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Preface 

This lesson is one in a series designed to teach you about the inner workings of data and image 

compression.  The first lesson in the series was Understanding the Lempel-Ziv Data 

Compression Algorithm in Java.  The previous lesson was Understanding the Discrete Cosine 

Transform in Java. 

The previous lesson dealt with one-dimensional Discrete Cosine Transforms.  This lesson is the 

first part of a two-part lesson on two-dimensional Discrete Cosine Transforms (2D-DCT). 

JPEG image compression 

One of the objectives of this series is to teach you about the inner workings of JPEG image 

compression.  According to Wikipedia,  

"... JPEG ... is a commonly used standard method of lossy compression for 

photographic images. ... JPEG/JFIF is the most common format used for storing 

and transmitting photographs on the World Wide Web." 

Central components 
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One of the central components of JPEG compression is entropy encoding.  Huffman encoding, 

which was the primary topic of the earlier lesson entitled Understanding the Huffman Data 

Compression Algorithm in Java is a common form of entropy encoding. 

Another central component of JPEG compression is the two-dimensional Discrete Cosine 

Transform, which is the primary topic of this lesson.  In this lesson, I will teach you how to use 

the forward 2D-DCT to compute and display the wave-number spectrum of an image.  I will also 

teach you how to apply the inverse 2D-DCT to the spectral data to reconstruct a replica of the 

original image. 

A third central component of JPEG is selective spectral re-quantization.  This will be the primary 

topic of a future lesson. 

In order to understand JPEG ... 

In order to understand JPEG image compression, you must understand Huffman encoding, the 

Discrete Cosine Transform, selective spectral re-quantization, and perhaps some other topics as 

well.  I plan to teach you about the different components of JPEG in separate lessons, and then to 

provide a lesson that teaches you how they work together to produce "the most common format 

used for storing and transmitting photographs on the World Wide Web." 

Viewing tip  

You may find it useful to open another copy of this lesson in a separate browser window.  That 

will make it easier for you to scroll back and forth among the different listings and figures while 

you are reading about them. 

Supplementary material  

I recommend that you also study the other lessons in my extensive collection of online Java 

tutorials.  You will find those lessons published at Gamelan.com.  However, as of the date of this 

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and 

sometimes they are difficult to locate there.  You will find a consolidated index at 

www.DickBaldwin.com. 

In preparation for understanding the material in this lesson, I also recommend that you also study 

the lessons referred to in the References section.  

General Background Information 

One of the main reasons that we are studying 2D Discrete Cosine Transforms (2D-DCT) is to 

further our understanding of JPEG image compression.  The 2D-DCT is a central component in 

JPEG. 

An analogy 
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I will begin my discussion with an analogy to a portion of the JPEG image compression 

algorithm. 

Assume that you have been charged with the task of transporting all the water in a twenty-gallon 

tank from one building to a twenty-gallon tank in another building approximately three miles 

away.  Unfortunately, you don't have any watertight containers in which to transport the 

water.  All that is available for use in transporting the water is a sack made out of cloth.  If you 

pour water into the sack, it simply runs through and out onto the floor. 

How can you accomplish your assigned task? 

Fortunately, the tank is mounted on small wheels that allow you to roll it around inside the 

building (but not outside the building).  You search the building, and are happy to find a large 

walk-in freezer with a doorway large enough to accommodate the tank of water. 

Transform the water into ice 

So, you roll the tank into the freezer.  When all of the water has frozen into ice, you use an ice 

pick that you found nearby and you chop the ice up into pieces.  You fill your sack with ice and 

run as fast as you can to the other building where you empty the sack into the other tank.  You 

keep making trips from one building to the next until you have transported all of the ice from the 

original tank to the tank in the other building.  You let the ice melt in the tank in the other 

building, and you have accomplished your task. 

Is this a lossless process? 

Unfortunately, a small quantity of the ice melts during the trips to transport it from one building 

to the other, so you end up with a little less than twenty-gallons of water in the second 

tank.  (This is not a lossless process.) 

Transformation is the key to success 

What you have done is to transform the state of the water from one form to another to make it 

possible to transport it in a leaky cloth sack. 

How does this apply to JPEG? 

JPEG image compression does something similar, but not for exactly the same reasons.  When 

an image is compressed using JPEG, the form of the image that is stored, and possibly 

transported from one machine to another, is not the form that you are probably accustomed to 

seeing.  Rather, the information that constitutes the image is transformed from the image or 

space domain into the frequency or wave-number domain.  The information is compressed, 

stored, and transported in the frequency domain.  Later on, the information is transformed back 

into the image domain for presentation to a human consumer. 



(Image information in the wave-number domain is typically not very useful to 

most human consumers of that information.  See the bottom panel of Figure 9 for 

an example of image information in the frequency domain.) 

The transformation to and from the frequency domain is accomplished using a 2D-DCT. 

Image information looks totally different 

As you will see later, the information that constitutes the image looks totally different when in 

the frequency domain than when it is in the image domain.  (Once again, see Figure 9 for an 

example.) 

An almost lossless process 

If the image were simply transformed from the image domain into the frequency domain and 

back into the image domain, the process would be almost lossless. 

 (There would probably be a small amount of image distortion as a result of tiny 

errors resulting from computational inaccuracy.) 

Lossless compression is not the primary objective 

Generally speaking, however, the primary objective in JPEG image compression is usually not to 

implement a lossless process.  Rather, the primary objective is to compress the image to make it 

smaller to store and to transport.  A certain amount of distortion in the reconstructed image is 

usually considered tolerable. 

(On the other hand, the earlier lessons entitled Understanding the Lempel-Ziv 

Data Compression Algorithm in Java and Understanding the Huffman Data 

Compression Algorithm in Java introduced you to two lossless data compression 

algorithms.) 

The Lempel-Ziv algorithm 

LZ77 is the name commonly given to a lossless data compression algorithm published in papers 

by Abraham Lempel and Jacob Ziv in 1977.  LZ77 is a lossless compression data algorithm. 

What is a lossless data compression algorithm? 

If you compress a document using the LZ77 algorithm, and then decompress the compressed 

version, the result will be an exact copy of the original document. 

(Not all data compression algorithms are lossless.  The JPEG image compression 

algorithm, for example, does not produce an exact copy of an image that has been 

compressed using the algorithm.) 
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Dictionary and/or entropy encoding algorithms 

LZ77 is known as a dictionary encoding algorithm, as opposed for example to the Huffman 

encoding algorithm, which is a statistical or entropy encoding algorithm. 

Compression in the LZ77 algorithm is based on the notion that strings of characters (words, 

phrases, etc.) occur repeatedly in the message being compressed.  Compression with the 

Huffman encoding algorithm is based on the probability of occurrence of individual characters in 

the message. 

