
Understanding the Lempel-Ziv Data Compression

Algorithm in Java

Learn how to write a Java program that illustrates lossless data compression according to the

Lempel-Ziv Compression Algorithm commonly known as LZ77. Also learn about the

characteristics of the algorithm that result in data compression.

Published: February 21, 2006

By Richard G. Baldwin

Java Programming Notes # 2440

 Preface

 General Background Information

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 What's Next?

 Complete Program Listing

Preface

This is the first lesson in a new series of lessons that will teach you about data and image

compression. The series begins with the Lempel-Ziv Lossless Data Compression Algorithm,

commonly known as LZ77.

Future lessons will cover a variety of compression schemes, including:

 Huffman data encoding

 Run-length data encoding

 GIF image compression

 JPEG image compression

The programs that I will provide in these lessons are provided for educational purposes only. If

you use these programs for any purpose, you are using them at your own risk. I accept no

responsibility for any damages that you may incur as a result of the use of these programs.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

mailto:Baldwin@DickBaldwin.com

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

General Background Information

Most of us use data or image compression on a daily basis without even thinking about it. If you

use one of the popular zip programs to archive your data, you are using a program that typically

implements several different data compression algorithms in combination. If you take pictures

with a digital camera, you are creating files that describe images using the JPEG image

compression format. You may be able to adjust the parameters on your camera to provide a

tradeoff between image quality on one hand and image compression on the other.

The Lempel-Ziv algorithm

LZ77 is the name commonly given to a lossless data compression algorithm published in papers

by Abraham Lempel and Jacob Ziv in 1977. This algorithm forms the basis for many LZ

variations including LZW, LZSS and others.

A lossless compression algorithm

LZ77 is a lossless compression algorithm. What this means is that if you compress a document

using the algorithm, and then decompress the compressed version, the result will be an exact

copy of the original document. Not all compression algorithms are lossless. The JPEG image

compression algorithm, for example, does not produce an exact copy of an image that has been

compressed using the algorithm.

A dictionary encoding algorithm

LZ77 is known as a dictionary encoding algorithm, as opposed for example to the Huffman

encoding algorithm, which is a statistical encoding algorithm. Compression in the LZ77

algorithm is based on the notion that strings of characters (words, phrases, etc.) occur repeatedly

in the message being compressed. Compression with the Huffman encoding algorithm is based

on the probability of occurrence of individual characters in the message.

Combinations of compression algorithms

Different variations of the LZ algorithms, the Huffman algorithm, and other compression

algorithms are often combined in data and image compression programs. For example,

numerous sources on the web indicate that commercially available zip programs often

incorporate something called DEFLATE. According to Wikipedia,

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/
http://en.wikipedia.org/wiki/DEFLATE_(algorithm)

"DEFLATE is a lossless data compression algorithm that uses a combination of

the LZ77 algorithm and Huffman coding. It was originally defined by Phil Katz

for version 2 of his PKZIP archiving tool, and was later specified in RFC 1951."

Search for Lempel and Ziv on the Internet

Beyond this brief background description, if you go to Google and search for the keywords

Lempel and Ziv, you will find more online material than you can possibly have the time to

read. A particularly useful resource is the animated program named LZ that you can download

from Sami Khuri's Visualization and Animation Packages.

Preview

As mentioned above, LZ77 is the name commonly given to a lossless data compression

algorithm published in papers by Abraham Lempel and Jacob Ziv in 1977.

Explaining how LZ77 works

The Java program named LZ77v01 that I will present and explain in this lesson implements a

very close approximation to theLZ77 compression algorithm. While this program may not

match that algorithm in every respect, the match is close enough to satisfy the primary purpose

of the program, which is to explain how the LZ77 algorithm works.

Not a production compression program

The program was specifically designed to serve its primary purpose of education. No thought or

effort was given to speed, efficiency, memory utilization, or any other factor that would be

important in a program written for production data compression purposes. In some cases, the

program was purposely made less efficient (in the name of clarity) by using two or more

statements to accomplish a task that could be accomplished by a single more complex statement.

Sample messages

Two sample messages are hard-coded into the program. You can switch between those

messages by enabling and disabling one or the other using comments and then recompiling the

program. You can also insert your own message and recompile the program to use your message

if you choose to do so.

A collection of Tuple objects

The program first encodes a message into a collection of Tuple objects stored in an ArrayList

object using a very close approximation to the LZ77 lossless data compression algorithm. Then

the program decodes the message by extracting the information from the Tuple objects and using

that information to reconstruct the original message.

http://en.wikipedia.org/wiki/Phil_Katz
http://en.wikipedia.org/wiki/PKZIP
http://en.wikipedia.org/wiki/Request_for_Comments
http://www.google.com/
http://www.mathcs.sjsu.edu/faculty/khuri/animation.html

(Tuple is the name of a class that I used to encapsulate a three-element tuple

containing three values that occur repeatedly in the LZ77 algorithm. I will use

the uppercase version, Tuple, to refer to the class or an object of the class, and

use the lowercase version, tuple, to refer to the three elements in a more general

sense.)

No conversion to a bit stream

The program does not actually convert the encoded (compressed) message into a stream of bits,

although it wouldn't be difficult to do so. Since the purpose of the effort was to illustrate the

behavior of the LZ77algorithm, and not to write a production data compression program,

converting the compressed data into a bit stream was considered to be superfluous. However,

the program does provide a theoretical analysis of the amount of compression that would be

achieved if the results were converted into a bit stream.

Program output

Quite a lot of output material is displayed on the screen while this program is running. This

material is designed to be used in this tutorial lesson to explain the behavior of the LZ data

compression algorithm.

Program testing

This program was tested against the demonstration Java program named LZ that can be

downloaded from Sami Khuri's Visualization and Animation Packages. Although the source

code for that program was not consulted during the development of my program, the animated

interactive nature of Khuri's program was extremely helpful to me in understanding the LZ77

algorithm.

The output from my program matches the output from Khuri's program for 60 characters of input

data and values of 10 for searchWindowLen and lookAheadWindowLen. (Khuri's program is

limited to an input data length of 60 characters.)

The program was tested using J2SE 5.0 and WinXP. J2SE 5.0 or later is required due to the use

of generics in the program.

Discussion and Sample Code

The LZ77v01 program

The program named LZ77v01 is presented in its entirety in Listing 24 near the end of the lesson.

I will discuss the program in fragments. The class definition begins in Listing 1.

class LZ77v01{

 //Use comments to enable and disable and to

http://en.wikipedia.org/wiki/Tuple
http://www.mathcs.sjsu.edu/faculty/khuri/animation.html
http://www.mathcs.sjsu.edu/faculty/khuri/animation.html
http://www.mathcs.sjsu.edu/faculty/khuri/animation.html
http://www.mathcs.sjsu.edu/faculty/khuri/animation.html

select

 //between the following demonstration

messages.

/*

 String rawData = "BAGHDAD, Iraq Violence

increased "

 + "across Iraq after a lull following the

Dec. 15 "

 + "parliamentary elections, with at least two

dozen "

 + "people including a U.S. soldier killed

Monday in "

 + "shootings and bombings mostly targeting

the Shiite-"

 + "dominated security services. The Defense

Ministry "

 + "director of operations, Brig. Gen. Abdul

Aziz "

 + "Mohammed-Jassim, blamed increased violence

in the "

 + "past two days on insurgents trying to

deepen the "

 + "political turmoil following the elections.

