPlane[0].length;

 //Do the clip

 for(int row = 0;row < numImgRows;row++){

 for(int col = 0;col < numImgCols;col++){

 if(colorPlane[row][col] > 255){

 colorPlane[row][col] = 255;

 }//end if

 }//end inner loop

 }//end outer loop

 }//end clipTo255

 //---//

 //Expand a double 2D plane such that both dimensions are

 // a multiple of 8.

 double[][] expandPlane(double[][] plane){

 int rows = plane.length;

 int cols = plane[0].length;

 double[][] output;

 int rowsRem = rows%8;

 int colsRem = cols%8;

 if((rowsRem == 0) && (colsRem == 0)){

 //No expansion is required.

 return plane;

 }else{

 //An expansion is required. Copy the data from the

 // incoming array to a new expanded array, leaving

 // pad values of 0.0 at the right and bottom edges.

 output = new double

 [rows + (8 - rowsRem)][cols + (8 - colsRem)];

 for(int row = 0;row < rows;row++){

 for(int col = 0;col < cols;col++){

 output[row][col] = plane[row][col];

 }//end inner loop

 }//end outer loop

 return output;

 }//end else

 }//end expandPlane

 //---//

 //Extracts and returns an 8x8 block from a double 2D

 // plane.

 double[][] get8x8Block(double[][] colorPlane,

 int segRow,

 int segCol){

 double[][] the8x8Block = new double[8][8];

 for(int bigRow = segRow * 8,smallRow = 0;

 bigRow < (segRow * 8 + 8);

 bigRow++,smallRow++){

 for(int bigCol = segCol * 8,smallCol = 0;

 bigCol < segCol * 8 + 8;

 bigCol++,smallCol++){

 the8x8Block[smallRow][smallCol] =

 colorPlane[bigRow][bigCol];

 }//end inner loop

 }//end outer loop

 return the8x8Block;

 }//end get8x8Block

 //---//

 //Inserts an 8x8 block into a double 2D plane

 void insert8x8Block(double[][] colorPlane,

 double[][] the8x8Plane,

 int segRow,

 int segCol){

 for(int bigRow = segRow * 8,smallRow = 0;

 bigRow < (segRow * 8 + 8);

 bigRow++,smallRow++){

 for(int bigCol = segCol * 8,smallCol = 0;

 bigCol < segCol * 8 + 8;

 bigCol++,smallCol++){

 colorPlane[bigRow][bigCol] =

 the8x8Plane[smallRow][smallCol];

 }//end inner loop

 }//end outer loop

 }//end insert8x8Block

 //---//

 //Breaks a double color plane down into 8x8-pixel blocks

 // and does a forward DCT xform on each block. Assembles

 // the resulting spectral data blocks into a spectral

 // plane. Assumes that the dimensions of the color plane

 // are multiples of 8

 void forwardXformPlane(double[][] plane){

 int pixRows = plane.length;

 int pixCols = plane[0].length;

 //Loop on rows of 8x8 blocks

 for(int segRow = 0;segRow < pixRows/8;segRow++){

 //Loop on cols of 8x8 blocks

 for(int segCol = 0;segCol < pixCols/8;segCol++){

 double[][] the8x8Plane =

 get8x8Block(plane,segRow,segCol);

 forwardXform8x8Block(the8x8Plane);

 insert8x8Block(plane,the8x8Plane,segRow,segCol);

 }//end inner loop

 }//end outer loop

 }//end forwardXformPlane

 //---//

 //This method does a forward DCT on an 8x8 block of

 // pixels from a color plane received as an incoming

 // parameter.

 void forwardXform8x8Block(double[][] the8x8Block){

 int imgRows = 8;

 int imgCols = 8;

 //Extract each row from the 8x8-pixel block and perform

 // a forward DCT on the row. Then insert the

 // transformed row back into the block. At that point,

 // the row no longer contains color pixel data, but

 // has been transformed into a row of spectral data.

 for(int row = 0;row < imgRows;row++){

 double[] theRow = extractRow(the8x8Block,row);

 double[] theXform = new double[theRow.length];

 //Perform the forward transform.

 ForwardDCT02.transform(theRow,theXform);

 //Insert the transformed row back into the block.

 insertRow(the8x8Block,theXform,row);

 }//end for loop

 //The block now contains the results of doing the

 // horizontal DCT one row at a time. The block no

 // longer contains color pixel data. Rather, it

 // contains spectral data for the horizontal dimension

 // only.