Not very effective for image data 

Apparently neither of these compression algorithms is particularly effective when applied 

directly to the pixel color data that makes up an image.  However, it has been determined that if 

an image is first transformed into the frequency domain, a form of frequency filtering can be 

applied to the frequency-domain data without having a serious adverse impact on the quality of 

the image when it is reconstructed. 

What kind of frequency filtering? 

The frequency filtering involves re-quantizing the frequency-domain data values at the higher 

wave-number frequencies.  Re-quantization makes the frequency-domain data much more 

susceptible to the benefits of entropy encoding. 

(Apparently it has been determined that substantial corruption of the higher 

wave-number spectral data can be tolerated without seriously damaging the 

visual quality of the reconstructed image.) 

This is where the major compression benefits of JPEG image compression occur.  This is also 

what prevents the reconstructed image from being a nearly exact match for the original image, 

thus causing JPEG to be a lossy image compression algorithm. 

A brief look at JPEG image compression 

That has been a brief look into the overall process of JPEG image compression so that you will 

know where the 2D-DCT fits into the process.  I will get into the details in a future lesson.  For 

now, the objective is to isolate and to understand the 2D-DCT portion of the process. 

An (almost lossless) example 

Before getting into a detailed discussion of the 2D-DCT, I want to show you an (almost) lossless 

example along with some backup information.  The bottom image in Figure 1 shows the results 

of performing a forward 2D-DCT on the top image and then turning around and performing an 

inverse 2D-DCT on the spectrum that was produced by the forward transform. 
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Figure 1 

Re-quantization was applied 

However, to partially simulate the behavior of the JPEG image compression algorithm, the 

spectral data was uniformly re-quantized so that it could be stored in an eleven-bit twos 

complement integer format (-1024 to +1023). 

(Note that this is not the type of frequency-dependent re-quantization that is 

performed in the JPEG algorithm for the purpose of data compression.) 

Otherwise, nothing was done to compress, or otherwise corrupt the spectral data prior to 

transforming that data back into the image domain. Therefore, the output image should be almost 

as good as the input image, with the only deterioration being the result of the re-quantization 

noise and arithmetic errors in the forward and inverse transforms. 

Quantization noise is visible 

It looks to me like the background areas, such as the large white areas in the image are grainier 

on the bottom image than the top image.  This graininess did not exist in my original version 

which treated the spectral data strictly in double format.  The graininess became evident at the 

point in time that I inserted the re-quantization of the spectral data to make it fit into eleven bits. 



More difficult than Discrete Fourier Transform 

Others may disagree, but in my opinion, it is more difficult to comprehend the Discrete Cosine 

Transform process than it is to comprehend the Discrete Fourier Transform process.   

(See the earlier lesson entitled Fun with Java, How and Why Spectral Analysis 

Works, for an introduction to the Discrete Fourier Transform.) 

To paraphrase a popular comedian named Flip Wilson from my younger days, when you work 

with the DCT, "What you see is not what you get." 

DFT is linear with superposition 

With the DFT, which is a linear transform for which superposition applies, many of us with 

Digital Signal Processing (DSP) experience can look at a simple 2D space-domain function and 

have a pretty good idea what the wave-number spectrum for that function will look like.  We do 

that by breaking the space-domain function down into familiar components, transforming the 

familiar components in our heads, and then reconstructing the individual transforms in our heads 

to produce an idea of the wave-number spectrum. 

More difficult with the DCT 

This is much more difficult to do with the 2D-DCT.  The reason is that the DCT is not applied 

directly to the given space-domain function.  Rather, the given space-domain function is 

implicitly expanded through mirror-imaging to produce a new space-domain function.  Then, to 

a very close approximation, a Discrete Fourier Transform is applied to the new expanded space-

domain function.  Thus, there is an added degree of complexity involving the implicit 

modification of the original space-domain function.  I will illustrate this by providing some 

comparisons between the Discrete Fourier Transform and the Discrete Cosine Transform. 

A simple diagonal line 

Consider first the case of a simple diagonal line in the space domain as shown in the left panel of 

Figure 2. 

  

Figure 2 
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(This example was resurrected from Figure 9 in the earlier lesson entitled 2D 

Fourier Transforms using Java, Part 2.) 

I explained this example in the earlier lesson, so I won't repeat that explanation here.  Suffice it at 

this point to say that the left panel in Figure 2 shows a diagonal line in the space domain.  The 

right panel shows the wave-number spectrum for that line produced by performing a 2D Discrete 

Fourier Transform (2D-DFT) on the image in the left panel. 

The important attribute 

Without getting into the details, the important thing to note is that the lines in the Fourier wave-

number spectrum are perpendicular to the line in the space domain. 

A similar 2D-DCT example 

On the other hand, the top panel in Figure 3 shows an image with a similar diagonal line.  The 

bottom panel in Figure 3 shows the result of performing a 2D-DCT on the image.  (We might 

refer to this as the DCT spectrum.) 

 
Figure 3 

(Note that the entire bottom panel in Figure 3 corresponds only to the upper-left 

quadrant in the right panel in Figure 2.  In other words, the spectrum shown in 

Figure 2 extends from a wave-number of zero at the upper left corner to a wave-

number corresponding to the sampling frequency in space on the right and the 

bottom.  On the other hand, the bottom panel in Figure 3 extends from a wave-

number of zero at the upper left corner to the Nyquist folding frequency at the 

right and bottom.) 

Something looks very wrong here! 

Something looks wrong when we compare the DCT spectrum in Figure 3 with the Fourier 

spectrum in Figure 2.  The line in the DCT spectrum is not perpendicular to the line in the space 

domain.  Rather, it is parallel to the line in the space domain. 

(It took me quite a lot of head scratching to conclude that this is probably 

correct.  I believe that I finally understand the reason for the difference and I will 

share that knowledge with you.) 
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And the problem is ... 

The problem is that there is no such thing as a single diagonal line in a DCT.  True, we started 

with the single diagonal line shown in the top panel of Figure 3.  However, the DCT process 

implicitly quadrupled the size of our sample.  (The size was doubled in both dimensions.) 

For example, the DCT process created a mirror image of the original area across its upper 

boundary producing an area twice as tall as what we started with.   

Then it produced a mirror image of the entire double-high area across the left boundary.  This 

resulted in a new area four times as large as the original area with the original line being 

reflected into the new areas in a mirror-image fashion. 

Then it effectively performed a DFT on the new surface containing the original line plus the 

mirror images of the original line. 

What does the expanded area look like? 

If you draw that out on paper, you will see that the image that was actually transformed using the 

DFT contained two lines, each twice as long as the original and arranged in a cross or X with the 

center of the cross at the original origin.  Each of the legs on the cross was on a diagonal. 

A similar 2D-DFT 

Figure 4 shows the results of applying a 2D-DFT to two lines similarly arranged to form a cross. 