The "

 + "violence came as three Iraqi opposition

groups "

 + "threatened another wave of protests and

civil "

 + "disobedience if allegations of fraud are

not "

 + "properly investigated.";

*/

 String rawData = "Miss Kalissippi from

Mississippi is a "

 + "cowgirl who yells yippi when she rides her

horse in "

 + "the horse show in Mississippi.";

Listing 1

The class begins by hard-coding two sample messages into the program. The first message is a

news message copied directly from an Internet web site. The second message is a message from

my own imagination that was designed specifically to illustrate important concepts of the LZ77

algorithm.

You can select between these two messages by disabling one or the other through the use of

comments and then recompiling the program. Alternately, you can insert your own message and

test the behavior of the algorithm with a message of your choosing.

Miscellaneous instance variables

Several instance variables are declared in Listing 2.

 //A collection of Tuple objects

 ArrayList <Tuple>encodedData = new

ArrayList<Tuple>();

 //A reference to a single Tuple object

 Tuple thisTuple;

 //A substring that represents the search

window.

 String searchSubstring;

 //Working variables

 int matchLen;

 int matchLoc;

 int charCnt;

 int searchWindowStart;

 int lookAheadWindowEnd;

Listing 2

The class named Tuple is a simple wrapper class for which you can find the source code in

Listing 24. The purpose of an object of the Tuple class is to encapsulate three values that are

critical to the behavior of the LZ77 algorithm. I will have more to say about this later.

The search window and the lookAhead window

The LZ77 algorithm is based on the use of two sliding contiguous windows on the data being

compressed.

 //Modify the following values to change the

length of

 // the search window and/or the lookAhead

window.

 // Optimum values are one less than even

powers of 2.

 int searchWindowLen = 31;

 int lookAheadWindowLen = 7;

Listing 3

You can modify the size of those windows by modifying the initialization values of the two

variables shown in Listing 3. I will have more to say about setting the respective sizes of the two

windows shortly.

Compression on-the-fly

The LZ77 algorithm compresses the message on-the-fly as a pointer to the current location

moves through the message from beginning to end.

The lookAhead window

The lookAhead window consists of a specified number of characters ahead of the current

location. The lookAhead window has an initial size as specified in Listing 3 and decreases to

zero as the current-location pointer approaches the end of the message.

The search window

The search window consists of a specified number of characters, (which have already been

traversed), behind the current location. The search window has an initial size of zero characters

and increases to the specified value shown in Listing 3 as the current-location pointer moves

through the data.

The output is a collection of Tuple objects

As each new character is examined, a Tuple object is created in the output containing three

values. Thus, the output from the compression process consists of a collection of Tuple objects.

(Alternatively, each output tuple could consist of a group of bits of a specified size

that encapsulate the three required values.)

If the message is compressible (meaning that the message consists of a sequence of repetitive

matching strings), the number of tuples in the output will be less than the number of characters in

the message. This is accomplished by causing the contents of each tuple to point to the previous

occurrence of a matching string of characters rather than to simply repeat the string of

characters. Upon encountering such a tuple, the decompression process retrieves the matching

string of characters from the previously-reconstructed output characters, and appends the

matching string onto the end of the output character stream.

The compression factor

An output tuple always contains one character plus two other values. Thus, the size of a tuple

(consisting of a group of bits of a specified size) will always be larger than the number of bits

required for a single character in the input message.

(The hope is that each output tuple will contain sufficient information, in addition

to the character that it contains, to cause several characters to be created in the

decompressed output. This will only be true if the input message contains

repetitive strings, such as repetitive words or phrases. For example, messages

composed in the English language often contain many occurrences of words such

as the, and, in, but, for, to, be, than, etc.)

Compression greater than 1.0

In order for the compression factor to be greater than 1.0, the number of tuples in the output must

be less than the number of characters in the input. Further, that difference must be sufficiently

large to compensate for the fact that the size of a tuple is greater than the size of a single

character.

(I will show you examples later where the compression factor is greater than 1.0

a well as an example where the compression factor is less than 1.0.)

The LZ77 compression algorithm

The implementation of the compression algorithm is rather straightforward and can be described

in the following steps.

1. Set the current-location pointer to the beginning of the message.

2. Find the longest match that occurs in the search window for the beginning sequence of

characters in the lookAhead window.

3. Process the possible match:

a. If there is no match for even the first character in the lookAhead window,

output a tuple containing the following three values and increment the current-

location pointer by 1:

 offset: 0

 stringLen: 0

 nextChar: The unmatched first character in the lookAhead window.

b. If there is a match, output a tuple containing the following three values and

increment the current-location pointer by the length of the match plus 1:

 offset: The location of the beginning of the match in the search window

relative to the current location. (Note that even though this pointer is

pointing backwards towards the beginning of the message, it is recorded

as a positive value.)

 stringLen: The length of the match.

 nextChar: The first non-matching character in the lookAhead window

following the characters that match.

4. Go back to step 2 and repeat the process until the end of the message is encountered, saving

the collection of output tuples in some appropriate container.

The compressed message

When the end of the message is reached, the collection of tuples contains the compressed

message. The information in the Tuple objects can be converted into a stream of bits, written

into a file, or otherwise disposed of in whatever way is appropriate.

(In a production compression program, the tuples could be written into a stream

of output bits on-the-fly without the use of an intermediate collection of Tuple

objects.)

Decompressing the compressed message

Decompression of the compressed message is even easier than compressing the message. I will

describe the decompression process in more detail later.

The required number of bits for a tuple

The number of bits required for the first two values in the tuple depends on the respective sizes

of the search window and the lookAhead window.

(I am assuming that eight bits are required for the third value in the tuple, which

is an eight-bit character.)

For example, the number of bits required for the first value in the tuple depends on the maximum

possible value of the pointer that points to the matching string in the search window relative to

the current location. This, in turn, depends on the size of the search window.

Similarly, the number of bits required for the second value in the tuple depends on the maximum

value of the length of the matching string. This, in turn, depends on the size of the lookAhead

widow.

Optimizing the window sizes for bit size considerations

From the viewpoint of the number of bits required for the first two values in the tuple, the

optimum values for these two window sizes are one less than an even power of two. For

example, a window size of 7 can be stored in three bits whereas a window size of 8 requires four

bits. If you are going to set the size to 8, you might as well set it to 15.

Optimizing the lookAhead window size for compression

From a compression viewpoint, the optimum sizes for the two sliding windows depend on the

nature of the data being compressed. In general, I would think that the lookAhead window

needn't be very large for a message written in the English language. Except in rare cases, the

probable length of a matching string in such a message is unlikely to be greater than about eleven

characters (Mississippi for example). In that case, a lookAhead window size of fifteen characters

(four bits) might be appropriate.