 //Extract each column from the block and perform a

 // forward DCT on the column. Then insert the

 // transformed column back into the block.

 for(int col = 0;col < imgCols;col++){

 double[] theCol = extractCol(the8x8Block,col);

 double[] theXform = new double[theCol.length];

 ForwardDCT02.transform(theCol,theXform);

 insertCol(the8x8Block,theXform,col);

 }//end for loop

 //The 8x8 block has now been converted into an 8x8

 // block of spectral coefficient data.

 }//end forwardXform8x8Block

 //---//

 //Breaks a spectral plane down into 8x8 blocks, performs

 // an inverse DCT on each block, and inserts the

 // resulting 8x8 image blocks into a color plane. Assumes

 // that the dimensions of the plane are multiples of 8

 void inverseXformPlane(double[][] plane){

 int pixRows = plane.length;

 int pixCols = plane[0].length;

 //Loop on rows of 8x8 blocks

 for(int segRow = 0;segRow < pixRows/8;segRow++){

 //Loop on cols of 8x8 blocks

 for(int segCol = 0;segCol < pixCols/8;segCol++){

 double[][] the8x8Block =

 get8x8Block(plane,segRow,segCol);

 inverseXform8x8Plane(the8x8Block);

 insert8x8Block(plane,the8x8Block,segRow,segCol);

 }//end inner loop

 }//end outer loop

 }//end inverseXformPlane

 //---//

 //This method performs an inverse DCT on an 8x8 spectral

 // data block.

 void inverseXform8x8Plane(double[][] the8x8Block){

 int imgRows = 8;

 int imgCols = 8;

 //Extract each col from the spectral data block and

 // perform an inverse DCT on the column. Then insert it

 // back into the block, which is being transformed into

 // a block of color pixel data.

 for(int col = 0;col < imgCols;col++){

 double[] theXform = extractCol(the8x8Block,col);

 double[] theCol = new double[theXform.length];

 //Now perform the inverse transform.

 InverseDCT02.transform(theXform,theCol);

 //Insert it back into the block.

 insertCol(the8x8Block,theCol,col);

 }//end for loop

 //At this point, an inverse DCT has been performed on

 // each column in the spectral data block, one column

 // at a time.

 //Extract each row from the block and perform an

 // inverse DCT on the row. Then insert it back into the

 // block. The row now contains color pixel data.

 for(int row = 0;row < imgRows;row++){

 double[] theXform = extractRow(the8x8Block,row);

 double[] theRow = new double[theXform.length];

 //Now perform the inverse transform.

 InverseDCT02.transform(theXform,theRow);

 //Insert it back into the block.

 insertRow(the8x8Block,theRow,row);

 }//end for loop

 //For illustration purposes only, activate the

 // following statement to cause the 8x8 block

 // structure of the entire process to become visible

 // in the displayed image. This causes each individual

 // block of pixel data to be a slightly different

 // color.

 //addRandom(the8x8Block);

 //At this point, the spectral data block has been

 // converted into an 8x8 block of pixel color data.

 // Ultimately it will be necessary to convert it to

 // 8-bit unsigned pixel color format in order to

 // display it. Clip to zero and 255.

 clipToZero(the8x8Block);

 clipTo255(the8x8Block);

 }//end inverseXform8x8Plane

 //---//

 //The purpose of this method is to add the same random

 // color value to all of the values in an 8x8 block of

 // image color data to cause the block structure of the

 // process to be visible. This capability is intended

 // to be used for illustration purposes only as it

 // badly corrupts the quality of the image.

 void addRandom(double[][] colorPlane){

 double bias = 100.0 * random();

 int numImgRows = colorPlane.length;

 int numImgCols = colorPlane[0].length;

 //Do the clip

 for(int row = 0;row < numImgRows;row++){

 for(int col = 0;col < numImgCols;col++){

 colorPlane[row][col] += bias;

 }//end inner loop

 }//end outer loop

 }//end addRandom

 //---//

}//end class ImgMod35

Listing 19

Listing 20

/*File InverseDCT02.java

Copyright 2006, R.G.Baldwin

Rev 01/19/06

THIS VERSION IS OPTIMIZED FOR USE WITH 8x8 IMAGES.

See InverseDCT01 for a general purpose version that works

for images of different sizes. This version will also

work with images of any size, but it is optimized for use

with 8x8-pixel images.