  

Figure 4 

As before, the image in the space domain is shown in the left panel of Figure 4, and the Fourier 

spectrum of that image is shown in the right panel. 

Taking into account that the bottom panel in Figure 3 corresponds to only the upper-left quadrant 

in the Fourier spectrum in Figure 4, the two look remarkably similar. 

(Note that the plotting approach used in Figure 4 shows a lot more detail than the 

plotting approach used in Figure 3.) 

A diagonal line in both cases 



Both spectra show a diagonal line extending from the origin at a wave-number of zero down to 

the Nyquist folding frequency at the opposite corner. 

I believe that the reason for the spectral line in Figure 3 being parallel to the time-domain line 

instead of being perpendicular to that line is that the 2D-DCT shown in Figure 3 actually 

performed a 2D-DFT on two intersecting time-domain lines that form a cross. 

A vertical line 

The bottom image in Figure 5 shows the results of performing a 2D-DCT on the top image. 

 
Figure 5 

At first glance, it appears that there is no output in the bottom image.  However, if you look very 

carefully, you will see a broken line at the top of the bottom image next to the area that separates 

the two images. 

Does this make sense? 

Once again, the top image has been implicitly expanded to a size that is four times as large as 

that shown.  The expansion is accomplished by creating mirror images as described earlier.  As a 

result, the input image no longer contains a single vertical line.  Rather, it contains two parallel 

vertical lines and a DFT is performed on those parallel vertical lines. 

A similar DFT example 

The right panel in Figure 6 shows the results of performing an ordinary 2D-DFT on the pair of 

parallel vertical lines in the left panel. 

  

Figure 6 
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Considering the Fourier spectrum in the upper-left quadrant of the right panel, we see that the 

output consists mainly of a broken line along the top of the spectrum, beginning at a wave-

number of zero and extending to the right all the way to the sampling frequency (twice the 

distance shown in Figure 5). 

So, it does make sense to have the DCT spectrum shown in Figure 5 consist mostly of a broken 

line along the top edge of the DCT spectrum from a wave number of zero to the Nyquist folding 

frequency at the right edge. 

A horizontal line 

The bottom image in Figure 7 shows the results of performing a 2D-DCT on the top image 

containing the single horizontal line. 

 
Figure 7 

As before, because of the implicit expansion of the input image through the creation of mirror 

images, the mage that actually got transformed consisted of two parallel horizontal lines. 

Also as before, the output is difficult to see.  If you look very closely, you will see a vertical 

broken line along the left edge of the bottom image.  I could go through the same steps as before, 

performing a 2D-DCT on a pair of parallel horizontal lines to show that we should expect the 

output to be a broken vertical line along the left edge, beginning at a wave number of zero and 

extending downward to the Nyquist folding frequency at the bottom edge. 

So what? 

By now you are probably wondering why I am going to all of this trouble to convince you of 

what you should expect to see.  For that, I am going to give you a preview of the next lesson. 

A preview 

In the next lesson, you will learn that rather than to perform the 2D-DCT on the entire image, the 

JPEG image compression algorithm sub-divides the image into 8x8 blocks and performs the 2D-

DCT on each block independently.  At this point, I won't go into what the algorithm does with 

the spectra produced through that process, but I will show you a preview of what the spectra can 

look like. 
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Spectrum of a sub-divided image 

The bottom panel in Figure 8 shows the results of performing a separate 2D-DCT on several 

hundred contiguous 8x8-pixel blocks that make up the image shown in the top panel. 

 
Figure 8 

Each spectrum represents an 8x8-pixel image 

When performed in this fashion, each spectrum represents only one 8x8-pixel portion of the 

original image.  In most cases, the upper-left corner of each spectrum, (representing a wave-

number of zero), is identified by a bright dot.  The spectral values for higher-frequency wave 

numbers appear to the right and down from that dot. 

The constant-color areas 

In those areas of the image where there are little or no color details, (such as in the white portion 

of the image or the portion behind President Lincoln's head), each spectrum consists of a single 

bright dot only.  This is because the spectrum consists of a zero-frequency component only with 

a significant lack of energy at other frequencies. 

Areas with lots of color details 



In areas where there is a lot of detail, such as in President Lincoln's hair for example, the 8x8 

spectral blocks tends to be gray, indicating lots of energy at the higher frequencies. 

Some particularly interesting areas 

There are several areas that I find particularly interesting.  For example, on the left and right 

edges of the penny where the circular edge is tangent to a vertical line, you can see a tendency 

for the spectra to exhibit strong horizontal lines.  This agrees with the results shown earlier in 

Figure 5. 

Vertical spectral lines 

At the top and the bottom of the penny where the circular edge is tangent to a horizontal line, 

there is a tendency for the spectra to exhibit strong vertical lines.  This agrees with the results 

shown earlier in Figure 7. 

Diagonal spectral lines 

At the four edges of the penny where the slope is tangent to a line that is at an angle of forty-five 

degrees to the horizontal (northeast, southeast, southwest, and northwest) there is a tendency for 

the spectra to exhibit strong diagonal lines sloping down and to the right. 

(Note that the slope of the spectral lines is always down and to the right 

regardless of the slope of the tangential lines.) 

We also see this behavior at the lower-left edge of President Lincoln's beard near his ear, and at 

the edge of his collar where the lines in the image tend to be diagonal.  In those areas also, there 

is a tendency for the spectra to exhibit strong diagonal lines sloping down and to the right. 

This agrees with the results shown earlier in Figure 3.   

I will discuss this in much more detail in the next lesson where I address the procedure of sub-

dividing the image into 8x8-pixel blocks. 

Now back to the main topic of this lesson 

For the remainder of this lesson I will concentrate on applying the 2D-DCT to the entire image 

rather than applying the 2D-DCT to a sub-divided image.  I will get back to the sub-divided 

image in Part 2 of this lesson, which I will publish in a few weeks. 

The bottom panel in Figure 9 shows the 2D-DCT spectrum computed for the entire image in the 

top panel of Figure 9. 



 
Figure 9 

Not much to look at 

Unlike the case in Figure 8, there is nothing in the spectrum in Figure 9 that would lead an 

ordinary human to suspect that this spectrum represents an image of a United States penny.  Rest 

assured, however, that the spectrum shown in Figure 9 does contain all of the information 

necessary to reconstruct the original image.  The bottom image in Figure 1 was produced by 

performing an inverse 2D-DCT on this spectral data. 

Two representations of the same information 

Thus, the top and bottom panels in Figure 9 contain the same information.  They simply contain 

that information in different forms.  The form in the top panel of Figure 9 is the one that we 

humans are most accustomed to seeing.  We might think of that as the water in my earlier 

analogy.  The form in the bottom panel of Figure 9 might be thought of as the ice in my earlier 

analogy.  As it turns out, it is very easy to transform that information back and forth between the 

two forms. 