Optimizing the search window size for compression

The optimum size of the search window is more difficult to predict. On one hand, for long

messages, the larger the search window, the greater is the probability that a match will be found

in many cases. On the other hand, the larger the search window, the more bits will be required

for the first value in the tuple regardless of whether or not a match is found.

This is clearly a situation where a tradeoff is in order. Increasing the probability of finding a

match improves the compression, but increasing the required size for all tuples decreases the

compression. A balance must be found between the two.

Some experimental results

At this point, I'm going to show you some experimental results to help you understand the

explanation of the compression algorithm given above. These experimental results were

produced by using the program named LZ77v01 to compress the message shown in Figure 1.

Miss Kalissippi from Mississippi is a cowgirl

who yells yip

pi when she rides her horse in the horse show

in Mississipp

i.

Figure 1

The message in Figure 1 was displayed with 59 characters per line.

The experimental output

Figure 2 shows three consecutive lines of screen output near the middle of the run.

ssippi is a cowgirl who yells y - ippi wh -

29,5,w - ippi w

 is a cowgirl who yells yippi w - hen she -

16,1,e - he

s a cowgirl who yells yippi whe - n she r -

0,0,n - n

Figure 2

The search window contents

The red text in the first line in Figure 2 shows the contents of the 31-character search window at

that point in the program. The position of the search window in the message corresponds to the

red text shown in Figure 1.

The lookAhead window contents

The blue text in the first line in Figure 2 shows the contents of the 7-character lookAhead

window at that point in the program. The position of the lookAhead window in the message

corresponds to the blue text shown in Figure 1.

(The dash and the spaces on either side of the dash between the red text and the

blue text in Figure 2 were placed there to provide a visual separation between the

contents of the search window on the left and the contents of the lookAhead

window on the right. They are not part of the message.)

The position of the current-location pointer

The current-location pointer is at the juncture of the red and blue characters in Figure 1 at that

point in the program.

Tracing the algorithm

For this iteration of the program, the algorithm begins with the first blue "i" in the lookAhead

window in Figure 2 and determines how many consecutive characters in the lookAhead window

can be matched up with a string of characters in the red search window of Figure 2.

Where is the match?

The result is that beginning with the third red character in Figure 2, there are five consecutive

characters, (ippi), that match the first five characters in the blue lookAhead window (including

the space character).

The first of those five matching characters occurs 29 characters to the left of the current location.

Finally, the first character in the lookAhead window that doesn't match the string in the search

window is the "w" character.

Create a Tuple object

The program creates a Tuple object that encapsulates the following three values and saves the

Tuple object in the collection of Tuple objects:

 offset: 29 (distance back to the matching string relative to the current location)

 stringLen: 5 (length of the matching string)

 nextChar: w (first non-matching character in the lookAhead window)

The material in Figure 2 is separated into four columns with the columns separated by

dashes. The three values encapsulated in the tuple are shown in black in the first line, third

column of Figure 2.

Reconstructing from the tuple information

The fourth column in Figure 2 shows the result of using the information contained in the tuple to

reconstruct a small portion of the original message. These are the characters that will be

appended to the output when the tuple is used later to decompress the entire compressed

message.

A very fruitful tuple

This particular tuple was a very fruitful tuple from a compression viewpoint. The expansion of

the contents of this tuple would cause six new characters, (ippi w), to be appended to the output

when the message is decompressed.

Move the current-location pointer

Because those six characters of input data have now been handled, the current-location pointer is

moved six characters to the right in the execution of the compression algorithm. The new

position for the current-location pointer is between the "w" and the "h" characters near the left

side of the second line in Figure 1.

(You can also see that by looking at the last character in the search window and

the first character of the lookAhead window for the second line in Figure 2. Once

again, the dashes in Figure 2 are there solely to separate the columns. They are

not part of the message data.)

Not quite as fruitful

The processing of the data in the lookAhead window for the second line in Figure 2 wasn't nearly

as fruitful as for the first line. Only the "h" character matched a character in the search window

as indicated by the middle value of "1" in the tuple contents in the fourth column in Figure 2. In

this case, the tuple contents were:

 offset: 16

 stringLen: 1

 nextChar: e

The fourth column in the second line of Figure 2 shows that upon decompression, this tuple

would cause the string "he" to be appended to the output.

A break-even proposition

For search window and lookAhead window sizes of 31 characters and 7 characters respectively,

sixteen bits would be required to contain the data stored in this tuple (assuming 8-bit character

data). From a compression viewpoint, a 16-bit tuple that produces two characters in the output is

a break-even proposition.

A net loss of 8 bits

The third line in Figure 2 shows the worst of all worlds. The first character, "n", in the

lookAhead window doesn't match even one character in the search window. Thus, a tuple was

constructed that encapsulates the following values:

 offset: 0

 stringLen: 0

 nextChar: n

Only one character is produced

The fourth column in the third line of Figure 2 shows that upon decompression, this tuple would

cause only the single character "n" to be appended to the output. In terms of compression, a 16-

bit tuple that transfers only one 8-bit character to the decompressed output represents a net loss

of eight bits.

Now let's get back to a discussion of the program code.

The main method

Listing 4 shows the main method in its entirety.

 public static void main(String[] args){

 new LZ77v01().doIt();

 }//end main

Listing 4

The main method simply instantiates a new object of the class and invokes the doIt method on

the object.

The doIt method

The doIt method begins in Listing 5.

 void doIt(){

 //Display a scale on the screen.

System.out.println("123456789012345678901234567890"

 +

"12345678901234567890123456789");

 //Display the raw data, 59 characters to the

line.

 display59(rawData);

 System.out.println();//blank line

Listing 5

Listing 5 displays a numeric scale across the top of the screen (to assist me in my publication

efforts) and then invokes the method named display59 to cause the message being compressed to

be displayed 59 characters to the line (as shown in Figure 1).

The display59 method

The method named display59 can be viewed in Listing 24 near the end of the lesson. This is a

very simple utility method that shouldn't require an explanation.

Process the message

Listing 6 shows the beginning of a while loop that is used to step through and compress the

message one character (or hopefully one substring) at a time.

 charCnt = 0;

 while(charCnt < rawData.length()){

Listing 6

(If it is necessary to compress the message one character at a time, the

compressed output will be larger then the uncompressed input. In order for

compression to be fruitful, it must be possible to frequently include substrings in

the output tuples that constitute the compressed message so that the number of

output tuples will be less than the number of input characters.)

The beginning of the search window

Listing 7 establishes the beginning of the search window during each iteration of the while loop.

 searchWindowStart = (charCnt-

searchWindowLen >=0)

 ? charCnt-

searchWindowLen

 : 0;

Listing 7

(In case you don't recognize this syntax, this statement is sometimes called a

conditional statement. I often call it a cheap if statement.)

If the expression in the parentheses evaluates to true, the entire expression on the right of the

assignment operator returns the value produced by the expression following the question

mark. Otherwise, the expression on the right of the assignment operator returns the value

produced by the expression following the colon.

A sliding search window

The purpose of using a conditional statement in this case is to cause the beginning of the search

window to be the first character in the message until the search window reaches the specified

size given by the value of searchWindowLen. Following that, the beginning of the search

window follows the current-location pointer at a fixed distance from the current-location pointer

causing the size of the search window to remain constant.