When transforming an 8x8-pixel image, this version uses an

8x8 cosine lookup table instead of calling the cos

function. Otherwise, it calls the cosine function during

each iteration. It is probably faster to use the lookup

table than it is to call the cosine function.

The static method named transform performs an inverse

Discreet Cosine Transform (DCT) on in incoming DCT

spectrum and returns the DCT time or image series.

See http://en.wikipedia.org/wiki/Discrete_cosine_transform

#DCT-II and http://rkb.home.cern.ch/rkb/AN16pp/node61.html

for background on the DCT.

This formulation is from

http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/

coding/transform/dct.html

Incoming parameters are:

 double[] y - incoming real data

 double[] x - outgoing real data

Tested using J2SE 5.0 under WinXP. Requires J2SE 5.0 or

later due to the use of static import of Math class.

**/

import static java.lang.Math.*;

public class InverseDCT02{

 public static void transform(double[] y,double[] x){

 //The following values for the cosine table were obtained

 // by running the program with the call to the cos

 // function intact, printing the cosine of the argument,

 // capturing it, and then inserting the values here.

 // These are the cosine values used for transforming a

 // series containing 8 values.

 double[][] cosineTable = {

 {1.0,

 0.9807852804032304,

 0.9238795325112867,

 0.8314696123025452,

 0.7071067811865476,

 0.5555702330196023,

 0.38268343236508984,

 0.19509032201612833},

 {1.0,

 0.8314696123025452,

 0.38268343236508984,

 -0.1950903220161282,

 -0.7071067811865475,

 -0.9807852804032304,

 -0.9238795325112868,

 -0.5555702330196022},

 {1.0,

 0.5555702330196023,

 -0.3826834323650897,

 -0.9807852804032304,

 -0.7071067811865477,

 0.1950903220161283,

 0.9238795325112865,

 0.8314696123025456},

 {1.0,

 0.19509032201612833,

 -0.9238795325112867,

 -0.5555702330196022,

 0.7071067811865474,

 0.8314696123025456,

 -0.3826834323650899,

 -0.9807852804032307},

 {1.0,

 -0.1950903220161282,

 -0.9238795325112868,

 0.5555702330196018,

 0.7071067811865477,

 -0.8314696123025451,

 -0.38268343236509056,

 0.9807852804032304},

 {1.0,

 -0.555570233019602,

 -0.38268343236509034,

 0.9807852804032304,

 -0.7071067811865467,

 -0.19509032201612803,

 0.9238795325112867,

 -0.831469612302545},

 {1.0,

 -0.8314696123025453,

 0.38268343236509,

 0.19509032201612878,

 -0.7071067811865471,

 0.9807852804032307,

 -0.9238795325112864,

 0.5555702330196015},

 {1.0,

 -0.9807852804032304,

 0.9238795325112865,

 -0.8314696123025451,

 0.7071067811865466,

 -0.5555702330196015,

 0.38268343236508956,

 -0.19509032201612858}

 };

 int N = y.length;

 if(N == 8){

 //Run optimized version by using cosine lookup table

 // instead of computing cosine values for each

 // iteration.

 //Outer loop interates on time values.

 for(int n=0; n < N;n++){

 double sum = 0.0;

 //Inner loop iterates on frequency values

 for(int k=0; k < N; k++){

 double cosine = cosineTable[n][k];

 double product = y[k]*cosine;

 double alpha;

 if(k == 0){

 alpha = 1.0/sqrt(2);

 }else{

 alpha = 1;

 }//end else

 sum += alpha * product;

 }//end inner loop

 x[n] = sum * sqrt(2.0/N);

 }//end outer loop

 }else{

 //Run regular version by computing cosine values for

 // each iteration.

 //Outer loop interates on time values.

 for(int n=0; n < N;n++){

 double sum = 0.0;

 //Inner loop iterates on frequency values

 for(int k=0; k < N; k++){

 double arg = PI*k*(2.0*n+1)/(2*N);

 double cosine = cos(arg);

 double product = y[k]*cosine;

 double alpha;

 if(k == 0){

 alpha = 1.0/sqrt(2);

 }else{

 alpha = 1;

 }//end else

 sum += alpha * product;

 }//end inner loop

 x[n] = sum * sqrt(2.0/N);

 }//end outer loop

 }//end else

 }//end transform method

 //---//

}//end class InverseDCT02

Listing 20

Copyright 2006, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which have gained a worldwide following among

experienced and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

Keywords
java data image compression two-dimensional Discrete Cosine Transform, DCT Huffman

Lempel Ziv

-end-