I will explain two programs in the remainder of this lesson that illustrate how to transform the 

data back and forth between the two forms. 

Preview 



I am going to present and explain two different, but similar programs in this part of this 

lesson.  (I will present a couple more programs in Part 2 later when I publish it.)  The first 

program, named ImgMod34a performs a forward 2D-DCT on an image, and then displays the 

original image along with the DCT spectrum of that image (as shown in Figure 9). 

The second program named ImgMod34 also performs a forward 2D-DCT on an 

image.  However, rather than stopping at that point and displaying the DCT spectrum, this 

program re-quantizes the spectral data to eleven bits, and then performs an inverse 2D-DCT on 

the re-quantized spectral data to produce and display a replica of the original image (as shown in 

Figure 1). 

Discussion and Sample Code 

The program named ImgMod34a 

I will discuss this program in fragments.  A complete listing of the program is shown in Listing 

23. 

The purpose of this program is to compute and display the wave-number spectrum of an image 

using a 2D-DCT. 

A forward transform 

This program performs a forward 2D-DCT on each color plane belonging to an image producing 

a wave-number spectrum that describes each color plane in the image.  Then it converts the 

wave-number spectrum to log base 10 to preserve the dynamic range of the display and 

normalizes the results to cover the range from 0 to 255.  This makes the results suitable for being 

displayed as an image. 

Display the wave-number spectrum 

Then the program returns the wave-number spectrum for each color plane in an image format. 

(When I refer to an image format here, I am speaking of the classical image 

format consisting of an array of pixels wherein each pixel contains different 

contributions the colors red, green, and blue.  This is accomplished through three 

color planes where each plane is a rectangular surface consisting of elevation 

values between 0 and 255 inclusive.) 

When displayed as an image, the visual result is the composite of the normalized wave number 

spectra of all three color planes being displayed. 

The capability to isolate specific colors 



The program provides the capability to enable statements that will effectively eliminate one, two, 

or all three of the color planes from the computation and the resulting display.  (This requires 

modification of the source code and recompilation of the program.) 

Runs under control of ImgMod02a 

The program is designed to run under the control of the class named ImgMod02a.  Enter the 

following at the command line to run this program: 

java ImgMod02a ImgMod34a ImageFileName 

where ImageFileName is the name of a .gif or .jpg file, including the extension. 

Class files required 

This program requires access to the following class files plus some inner classes that are defined 

inside the following classes: 

 ImgMod34a.class 

 ImgIntfc02.class 

 ImgMod02a.class 

 ForwardDCT01.class 

The source code for ImgMod34a is presented in Listing 23.  The source code for 

ForwardDCT01 was developed and explained in the previous lesson entitled Understanding the 

Discrete Cosine Transform in Java. 

The source code for ImgMod02a and ImgIntfc02 can be found in the earlier lessons entitled 

Processing Image Pixels Using Java: Controlling Contrast and Brightness and Processing Image 

Pixels using Java, Getting Started. 

Program testing 

The program was tested using J2SE 5.0 and WinXP.  J2SE 5.0 or later is required due to the use 

of static imports. 

Source code for the ImgMod34a class 

The source code for the ImgMod34a class and the method named processImg begins in Listing 

1. 

class ImgMod34a implements ImgIntfc02{ 

   

  //This method is required by ImgIntfc02.  It 

is called at 

  // the beginning of the run and each time 

thereafter that 

http://www.developer.com/java/other/article.php/3619081
http://www.developer.com/java/other/article.php/3619081
http://www.developer.com/java/other/article.php/3441391
http://developer.com/java/other/article.php/3403921
http://developer.com/java/other/article.php/3403921


  // the user clicks the Replot button on the 

Frame 

  // containing the images. 

  public int[][][] processImg(int[][][] 

threeDPix, 

                              int imgRows, 

                              int imgCols){ 

 

    //Create an empty output array of the same 

size as the 

    // incoming array. 

    int[][][] output = new 

int[imgRows][imgCols][4]; 

 

    //Make a working copy of the 3D pixel array 

as type 

    // double to avoid making permanent changes 

to the 

    // original image data.  Also, all 

processing will be 

    // performed as type double. 

    double[][][] working3D = 

copyToDouble(threeDPix); 

 

Listing 1 

Need to understand ImgMod02a 

In order to understand this program, you will need to understand how it interacts with the class 

named ImgMod02a, as described in the earlier lessons entitled Processing Image Pixels using 

Java, Getting Started and Processing Image Pixels Using Java: Controlling Contrast and 

Brightness.  Once you understand that interaction, the code in Listing 1 should be 

straightforward. 

One color plane at a time 

The code in Listing 2 is provided to make it easy for you to experiment with only one color plane 

at time. 

 

    for(int row = 0;row < imgRows;row++){ 

      for(int col = 0;col < imgCols;col++){ 

//        working3D[row][col][1] = 0;//red 

//        working3D[row][col][2] = 0;//green 

//        working3D[row][col][3] = 0;//blue 

      }//end inner loop 

    }//end outer loop 

 

Listing 2 

To experiment with only one color plane, enable two of the statements in Listing 2, causing the 

color values for those two planes to be set to zero.  Following that, the program output will 

http://developer.com/java/other/article.php/3403921
http://developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3441391


contain a contribution only from the color plane corresponding to the statement that you did not 

enable. 

Process the red plane 

Listing 3 extracts the red color plane from the 3D pixel image array, processes it, and inserts it 

back into the 3D pixel image array in the form of a wave-number spectrum. 

    //Extract and process the red plane 

    double[][] redPlane = 

extractPlane(working3D,1); 

    processPlane(redPlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,redPlane,1); 

 

Listing 3 

The code in the methods named extractPlane and insertPlane is straightforward and shouldn't 

require an explanation.  You can view the source code for those methods in Listing 23. 

The processPlane method 

The processPlane method, on the other hand, is the workhorse of this entire program and does 

deserve a thorough explanation.  Therefore, I will set the processImg method aside for awhile 

and explain the processPlane method. 

Perform a forward 2D-DCT 

This method processes a color plane received as an incoming parameter.  First it performs a 

forward 2D-DCT on the color plane producing the DCT spectrum for the plane. 

Convert to log base 10 and normalize 

Then it normalizes the spectral values in the plane to make them compatible with being 

displayed as an image.  First it converts the spectral data to log base 10 in order to preserve the 

dynamic range of the display system.  Then it causes the logarithmic spectral data to fall in the 

range 0 to 255 which is a requirement for being displayed as an image. 