A sliding lookAhead window

Listing 8 does the same thing for the lookAhead window, except in reverse.

 lookAheadWindowEnd =

 (charCnt+lookAheadWindowLen <

rawData.length())

 ?

charCnt+lookAheadWindowLen

:rawData.length();

Listing 8

The lookAhead window starts out at full size (assuming the length of the message exceeds the

size of the lookAhead window) and then shrinks to zero at the end of the message.

Display search window and lookAhead window contents

Listing 9 displays the material shown in red and blue in the first line of Figure 2.

 //Display the contents of the search

window.

 System.out.print(rawData.substring(

searchWindowStart,charCnt) + " - ");

 //Display the contents of the

lookAheadWindow on the

 // same line as the search window,

separated by a

 // dash.

 System.out.print(rawData.substring(

charCnt,lookAheadWindowEnd) + " - ");

Listing 9

One line of material like the first line in Figure 2 is displayed during each iteration of the while

loop that began in Listing 6.

(Obviously this display is for educational purposes only and has nothing to do

with the actual compression of the message.)

Get a search window substring

Listing 10 extracts a substring from the message that contains the same data as the search

window. The purpose is to make it easier to write the code that searches for a match to the

characters in the lookAhead window.

 if(charCnt == 0){

 //Begin with an empty search window.

 searchSubstring = "";

 }else{

 searchSubstring = rawData.substring(

searchWindowStart,charCnt);

 }//end else

Listing 10

This is one of those cases where I purposely made the program less efficient in order to make the

code less cryptic. I could have performed the search on the search window portion of the

message itself, but the indexing would have been more cryptic.

Search for a match in the search window

Listing 11 searches to determine the longest substring from the lookAhead window, (beginning

with the first character in the lookAhead window), for which there is a matching substring in the

search window.

 matchLen = 1;

 String searchTarget = rawData.substring(

 charCnt,charCnt

+ matchLen);

 if(searchSubstring.indexOf(searchTarget)

!= -1){

 //A match was found for the one-

character string.

 // See if the match extends beyond one

character.

 //Limit the length of the possible

match to

 // lookAheadWindowLen

 matchLen++;//Increment length of

searchTarget.

 while(matchLen <= lookAheadWindowLen){

 //Keep testing and extending the

length of the

 // string being tested for a match

until the

 // test fails.

 searchTarget = rawData.substring(

charCnt,charCnt+matchLen);

 matchLoc =

searchSubstring.indexOf(searchTarget);

 //Be careful to avoid searching

beyond the end

 // of the raw data.

 if((matchLoc != -1) && ((charCnt +

matchLen)

 <

rawData.length())){

 matchLen++;

 }else{

 //The matching test failed. Break

out of the

 // loop.

 break;

 }//end else

 }//end while

Listing 11

The while loop in Listing 11 continues looping until the matching test fails. When the matching

test fails, control breaks out of the loop.

Go back one step

When control breaks out of the while loop in Listing 11, the value for matchLen has been

incremented one time too many, causing the matching test to fail.

 //Reduce matchLen to the longest length

that

 // matched.

 matchLen--;

 //We went one step too far increasing

matchLen. Go

 // back and get the location in the

search window

 // where the last match occurred.

 matchLoc = searchSubstring.indexOf(

rawData.substring(charCnt,charCnt+matchLen));

Listing 12

Listing 12 begins by reducing the value of matchLen by one character to compensate for the

overshoot described above.

Get the matching location

Then Listing 12 uses that corrected value of matchLen to perform one more search, (which is

guaranteed to succeed), to determine the location in the search window that matches the

beginning of the substring from the lookAhead window.

Skip matchLen characters in the input message

Listing 13 increases the value of the conditional control variable (otherwise referred to herein as

the current-location pointer) for the outer while loop to cause the process to skip over all of the

characters included in the matching substring from the lookAhead window.

 charCnt += matchLen;

Listing 13

(Hopefully, such increases will occur often and cause the number of iterations

performed by the outer while loop to be much less than the number of characters

in the input message. One Tuple object is produced for every iteration of the

outer while loop. For compression to be fruitful, the number of Tuple objects

produced must be much less than the number of characters in the message being

compressed.)

Instantiate a Tuple object

As a result of finding a match between the substring in the lookAhead window and the characters

in the search window, Listing 14 instantiates an object of the Tuple class that encapsulates the

following information:

 offset: Distance from the current location back to the location of the beginning of the

match in the search window.

 stringLen: Length of the match.

 nextChar: First non-matching character in the lookAhead window following the

matching substring

 //Calculate the offset

 int offset =

 (charCnt < (searchWindowLen

+ matchLen))

 ? charCnt -

matchLoc - matchLen

 :searchWindowLen -

matchLoc;

 //Get and save the next non-matching

character in

 // the lookAhead window.

 String nextChar =

rawData.substring(charCnt,charCnt+1);

 //Instantiate and populate the Tuple

object.

 thisTuple = new

Tuple(offset,matchLen,nextChar);

Listing 14

This is the fruitful form of tuple

This is the form of the Tuple object that is instantiated for situations like the ones illustrated by

the first and second lines in Figure 2.

The offset calculation in Listing 14 is a little cryptic, but shouldn't be beyond the capabilities of

those persons who regularly study my Java programming lessons.

The Tuple class

You can view the Tuple class in its entirety in Listing 24. The class is a simple wrapper class

designed to encapsulate the three values listed above and shouldn't require further explanation.

Save the Tuple object

Listing 13 saves the Tuple object in a collection of type ArrayList.

 encodedData.add(thisTuple);

Listing 15

No match was found

Listing 16 shows the else clause that goes with the if statement at the top of Listing 11.

 }else{

 //A match was not found for the next

character.

 //Encapsulate the following information

in a Tuple

 // object.

 //1. 0

 //2. 0

 //3. The non-matching character.

 String nextChar = rawData.substring(

charCnt,charCnt+1);

 thisTuple = new Tuple(0,0,nextChar);

 encodedData.add(thisTuple);

 }//end else

Listing 16

The code in the else clause in Listing 16 is executed when the first character in the lookAhead

window doesn't match any of the characters in the search window.

An unfruitful tuple

Listing 16 instantiates a Tuple object containing the information shown in the comments and

saves the Tuple object in the ArrayList collection. This is the form of the Tuple object that is

instantiated for situations like the one illustrated in the third line in Figure 2. This form of tuple

represents a net loss in terms of compression.

Increment the loop counter

Listing 17 increments the counter (the current-location pointer) that controls the outer while

loop that began in Listing 6.

 charCnt++;

Listing 17

Display the Tuple contents

Listing 18 displays the contents of the Tuple object on the same line as the search window and

the lookAhead window as shown in Figure 2. The contents of the Tuple object are shown in the

third column in Figure 2.

 System.out.print(thisTuple + " - ");

Listing 18

Display text represented by the Tuple object

Listing 19 displays the text represented by the contents of the Tuple as shown in Figure 2. This

is the material shown in the fourth column in Figure 2.

 if(thisTuple.stringLen > 0){

 //The Tuple contains a pointer to a

character or

 // string in the search window. Expand

and

 // display it.

 int start = charCnt - 1 -

thisTuple.stringLen

 -

thisTuple.offset;

 int end = charCnt - 1 -

thisTuple.offset;

 System.out.println(rawData.substring(

 start,end) +

thisTuple.nextChar);

 }else{

 //The tuple contains a character for

which no

 // match was found. Display it.