A separable transform 

One of the significant attributes of the two-dimensional Discrete Cosine Transform (2D-DCT) is 

that it is separable.  What this means in practice is that to compute the DCT for a single color 

plane of a 2D image, you can begin by performing a one-dimensional DCT on each row of the 

color plane, creating a new 2D structure where each row of the new structure contains the DCT 

of the corresponding row of the color plane.  Then you can perform a one-dimensional DCT on 

each column of the new 2D structure creating a third 2D structure containing the 2D-DCT of the 

original image. 

http://documents.wolfram.com/applications/digitalimage/UsersGuide/ImageTransforms/ImageProcessing8.4.html


An in-place transform 

Also important, at least from a memory utilization viewpoint, is the fact that you can perform the 

transforms "in-place" using the original color plane for intermediate and final data storage 

without a requirement to allocate memory for the new structures. 

Don't need a new DCT program 

What this means for me is that I don't need to develop a new DCT program to handle the 2D 

case.  Rather, I can perform all the necessary DCT transforms that I need using the static one-

dimensional forward DCT method named  transform belonging to the class named 

ForwardDCT01.  I developed and explained that class in the earlier lesson entitled 

Understanding the Discrete Cosine Transform in Java. 

Code for the processPlane method 

The processPlane method begins in Listing 4. 

  void processPlane(double[][] colorPlane){ 

     

    int imgRows = colorPlane.length; 

    int imgCols = colorPlane[0].length; 

 

Listing 4 

The code in Listing 4 determines the number of rows and the number of columns in the 2D plane 

to be processed. 

Transform one row at a time 

Listing 5 shows the beginning of a for loop that: 

 Extracts each row of image data from the color plane. 

 Performs a forward one-dimensional DCT on the row. 

 Inserts the spectral data for that row back into the corresponding row of the color plane, 

thereby using the color plane array to store the spectral data for the row. 

    for(int row = 0;row < imgRows;row++){ 

      double[] theRow = 

extractRow(colorPlane,row); 

 

Listing 5 

The code in the extractRow method is straightforward and shouldn't require a further 

explanation.  You can view the extractRow method in its entirety in Listing 23. 

Perform the one-dimensional Discrete Cosine Transform on the row 

http://www.developer.com/java/other/article.php/3619081


Listing 6 invokes the static transform method of the ForwardDCT01 class to perform the one-

dimensional DCT on the row of image data. 

      double[] theXform = new 

double[theRow.length]; 

      ForwardDCT01.transform(theRow,theXform); 

 

Listing 6 

Assuming that you have studied the earlier lesson entitled Understanding the Discrete Cosine 

Transform in Java, there is nothing in Listing 6 that should require a further explanation. 

The results of the transform are temporarily stored in the one-dimensional array referred to by 

theXform before being inserted back into the corresponding row of the color plane. 

Insert the spectral data into the color plane 

Listing 7 invokes the method named insertRow to insert the spectral data back into the 

corresponding row in the color plane.  From this point forward, that row contains spectral data 

and not image color data. 

      insertRow(colorPlane,theXform,row); 

    }//end for loop 

 

Listing 7 

You can view the method named insertRow in its entirety in Listing 23. 

Listing 7 also signals the end of the for loop, operating on rows that began in Listing 5. 

Transform the column data 

Listing 8 shows the complete for loop that: 

 Extracts each column now containing spectral data from the color plane. 

 Performs a forward one-dimensional DCT on the column. 

 Inserts the spectral data for that column back into the corresponding column of the color 

plane, thereby using the color plane array to store the spectral data for the column. 

    //Extract each col from the color plane and 

perform a 

    // forward DCT on the column.  Then insert 

it back into 

    // the color plane. 

    for(int col = 0;col < imgCols;col++){ 

      double[] theCol = 

extractCol(colorPlane,col); 

 

http://www.developer.com/java/other/article.php/3619081
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      double[] theXform = new 

double[theCol.length]; 

      ForwardDCT01.transform(theCol,theXform); 

 

      insertCol(colorPlane,theXform,col); 

    }//end for loop 

 

Listing 8 

The color plane now contains spectral data 

When the for loop in Listing 8 terminates, the 2D array referred to as colorPlane no longer 

contains image color data.  Instead, it now contains the results of the 2D-DCT of the original 

image data for that color plane.  In other words the data in the 2D array has now been 

transformed from image or space-domain data to frequency or wave-number spectral data. 

Problems with displaying the results 

The objective of this program is to display the 2D spectral data in the form of a standard 

image.  This presents some problems that are not new to this program.  In particular, the results 

of the 2D-DCT contain both positive and negative values.  Furthermore, the magnitude of some 

of those values (particularly at or near a wave-number of zero) can be quite large. 

Standard image data, on the other hand must be unsigned data in the range from 0 through 255 

inclusive.  This almost always presents problems involving the methodology for converting the 

bipolar data to that value range.  The methodology that I developed for this program isn't perfect, 

but it seems to work pretty well. 

Normalize the spectral data 

Listing 9 invokes the normalize method to prepare the 2D spectral data for being displayed as an 

image. 

    normalize(colorPlane); 

  }//end processPlane 

 

Listing 9 

Listing 9 also signals the end of the processPlane method. 

The normalize method 

Before returning to the discussion of the processImg method (last seen in Listing 3) I will 

explain the normalize method. 

This method is fairly complex and implements the results of several decisions that I had to make 

regarding the best way to display the spectral data. 



This method normalizes the data in a 2D array containing data of type double to make it 

compatible with being displayed as an image plane. 

Eliminate negative values 

Normally, when viewing standard Fourier spectral data, unless we are specifically interested in 

phase angles, we usually compute and view the amplitude spectrum.  The amplitude spectrum is 

computed by computing the square root of the sum of the squares of the real and imaginary parts 

of each complex spectral value (the length of the hypotenuse of a right triangle formed by the 

real and imaginary vectors). 

For the case of the DCT, there are no imaginary values.  Therefore, the same results can be 

achieved simply by changing the sign on all negative spectral values making them positive 

instead of negative.  The normalize method begins by converting all negative spectral values to 

positive values. 

Coping with a limited dynamic range for the display 

The dynamic range of the 2D-DCT spectral data is very large.  The spectral values at and near 

the zero wave-number origin are much larger than values elsewhere in the spectrum. 

Seven shades of gray 

I learned at one point in my digital signal processing (DSP) career that a typical human can only 

distinguish between seven levels of gray with white and black representing two of those 

levels.  Thus, a gray scale 2D display of the type shown in the bottom panel of Figure 9 has a 

very limited dynamic range. 

A log base 10 transform 

One common way to take better advantage of the available dynamic range of a display system 

when viewing spectral data is to convert the spectral data to decibels.  This involves transforming 

the spectral values through a log base 10 transform and applying specific a specific scale factor 

to the resulting values.  Although this program doesn't apply the specific scale factor required to 

qualify as a decibel scale, this program does apply a log base 10 transform to all of the spectral 

values.  This results in a set of spectral values requiring less dynamic range in the display. 