 System.out.println(thisTuple.nextChar);

 }//end else

 }//end while loop

Listing 19

The comments in Listing 19 should speak for themselves.

Listing 19 also signals the end of the while loop that began in Listing 6.

Message has been compressed

When the while that extends from Listing 6 through Listing 19 terminates, the message has been

compressed.

The original message has been encoded into a collection of tuples where each tuple contains the

following information:

 offset: Points backwards in the original message to the beginning of a match relative to

the current location. Has a value of 0 if there is no match for the next character (the first

character in the lookAhead window).

 stringLen: Specifies the length of the match or 0 if there is no match for the next

character.

 nextChar: The first non-matching character following a match, or the next character if

there is no match.

A compressed stream of bits

It would not be particularly difficult at this point to iterate on the collection of Tuple objects and

to produce a binary bit stream containing these three values.

For example, depending on the values specified for searchWindowLen and

lookAheadWindowLen, the first two values listed above could be encoded into the number of

bits required to contain the largest possible offset value and the largest possible stringLen

value. The character from the Tuple object could be encoded into eight bits. Then, the set of

bits required to describe the tuple could be inserted into a stream of bits.

However, this demonstration program does not produce such a compressed binary bit stream.

Decompress and display the message

Listing 20 shows the beginning of the code used to decompress and to display the compressed

message.

 StringBuffer reconData = new

StringBuffer();

Listing 20

The decompressed message is reconstructed into the StringBuffer object that is declared in

Listing 20.

The form of the compressed message

The compressed message is represented by a set of tuples where each tuple is a simple structure

containing the three values listed above.

Each tuple could be stored in an object, as is the case in this program.

Alternately, each tuple could be stored in a set of contiguous bits in a stream of bits as might be

read from a disk file. As near as I have been able to determine, the LZ77 algorithm is not

intended to be used with variable length data. Thus, each set of bits that encapsulates a tuple

would need to be the same length.

In this program, the tuples are stored in objects instantiated from the class named Tuple, so the

following explanation of the decompression process will be based on the use of such objects.

The decompression process

The simplicity of the decompression process is one of the strengths of the LZ77 algorithm. The

process iterates through the set of Tuple objects, sequentially processing one Tuple object at a

time. For each Tuple object, there are two possibilities.

First possibility, no match was found

This is the simpler of the two possibilities. (However, it doesn't help the compression

factor.) As mentioned earlier, this possibility probably represents a net loss insofar as

compression is concerned.

If the value of stringLen encapsulated in the Tuple object is 0, simply extract the character

referred to by nextChar and append it onto the end of the message that is being reconstructed.

Second possibility, a match was found

If the value of stringLen encapsulated in the Tuple object is not 0, this indicates that the Tuple

object can be used to produce a substring plus the character referred to by nextChar. (Large

values for stringLen have a positive impact insofar as compression is concerned.)

Where is the substring stored?

The substring already exists in the message that is being constructed. (The required substring

was constructed earlier in the decompression process.) All that is necessary at this point is to

get a copy of that substring and to append that copy onto the end of the message that is being

constructed.

The beginning of the existing substring (relative to the current location) is pointed to by the

value of offset. Just count characters in the direction of the beginning of the message. When

you have counted a number of characters equal to the value of offset, you will have reached the

beginning of the required substring.

The length of the substring is specified by the value of stringLen.

Get a copy of the substring

Use the values of offset and stringLen to extract a copy of the substring from the portion of the

message that has already been constructed and append the copy onto the end of the message

being constructed.

The single character

Then get the single character from the Tuple object and append it onto the end of the message

being constructed.

Repeat the process

Repeat the processing of individual tuples until you run out of Tuple objects. When you have

processed the last Tuple object, you will have reconstructed a copy of the original message from

the compressed representation of the message.

The decompression code

The code to accomplish the decompression process is shown in Listing 21.

 //Get an iterator on the collection of

Tuple objects.

 Iterator <Tuple>iterator =

encodedData.iterator();

 //Iterate on the collection

 while(iterator.hasNext()){

 Tuple nextTuple = iterator.next();

 if(nextTuple.stringLen == 0){

 //There was no match for this

character. Just

 // append it to the StringBuffer.

 reconData.append(nextTuple.nextChar);

 }else{

 //This Tuple contains information about

a match.

 // Use that information to reconstruct

and append

 // the matching data.

 for(int cnt = 0;cnt <

nextTuple.stringLen;cnt++){

 //Iterate once for each character in

the string

 // that must be reconstructed.

 //Obtain the matching characters from

the

 // previously constructed part of the

output

 // based on an offset value and a

stringLen value

 // that are stored in the Tuple.

 char workingChar = reconData.charAt(

 reconData.length() -

nextTuple.offset);

 //Append the character to the

StringBuffer. Note

 // that this increases the length of

the

 // StringBuffer object. Thus, the

next iteration

 // of the for loop will get the next

character

 // that is already in the

StringBuffer object.

 reconData.append(workingChar);

 }//end for loop

 //Now append the non-matching character

that is

 // stored in the Tuple.

 reconData.append(nextTuple.nextChar);

 }//end else

 }//end while

Listing 21

Knowing what you now know about the decompression process, no explanation beyond the

comments in Listing 21 should be required.

Display the decompressed message

A copy of the original message has now been constructed. The code in Listing 22 displays the

message 59 characters to the line.

 //Display a scale on the screen.

System.out.println("\n123456789012345678901234567890"

 +

"12345678901234567890123456789");

 //Now display the reconstructed message 59

characters

 // to the line.

 display59(new String(reconData));

Listing 22

If all went according to plan, the decompressed message should be an exact replica of the

original message. That is why LZ77 is referred to as a lossless compression algorithm.

Analyze the compression factor

The following analysis assumes that it is not necessary for the length of an individual binary

tuple to be a multiple of eight bits. Thus, it assumes that the number of bits used to store a tuple

can be optimized on the basis of the size of the search window and the size of the lookAhead

window.

The analysis also assumes that all characters require eight bits for storage and that the number of

bits used to store every tuple is the same as the number of bits used to store every other tuple.

Calculate and display the compression factor

Given those assumptions, the code in Listing 23 calculates and displays the compression factor

for a given message and a given pair of sizes for the search window and the lookAhead window.

 //Analyze the compression

 System.out.println("\nAnalyze the

compression.");

 System.out.println("Assume:");

 System.out.println(

 " 8 bits required per raw data

character.");

 //Calculate the number of bits required to

contain the

 // largest values that can occur in the

values for

 // offset and stringLen in the Tuple.