Can produce negative values 

However, this transformation can result in negative values for very low spectral values; so once 

again, I am forced to deal with negative values.  In this program the negative logarithmic values 

are simply set to zero. 

Making the data fit between 0 and 255 

http://en.wikipedia.org/wiki/Decibels


This still leaves us with the problem of how to squeeze the logarithmic data into the value range 

from 0 to 255 inclusive to satisfy the fundamental image pixel value requirement. 

One approach would be to scale all of the values such that the largest value becomes 255 and the 

smallest value becomes 0.  I tried this, but even with the log transform, the values at and near the 

origin still overwhelmed the remaining portions of the spectrum, so this wasn't very satisfactory.   

Simply discard the lower-level values 

What I ended up doing was to simply discard all values below X-percent of the maximum by 

artificially setting all of those values to X-percent of the maximum.  This created a floor at X-

percent of the maximum.  Then I shifted the floor down to a value of zero (black), and scaled the 

resulting data so that the maximum value ended up at 255 (bright red, bright green, or bright 

blue). 

What should the level of the floor be? 

Harking back to my "seven levels of gray" rule, I decided to put the floor at one-seventh of the 

maximum value.  That is the value for the floor that produced the spectral display in the bottom 

panel of Figure 9. 

Raising the floor so as to make it closer to the maximum would cause the display in Figure 9 to 

become more sparse with more black area (a smaller percentage of the actual spectral data is 

actually being displayed).  For example, if the floor is adjusted upward to fifty-percent of the 

maximum value, the spectrum for the image in Figure 9 shows only the bright spot at the origin 

plus a few light gray specs near the origin. 

If the floor is adjusted downward to one-percent of the maximum value, the spectrum for the 

image in Figure 9 shows quite a bit more light gray and quite a bit less black. 

Change the sign of the negative spectral values 

The code for the normalize method begins in Listing 10. 

  void normalize(double[][] plane){ 

    int rows = plane.length; 

    int cols = plane[0].length; 

     

    //Begin by converting all negative values 

to positive 

    // values.  This is equivalent to the 

computation of 

    // the magnitude for purely real data. 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] < 0){ 

          plane[row][col] = - plane[row][col]; 

        }//end if 



      }//end inner loop 

    }//end outer loop 

 

Listing 10 

Listing 10 gets the size of the incoming 2D array, and then changes the sign of all negative 

values stored in the array. 

Convert to log base 10 

Listing 11 converts all of the values to log base 10 to preserve the dynamic range of the plotting 

system.  Negative log values are then set to zero. 

    //First eliminate or change any values that 

are 

    // incompatible with log10 method. 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] == 0.0){ 

          plane[row][col] = 0.0000001; 

        }else if(plane[row][col] == 

Double.NaN){ 

          plane[row][col] = 0.0000001; 

        }else if(plane[row][col] ==  

                                 

Double.POSITIVE_INFINITY){ 

          plane[row][col] = 9999999999.0; 

        }//end else 

      }//end inner loop 

    }//end outer loop 

 

    //Now convert the data to log base 10 

setting all 

    // negative results to 0. 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        plane[row][col] = 

log10(plane[row][col]); 

        if(plane[row][col] < 0){ 

          plane[row][col] = 0; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

 

Listing 11 

Establish the floor 

Listing 12 sets all values below X-percent of the maximum value to X-percent of the maximum 

value where X is determined by the value of scale.  Listing 12 also slides all values down to 

cause the floor to be 0.0. 



    double scale = 1.0/7.0; 

    //First find the maximum value. 

    double max = Double.MIN_VALUE; 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] > max){ 

          max = plane[row][col]; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

 

    //Now set everything below X-percent of the 

maximum to 

    // X-percent of the maximum value and slide 

    // everything down to cause the new minimum 

to be 

    // at 0.0 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] < scale * max){ 

          plane[row][col] = scale * max; 

        }//end if 

        plane[row][col] -= scale * max; 

      }//end inner loop 

    }//end outer loop 

 

Listing 12 

Scale to accommodate the 0 to 255 rule 

Listing 13 scales the data so that the maximum value becomes 255. 

    //First find the maximum value 

    max = Double.MIN_VALUE; 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] > max){ 

          max = plane[row][col]; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

    //Now scale the data. 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        plane[row][col] = plane[row][col] * 

255.0/max; 

      }//end inner loop 

    }//end outer loop 

 

  }//end normalize 

 

Listing 13 

Listing 13 also signals the end of the normalize method. 



Process green and blue color planes 

That brings us back to the processImg method, which we last saw in Listing 3.  When the code 

in Listing 3 finishes execution, the red color plane has been transformed to spectral format and is 

ready to be displayed. 

Listing 14 applies exactly the same process to the green and blue color planes. 

//Back in the processImg method 

 

    //Extract and process the green plane 

    double[][] greenPlane = 

extractPlane(working3D,2); 

    processPlane(greenPlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,greenPlane,2); 

     

    //Extract and process the blue plane 

    double[][] bluePlane = 

extractPlane(working3D,3); 

    processPlane(bluePlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,bluePlane,3); 

 

Listing 14 

When the code in Listing 14 finishes execution, all three color planes have been transformed to 

spectral format, and are ready to be displayed. 

Return to the plotting program 

Listing 15 converts the results to a 3D array containing data of type int and returns that array to 

the calling method in the class named ImgMod02a, where it will be plotted in the format shown 

in Figure 9. 

    output = copyToInt(working3D); 

 

    return output; 

 

  }//end processImg method 

 

Listing 15 

Listing 15 also signals the end of the processImg method and the end of the class named 

ImgMod34a. 

Now let's turn our attention from the program named ImgMod34a to the program named 

ImgMod34. 

The program named ImgMod34 



This program performs a forward 2D-DCT on an image followed by an inverse 2D-DCT on the 

spectral data produced by the forward DCT.  The result is to use the spectral data to reconstruct a 

replica of the original image as shown in Figure 1. 

Re-quantize to eleven bits 

To partially simulate the behavior of the JPEG image compression algorithm, all of the spectral 

results produced by the forward transform are re-quantized so that the data could be stored in an 

eleven-bit twos complement format (-1024 to +1023).  Although the re-quantized data is never 

actually stored in an eleven-bit integer format, this process should create the same re-

quantization noise that would be experienced if the data were actually stored in eleven bits. 

Otherwise, nothing is done to the spectral data 

Other than the re-quantization to eleven bits mentioned above, nothing is done to the spectral 

data following the forward DCT and before the inverse DCT.  However, additional processing, 

such as selective high-frequency re-quantization and entropy compression, followed by 

decompression could be inserted at that point in the program for demonstration purposes. 

Also runs under control of ImgMod02a 

As with the earlier program, this program is designed to run under control of the class named 

ImgMod02a.  Enter the following at the command line to run this program: 

java ImgMod02a ImgMod34 ImageFileName 

where ImageFileName is the name of a .gif or .jpg file, including the extension. 

Other class files required 

This program requires access to the following class files plus some inner classes that are defined 

inside the following classes: 

 ImgMod34.class 

 ImgIntfc02.class 

 ImgMod02a.class 

 InverseDCT01.class 

 ForwardDCT01.class 

The source code for the first class in the list is presented in Listing 24.  The source code for the 

last two classes in the list was developed and explained in the previous lesson entitled 

Understanding the Discrete Cosine Transform in Java.  The source code for the other two classes 

can be found in the earlier lessons entitled Processing Image Pixels using Java, Getting Started 

and Processing Image Pixels Using Java: Controlling Contrast and Brightness. 

Program testing 

http://www.developer.com/java/other/article.php/3619081
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This program was tested using J2SE 5.0 and WinXP.  J2SE 5.0 or later is required due to the use 

of static imports. 

Code is very similar to earlier program 

Much of the code in this program is the same as, or very similar to the code in the program 

named ImgMod34a, which I explained earlier in this lesson.  I won't repeat that explanation, but 

rather will simply refer you to Listing 24 where you can find a complete listing of ImgMod34.  I 

will concentrate on the code that is different between the two programs. 

The beginning of the ImgMod34 class 

Listing 16 shows the beginning of the class definition for ImgMod34. 

class ImgMod34 implements ImgIntfc02{ 

 

  //This method is required by ImgIntfc02.  It 

is called at 

  // the beginning of the run and each time 

thereafter that 

  // the user clicks the Replot button on the 

Frame 

  // containing the images. 

  public int[][][] processImg(int[][][] 

threeDPix, 

                              int imgRows, 

                              int imgCols){ 

                                         

//Code deleted for brevity 

     

    //Extract and process the red plane 

    double[][] redPlane = 

extractPlane(working3D,1); 

    processPlane(redPlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,redPlane,1); 

 

Listing 16 

Note that because of the similarity of the code in this portion of the program to the code that I 

explained earlier, I deleted most of the code from Listing 16, leaving just enough code to keep us 

in synch with the execution of the program. 

At this point, I will set the discussion of the method named processImg aside and explain the 

method named processPlane, which is invoked near the bottom of Listing 16. 

The processPlane method 

The code for the processPlane method begins in Listing 17. 



  void processPlane(double[][] colorPlane){ 

     

//Code deleted for brevity. 

 

      insertCol(colorPlane,theXform,col); 

    }//end for loop 

 

Listing 17 

This method processes a color plane received as an incoming parameter. 

 First it performs a forward 2D-DCT on the color plane producing spectral results. 

 Then it re-quantizes the spectral data such that it could be stored in an eleven-bit twos 

complement integer format. 

 Following that, the method performs an inverse 2D-DCT on the spectral plane producing 

an image color plane. 

Once again, for the reasons given earlier, I deleted most of the code from Listing 17 for 

brevity.  See Listing 24 for the missing code. 

Re-quantization to eleven bits 

Although I'm not absolutely certain at this point as to the exact format that JPEG uses to 

represent numeric spectral values, I'm reasonably confident that it is not a Java double format, 

but instead is an integer format.  One source on the web, entitled The JPEG Tutorial, implies that 

the spectral values can range from -1024 to +1023.  This strongly suggests an eleven-bit twos 

complement integer format. 

To approximate this apparent characteristic of JPEG, Listing 18 invokes the method named 

requanToElevenBits to re-quantize the data such that it would fit into eleven bits (-1024 to 

+1023) as a twos complement integer type. 

    //Get, save, and display the max value. 

    double max = getMax(colorPlane); 

    System.out.println(max); 

    requanToElevenBits(colorPlane,max/1023); 

    //Display requantized max value. (Should be 

1023.) 

    System.out.println(getMax(colorPlane)); 

 

Listing 18 

This is probably not exactly how it is done in JPEG, but hopefully it is a good approximation. 

(Note that I am assuming that the maximum spectral value for the plane can be 

saved along with the spectral data until the time comes to perform the inverse 

transform.  Exactly how that all is accomplished is still to be determined by my 

ongoing research into the details of the JPEG algorithm.) 

http://stargate.ecn.purdue.edu/~ips/tutorials/jpeg/jpgdct1.html


Not stored in an integer format 

In this program, even though the spectral data is re-quantized so that it will fit into an eleven-bit 

integer format, the data is never actually stored in an eleven-bit integer format.  Rather, 

immediately after being re-quantized, each value is converted back to type double for storage in 

the array of type double. 

The method named requanToElevenBits 

You can view the method named requanToElevenBits in Listing 24.  I am not going to explain 

that method in this lesson, but will explain re-quantization in a general sense in a future lesson. 

(Re-quantization plays a much more significant role in JPEG than the role that it 

plays in this program.  In fact, re-quantization is one of the central components of 

JPEG compression, and for that reason, it will be the primary topic of a future 

lesson in its own right.) 

Image is currently in eleven-bit spectral format 

At this point, the image has been transformed from the image or space domain into the frequency 

or wave-number domain.  In addition, the spectral data has been re-quantized so that it could be 

converted to an eleven-bit integer format and stored in that format if there were a need to do so. 

(According to my earlier analogy, it has been transformed from water to ice.) 

Restore the spectral magnitude 

Now I will convert the spectral data back into image data.  First I will restore the magnitude of 

the spectral data that has been re-quantized to the range -1024 to +1023.  This is necessary so 

that the relative magnitudes among the spectra for the three color planes will be correct. 

(Note, however, that the spectral data may have been corrupted by the 

introduction of quantization noise as a result of having been re-quantized, and the 

following operation will not eliminate such quantization noise.  Once the re-

quantization noise is there, it is there to stay.) 

Listing 19 invokes the method named restoreSpectralMagnitude in order to restore the 

magnitude of the spectral data. 

    

restoreSpectralMagnitude(colorPlane,max/1023); 

    //Display restored max value. 

    System.out.println(getMax(colorPlane)); 

 

Listing 19 



The method named restoreSpectralMagnitude is straightforward and shouldn't require an 

explanation.  The method can be viewed in its entirety in Listing 24. 

Perform the inverse 2D Discrete Cosine Transform 

Listing 20 uses the static method named transform belonging to the class named 

InverseDCT01 to perform the reverse of the operation explained earlier that began in Listing 5. 