Assume that the

 // character in the Tuple is contained in 8

bits.

 int offsetBitsRequired = getBitsRequired(

searchWindowLen);

 int stringLenBitsRequired =

getBitsRequired(

lookAheadWindowLen);

 int tupleBitsRequired = 8 +

offsetBitsRequired

 +

stringLenBitsRequired;

 System.out.println(" Maximum offset value

of "

 + searchWindowLen + "

char requires "

 + offsetBitsRequired + "

bits.");

 System.out.println(" Maximum stringLen

value of "

 + lookAheadWindowLen + "

char requires "

 + stringLenBitsRequired + "

bits.");

 System.out.println(

 " Character in Tuple

requires 8 bits.");

 System.out.println(" " + tupleBitsRequired

 + " bits required

per Tuple.");

 int msgLength = rawData.length()*8;

 System.out.println("Raw data length = " +

msgLength

 + "

bits.");

 System.out.println("Number Tuples: "

 +

encodedData.size());

 int tupleLength =

encodedData.size()*tupleBitsRequired;

 System.out.println("Total Tuple length = "

 + tupleLength

+ " bits.");

 System.out.println("Compression factor = "

 +

(double)msgLength/tupleLength);

 }//end doIt

Listing 23

Straightforward code

Although the code in Listing 23 is rather long, the only thing in Listing 23 that is even half way

complicated is the invocation of the method named getBitsRequired to determine the number of

bits required to contain the maximum possible values for offset and stringLen. The maximum

possible value in each case depends on the size of the corresponding search window and

lookAhead window.

The method named getBitsRequired

You can view the method named getBitsRequired in its entirety in Listing 24. Hopefully you

will be able to understand that method without the need for additional explanation.

Formatting code

Most of the code in Listing 23 involves formatting the output that is shown in Figure 3.

The program output

Figure 3 shows the reconstructed message followed by the results of the compression analysis.

Miss Kalissippi from Mississippi is a cowgirl

who yells yip

pi when she rides her horse in the horse show

in Mississipp

i.

Analyze the compression.

Assume:

8 bits required per raw data character.

Maximum offset value of 31 char requires 5

bits.

Maximum stringLen value of 7 char requires 3

bits.

Character in Tuple requires 8 bits.

16 bits required per Tuple.

Raw data length = 960 bits.

Number Tuples: 53

Total Tuple length = 848 bits.

Compression factor = 1.1320754716981132

Figure 3

The bottom line

The bottom line in Figure 3 is that according to the assumptions described above, a binary

version of the compressed message would be 1.132 times smaller than the original version of the

message. Stated differently, the size of the compressed message would be 88.3 percent of the

size of the original message.

Vary some parameters and rerun

Increasing the size of the search window from 31 characters to 63 characters doesn't help with

the compression. In fact, the change causes the compression factor to be reduced from 1.132 to

1.107.

Increasing the size of the lookAhead window from 7 characters to 15 characters while leaving

the size of the search window at 63 characters reduces the compression factor even further, from

1.107 to 1.046.

However, decreasing the size of the lookAhead window from 7 characters to 3 characters while

setting the size of the search window back to 31 increases the compression factor slightly from

1.132 to 1.143.

A different message

As you may have guessed by now, the message about the cowgirl from Mississippi was designed

to cause it to contain lots of repetitive substrings.

Figure 4 shows the compression results for a news story written in English and taken directly

from an Internet web site. Nothing was done to cause this message to be well-suited or poorly-

suited for compression using the LZ77 algorithm

BAGHDAD, Iraq Violence increased across Iraq

after a lull f

ollowing the Dec. 15 parliamentary elections,

with at least

two dozen people including a U.S. soldier

killed Monday in

shootings and bombings mostly targeting the

Shiite-dominat

ed security services. The Defense Ministry

director of oper

ations, Brig. Gen. Abdul Aziz Mohammed-Jassim,

blamed incre

ased violence in the past two days on

insurgents trying to

deepen the political turmoil following the

elections. The v

iolence came as three Iraqi opposition groups

threatened an

other wave of protests and civil disobedience

if allegation

s of fraud are not properly investigated.

Analyze the compression.

Assume:

8 bits required per raw data character.

Maximum offset value of 31 char requires 5

bits.

Maximum stringLen value of 7 char requires 3

bits.

Character in Tuple requires 8 bits.

16 bits required per Tuple.

Raw data length = 5048 bits.

Number Tuples: 329

Total Tuple length = 5264 bits.

Compression factor = 0.958966565349544

Figure 4

A net loss in compression

As you can see from Figure 4, for a search window size of 31 characters and a lookAhead

window size of 7 characters, the compression factor was only 0.9589 for this news story. This

means that the compressed message was larger than the original message. That's certainly not

how we want a compression algorithm to behave.

Change the sizes of the sliding windows

Increasing the search window size from 31 characters to 255 characters, and decreasing the

lookAhead window size from 7 characters to 3 characters increased the compression factor from

0.9589 to 1.154. At least now the factor is greater than 1 and we're no longer in the red.

Double the length of the message

Doubling the length of the message by simply concatenating the message onto itself and leaving

everything else the same increased the compression factor from 1.154 to 1.206.

(However, I'm not sure just how meaningful that test is since the new message not

only contains repetitive substrings but also contains a complete second copy of

the original message.)

Doubling the length of the message again in the same way increased the compression factor from

1.206 to 1.234.

Doubling the length of the message one more time increased the compression factor from 1.234

to 1.248.

Continuing to double the length of the message a few more times produced very small gains in

the compression factor but the gain was less each time. It looked like the compression factor

would top out at around 1.26.

Run the Program

I encourage you to copy the code from Listing 24 into your text editor, compile it, and execute

it. Experiment with the code, making changes, and observing the results of your changes.

Create and compress your own messages. Experiment with the sizes of the search window and

the lookAhead window to see how those parameters affect the compression factor for messages

of your own design.

Summary

In this lesson, I showed you how to write a Java program that illustrates lossless data

compression according to the Lempel-Ziv Data Compression Algorithm commonly known as

LZ77. I also explained the characteristics of the algorithm that result in data compression.

What's Next?

Future lessons in this series will explain the inner workings behind several data and image

compression schemes, including the following:

 Huffman data encoding

 Run-length data encoding

 GIF image compression

 JPEG image compression

Complete Program Listing

A complete listing of the program discussed in this lesson is shown in Listing 24 below.

/*File LZ77v01.java

Copyright 2006, R.G.Baldwin

LZ77 is the name given to a lossless data compression

algorithm published in papers by Abraham Lempel and Jacob

Ziv in 1977. This algorithm forms the basis for many LZ

variations including LZW, LZSS and others. LZ77 is known

as a dictionary encoding algorithm.

This program implements a very close approximation to the

LZ77 compression algorithm. While it may not match that

algorithm exactly, the match is close enough to satisfy

the primary purpose of the program, which is to explain

how the LZ77 algorithm works.

This program is provided for educational purposes only. If

you use the program for any purpose, you use it at your

own risk. The author of the program accepts no

responsibility for any damages that may result from your

use of the program.

The program was specifically designed to serve its primary

purpose of education. No thought was given to speed,

efficiency, memory utilization, or any other factor that

would be important in a program written for production

data compression purposes. In some cases, the program was

purposely made less efficient by using two or more

statements to accomplish a task that could be accomplished

by a single more complex statement.

Several sample messages are hard-coded into the program.

You can switch between those messages by enabling and

disabling specific messages using comments and then

recompiling the program. You can also insert your own

message and recompile the program to use your message if

you choose to do so.

The program first encodes a message into a collection of

Tuple objects stored in an ArrayList object using a very

close approximation to the LZ77 lossless data compression

algorithm.

Then the program decodes the message by extracting the

information from the Tuple objects and using that

information to reconstruct the original message.

The program does not actually convert the encoded

(compressed) message into a bit stream, although it

wouldn't be difficult to do so. Since the purpose of the

effort was to illustrate the behavior of the LZ77

algorithm, and not to write a production data compression

program, converting the compressed data into a bit stream

was considered to be superfluous to the purpose. However,

the program does provide a theoretical analysis of the

amount of compression that should be achieved if the

results were converted into a bit stream.

This program was tested against the demonstration Java

program named LZ that can be downloaded from

http://www.mathcs.sjsu.edu/faculty/khuri/animation.html

Neither the source code from that program nor the source

code from any other existing Java program was consulted

during the development of the code for this program.

Although numerous technical descriptions of the LZ77

algorithm were consulted, all of the source code in this

program is the original work of this author.

The animated interactive nature of the demonstration

program mentioned above was extremely helpful in helping

this author to understand the LZ77 algorithm.

The output from this program matches the output from the

above mentioned demonstration program for 60 characters of

input data and values of 10 for searchWindowLen and

lookAheadWindowLen. (The demonstration program is limited

to an input data length of 60 characters.)

Quite a lot of output material is displayed on the screen

when this program is running. This material is designed to

be used in a tutorial lesson to explain the behavior of

the LZ lossless data compression algorithm.

The program was tested using J2SE 5.0 and WinXP. J2SE 5.0

or later is required due to the use of generics.

**/

import java.util.*;

class LZ77v01{

 //Use comments to enable and disable and to select

 //between the following demonstration messages.

/*

 String rawData = "BAGHDAD, Iraq Violence increased "

 + "across Iraq after a lull following the Dec. 15 "

 + "parliamentary elections, with at least two dozen "

 + "people including a U.S. soldier killed Monday in "

 + "shootings and bombings mostly targeting the Shiite-"

 + "dominated security services. The Defense Ministry "

 + "director of operations, Brig. Gen. Abdul Aziz "

 + "Mohammed-Jassim, blamed increased violence in the "

 + "past two days on insurgents trying to deepen the "

 + "political turmoil following the elections. The "

 + "violence came as three Iraqi opposition groups "

 + "threatened another wave of protests and civil "

 + "disobedience if allegations of fraud are not "

 + "properly investigated.";

*/

 String rawData = "Miss Kalissippi from Mississippi is a "

 + "cowgirl who yells yippi when she rides her horse in "

 + "the horse show in Mississippi.";

 //A collection of Tuple objects

 ArrayList <Tuple>encodedData = new ArrayList<Tuple>();

 //A reference to a single Tuple object

 Tuple thisTuple;

 //A substring that represents the search window.

 String searchSubstring;

 //Working variables

 int matchLen;

 int matchLoc;

 int charCnt;

 int searchWindowStart;

 int lookAheadWindowEnd;

 //Modify the following values to change the length of

 // the search window and/or the lookAhead window.

 // Optimum values are one less than even powers of 2.

 int searchWindowLen = 31;

 int lookAheadWindowLen = 7;

 //---//

 public static void main(String[] args){

 new LZ77v01().doIt();

 }//end main

 //---//

 void doIt(){

 //Display a scale on the screen.

 System.out.println("123456789012345678901234567890"

 + "12345678901234567890123456789");

 //Display the raw data, 59 characters to the line.

 display59(rawData);

 System.out.println();//blank line

 //Process the message, one char at a time.

 charCnt = 0;

 while(charCnt < rawData.length()){

 //Establish the beginning of the search window.

 searchWindowStart = (charCnt-searchWindowLen >=0)

 ? charCnt-searchWindowLen

 : 0;

 //Establish the end of the lookAhead window.

 lookAheadWindowEnd =

 (charCnt+lookAheadWindowLen < rawData.length())

 ? charCnt+lookAheadWindowLen

 :rawData.length();

 //Display the contents of the search window.

 System.out.print(rawData.substring(

 searchWindowStart,charCnt) + " - ");

 //Display the contents of the lookAheadWindow on the

 // same line as the search window, separated by a

 // dash.

 System.out.print(rawData.substring(

 charCnt,lookAheadWindowEnd) + " - ");

 //Get a substring from the search window to search

 // for a match.

 if(charCnt == 0){

 //Begin with an empty search window.

 searchSubstring = "";

 }else{

 searchSubstring = rawData.substring(

 searchWindowStart,charCnt);

 }//end else

 //Search the search window for a match to the next

 // character in the lookAhead window.

 matchLen = 1;

 String searchTarget = rawData.substring(

 charCnt,charCnt + matchLen);

 if(searchSubstring.indexOf(searchTarget) != -1){

 //A match was found for the one-character string.

 // See if the match extends beyond one character.

 //Limit the length of the possible match to

 // lookAheadWindowLen

 matchLen++;//Increment length of searchTarget.

 while(matchLen <= lookAheadWindowLen){

 //Keep testing and extending the length of the

 // string being tested for a match until the

 // test fails.

 searchTarget = rawData.substring(

 charCnt,charCnt+matchLen);

 matchLoc = searchSubstring.indexOf(searchTarget);

 //Be careful to avoid searching beyond the end

 // of the raw data.

 if((matchLoc != -1) && ((charCnt + matchLen)

 < rawData.length())){

 matchLen++;

 }else{

 //The matching test failed. Break out of the

 // loop.

 break;

 }//end else

 }//end while

 //Reduce matchLen to the longest length that

 // matched.

 matchLen--;

 //We went one step too far increasing matchLen. Go

 // back and get the location in the search window

 // where the last match occurred.

 matchLoc = searchSubstring.indexOf(

 rawData.substring(charCnt,charCnt+matchLen));

 //Increase the character counter to cause the

 // outer loop to skip the matching characters.

 charCnt += matchLen;

 //Encapsulate the following information in a Tuple

 // object.

 //1. Offset distance back to the location of the

 // match in the search window.

 //2. Length of the match.

 //3. First non-matching character in the lookAhead

 // window

 //Calculate the offset

 int offset =

 (charCnt < (searchWindowLen + matchLen))

 ? charCnt - matchLoc - matchLen

 :searchWindowLen - matchLoc;

 //Get and save the next non-matching character in

 // the lookAhead window.

 String nextChar =

 rawData.substring(charCnt,charCnt+1);

 //Instantiate and populate the Tuple object.

 thisTuple = new Tuple(offset,matchLen,nextChar);

 //Save the Tuple object in a Collection object of

 // type ArrayList.

 encodedData.add(thisTuple);

 }else{

 //A match was not found for the next character.

 //Encapsulate the following information in a Tuple

 // object.

 //1. 0

 //2. 0

 //3. The non-matching character.

 String nextChar = rawData.substring(

 charCnt,charCnt+1);

 thisTuple = new Tuple(0,0,nextChar);

 encodedData.add(thisTuple);

 }//end else

 //Increment the character counter that controls the

 // outer loop.

 charCnt++;

 //Display the contents of the Tuple on the same line

 // as the search window and the lookAhead window,

 // separated by a dash.

 System.out.print(thisTuple + " - ");

 //Display the text represented by the Tuple on the

 // same line as above, separated by a dash.

 if(thisTuple.stringLen > 0){

 //The Tuple contains a pointer to a character or

 // string in the search window. Expand and

 // display it.

 int start = charCnt - 1 - thisTuple.stringLen

 - thisTuple.offset;

 int end = charCnt - 1 - thisTuple.offset;

 System.out.println(rawData.substring(

 start,end) + thisTuple.nextChar);

 }else{

 //The tuple contains a character for which no

 // match was found. Display it.

 System.out.println(thisTuple.nextChar);

 }//end else

 }//end while loop

/**

The original message has been encoded into a collection of

 Tuple objects where each object contains the following

 information:

1. offset points backwards to the beginning of a

 match relative to the current location. Has a

 value of 0 if there is no match for the next

 character.

2. stringLen specifies the length of the match or 0

 if there is no match for the next character.

3. nextChar is the first non-matching character

 following a match, or the next character if there

 is no match.

It would not be particularly difficult at this point

 to iterate on the collection and to produce a binary

 stream containing these three values. For example,

 depending on the values specified for searchWindowLen

 and lookAheadWindowLen, the first two values listed above

 could be encoded into the number of bits required to

 contain the largest possible offset value and the

 largest possible stringLen value. The character from the

 Tuple object could be encoded into eight bits. Then,

 the set of bits required to describe the Tuple could be

 inserted into a stream of bits.

This demonstration program does not produce such a

 compressed binary file.

**/

 //Now decode the encoded data from the Tuple objects.

 //Reconstruct and display the original message.

 //Reconstruct the message into the following

 // StringBuffer object.

 StringBuffer reconData = new StringBuffer();

 //Get an iterator on the collection of Tuple objects.

 Iterator <Tuple>iterator = encodedData.iterator();

 //Iterate on the collection

 while(iterator.hasNext()){

 Tuple nextTuple = iterator.next();

 if(nextTuple.stringLen == 0){

 //There was no match for this character. Just

 // append it to the StringBuffer.

 reconData.append(nextTuple.nextChar);

 }else{

 //This Tuple contains information about a match.

 // Use that information to reconstruct and append

 // the matching data.

 for(int cnt = 0;cnt < nextTuple.stringLen;cnt++){

 //Iterate once for each character in the string

 // that must be reconstructed.

 //Obtain the matching characters from the

 // previously constructed part of the output

 // based on an offset value and a stringLen value

 // that are stored in the Tuple.

 char workingChar = reconData.charAt(

 reconData.length() - nextTuple.offset);

 //Append the character to the StringBuffer. Note

 // that this increases the length of the

 // StringBuffer object. Thus, the next iteration

 // of the for loop will get the next character

 // that is already in the StringBuffer object.

 reconData.append(workingChar);

 }//end for loop

 //Now append the non-matching character that is

 // stored in the Tuple.

 reconData.append(nextTuple.nextChar);

 }//end else

 }//end while

 //The original message has been reconstructed.

 //Display a scale on the screen.

 System.out.println("\n123456789012345678901234567890"

 + "12345678901234567890123456789");

 //Now display the reconstructed message 59 characters

 // to the line.

 display59(new String(reconData));

 //Analyze the compression

 System.out.println("\nAnalyze the compression.");

 System.out.println("Assume:");

 System.out.println(

 " 8 bits required per raw data character.");

 //Calculate the number of bits required to contain the

 // largest values that can occur in the values for

 // offset and stringLen in the Tuple. Assume that the

 // character in the Tuple is contained in 8 bits.

 int offsetBitsRequired = getBitsRequired(

 searchWindowLen);

 int stringLenBitsRequired = getBitsRequired(

 lookAheadWindowLen);

 int tupleBitsRequired = 8 + offsetBitsRequired

 + stringLenBitsRequired;

 System.out.println(" Maximum offset value of "

 + searchWindowLen + " char requires "

 + offsetBitsRequired + " bits.");

 System.out.println(" Maximum stringLen value of "

 + lookAheadWindowLen + " char requires "

 + stringLenBitsRequired + " bits.");

 System.out.println(

 " Character in Tuple requires 8 bits.");

 System.out.println(" " + tupleBitsRequired

 + " bits required per Tuple.");

 int msgLength = rawData.length()*8;

 System.out.println("Raw data length = " + msgLength

 + " bits.");

 System.out.println("Number Tuples: "

 + encodedData.size());

 int tupleLength = encodedData.size()*tupleBitsRequired;

 System.out.println("Total Tuple length = "

 + tupleLength + " bits.");

 System.out.println("Compression factor = "

 + (double)msgLength/tupleLength);

 }//end doIt

 //---//

 //Method to display a String 59 characters to the line.

 void display59(String data){

 for(int cnt = 0;cnt < data.length();cnt += 59){

 if((cnt + 59) < data.length()){

 //Display 59 characters.

 System.out.println(data.substring(cnt,cnt+59));

 }else{

 //Display the final line, which may be short.

 System.out.println(data.substring(cnt));

 }//end else

 }//end for loop

 }//end display59

 //---//

 //Method to return the number of bits required to

 // contain a given integer value. (There must be a

 // better way to do this, such as finding the log to the

 // base 2.)

 int getBitsRequired(int value){

 if(value < 2){

 return 1;

 }else if(value < 4){

 return 2;

 }else if(value < 8){

 return 3;

 }else if(value < 16){

 return 4;

 }else if(value < 32){

 return 5;

 }else if(value < 64){

 return 6;

 }else if(value < 128){

 return 7;

 }else if(value < 256){

 return 8;

 }else{

 System.out.println(

 "Bit conversion too large, terminating program.");

 System.exit(1);

 return 0;//Make compiler happy.

 }//end else

 }//end getBitsRequired

 //---//

 //The purpose of this inner class is to provide a

 // wrapper for the three critical data values that

 // are produced during implementation of the LZ77

 // compression algorithm.

 class Tuple{

 //offset points to the beginning of a match relative

 // to the current location. Has a value of 0 if there

 // is no match.

 int offset;

 //stringLen specifies the length of the match or 0 if

 // there is no match

 int stringLen;

 //nextChar is the first non-matching character

 // following the match, or the only character if there

 // is no match.

 String nextChar;

 //---//

 //Constructor

 Tuple(int offset,int stringLen,String nextChar){

 this.offset = offset;

 this.stringLen = stringLen;

 this.nextChar = nextChar;

 }//end constructor

 //---//

 //Overridden toString method

 public String toString(){

 return offset + "," + stringLen + "," + nextChar;

 }//end toString

 }//end class Tuple

 //---//

}//end class LZ77v01

Listing 24

Copyright 2006, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which have gained a worldwide following among

experienced and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

Keywords
java Lempel Ziv LZ77 lossless compression algorithm LZW LZSS DEFLATE tuple

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