    //Extract each col from the spectral plane 

and perform 

    // an inverse DCT on the column.  Then 

insert it back 

    // into the color plane. 

    for(int col = 0;col < imgCols;col++){ 

      double[] theXform = 

extractCol(colorPlane,col); 

       

      double[] theCol = new 

double[theXform.length]; 

      //Now transform it back 

      InverseDCT01.transform(theXform,theCol); 

       

      //Insert it back into the color plane. 

      insertCol(colorPlane,theCol,col); 

    }//end for loop 

 

    //Extract each row from the plane and 

perform an 

    // inverse DCT on the row. Then insert it 

back into the 

    // color plane. 

    for(int row = 0;row < imgRows;row++){ 

      double[] theXform = 

extractRow(colorPlane,row); 

       

      double[] theRow = new 

double[theXform.length]; 

      //Now transform it back 

      InverseDCT01.transform(theXform,theRow); 

       

      //Insert it back in 

      insertRow(colorPlane,theRow,row); 

    }//end for loop 

    //End inverse transform code 

 

Listing 20 

The transform method 

The static method named transform belonging to the class named InverseDCT01 was explained 

in the previous lesson in this series.  Assuming that you have studied the earlier lesson entitled 

Understanding the Discrete Cosine Transform in Java, there is nothing in Listing 20 that should 

require a further explanation. 

http://www.developer.com/java/other/article.php/3619081


Clip at 0 and 255 

At this point, the spectral data has been converted back into image color data and we are faced 

with the familiar problem of guaranteeing that the values are compatible with representation as 

unsigned eight-bit values (0 to 255).  In this case, I elected not to do anything fancy.  Listing 21 

invokes two methods that clip the values at 0 and 255 respectively, simply discarding any values 

that fall outside those bounds. 

    clipToZero(colorPlane); 

    clipTo255(colorPlane); 

 

  }//end processPlane 

 

Listing 21 

Both of the methods invoked in Listing 21 are straightforward.  You can view them in their 

entirety in Listing 24. 

Return control to the processImg method 

Listing 21 also signals the end of the processPlane method, returning control to the code in the 

processImg method shown in Listing 22. 

Listing 22 shows the remaining code in the processImg method. 

//Back in the processImg method 

 

    //Extract and process the green plane 

    double[][] greenPlane = 

extractPlane(working3D,2); 

    processPlane(greenPlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,greenPlane,2); 

     

    //Extract and process the blue plane 

    double[][] bluePlane = 

extractPlane(working3D,3); 

    processPlane(bluePlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,bluePlane,3); 

 

    //Convert the image color planes to type 

int and return 

    // the array of pixel data to the calling 

method. 

    output = copyToInt(working3D); 

    //Return a reference to the output array. 

    return output; 

 

  }//end processImg method 

 



Listing 22 

Listing 22 processes the green and blue color planes in a manner identical to the previous 

processing of the red color plane. 

Then Listing 22 converts the resulting image data to the required int format and returns the array 

reference to the calling method in the class named ImgMod029a. 

That's a wrap! 

So there you have it,  

 Transformation of an image into the frequency domain using a 2D Discrete Cosine 

Transform. 

 Re-quantization of the spectral data to fit in eleven bits. 

 Transformation of the re-quantized spectral data back into an image. 

The results for one image are shown in Figure 1.  As mentioned earlier, there appears to be some 

noise in the large empty areas of the image in Figure 1, (such as the empty white areas), which I 

believe is the result of the introduction of quantization noise into the spectral data when re-

quantizing the spectral data to force it to fit in eleven bits. 

Run the Program 

I encourage you to copy and compile the code from Listing 23 and Listing 24.  Experiment with 

the code, making changes, and observing the results of your changes. 

For example, try eliminating the code in ImgMod034 that re-quantizes the spectral data to see if 

it makes any difference in the quality of the resulting image. 

Try running ImgMod34a on a variety of different images to see if you can reach any conclusions 

regarding the appearance of the wave-number spectrum and the appearance of the image, as 

shown in Figure 3, Figure 5, Figure 7, and Figure 9 for example. 

Summary 

In this lesson, I taught you how to use the forward 2D-DCT to compute and to display the wave-

number spectrum of an image.  I also taught you how to apply the inverse 2D-DCT to the 

spectral data to reconstruct and display a replica of the original image. 

What's Next? 

The next publication in this series will be the second part of this two-part lesson on two-

dimensional Discrete Cosine Transforms (2D-DCT).  



Future lessons in this series will explain the inner workings behind several data and image 

compression schemes, including the following: 

 Run-length data encoding 

 GIF image compression 

 JPEG image compression 
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/*File ImgMod34a.java 

Copyright 2006, R.G.Baldwin 

 

This program is a modification of ImgMod34.  The purpose of 

this program is to compute and to display the wave-number  

spectrum of an image using a Discrete Cosine Transform. 

 

This program performs a forward DCT on each color plane  
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belonging to an image producing a wave-number spectrum that 

describes each color plane in the image. 

 

Then it converts the wave-number spectrum to decibels and  

normalizes the result to cover the range from 0 to 255. 

This makes it suitable for being displayed as an image. 

 

Then it returns the wave-number spectrum for each color  

plane in an image format. 

 

When displayed as an image, the result is the composite of 

the normalized wave number spectra of all three color  

planes. 

 

The capability is provided to enable statements that will 

effectively eliminate one, two, or all three of the color  

planes from the computation.  This requires modification 

of the source code and recompilation of the program. 

 

The class is designed to be driven by the class named  

ImgMod02a.   

 

Enter the following at the command line to run this 

program: 

 

java ImgMod02a ImgMod34a ImageFileName 

 

where ImageFileName is the name of a .gif or .jpg file,  

including the extension. 

 

When you click the Replot button, the process will be  

repeated and the results will be re-displayed.  Because 

there is no opportunity for user input after the program is 

started, the Replot button is of little value to this  

program. 

  

This program requires access to the following class files  

plus some inner classes that are defined inside the 

following classes: 

 

ImgIntfc02.class 

ImgMod02a.class 

ImgMod34a.class 

ForwardDCT01.class 

 

Tested using J2SE 5.0 and WinXP.  J2SE 5.0 or later is  

required due to the use of static imports. 

**********************************************************/ 

import java.awt.*; 

import java.io.*; 

import static java.lang.Math.*; 

 

class ImgMod34a implements ImgIntfc02{ 

   

  //Note that many of the comments in this source code are 

  // left over from the class named ImgMod34, which was the 



  // class from which this class was created. 

                                         

  //This method is required by ImgIntfc02.  It is called at 

  // the beginning of the run and each time thereafter that 

  // the user clicks the Replot button on the Frame 

  // contaning the images. 

  public int[][][] processImg(int[][][] threeDPix, 

                              int imgRows, 

                              int imgCols){ 

 

    //Create an empty output array of the same size as the 

    // incoming array. 

    int[][][] output = new int[imgRows][imgCols][4]; 

 

    //Make a working copy of the 3D pixel array as type 

    // double to avoid making permanent changes to the 

    // original image data.  Also, all processing will be 

    // performed as type double. 

    double[][][] working3D = copyToDouble(threeDPix); 

     

    //The following code can be enabled to set any of the 

    // three colors to black, thus removing them from the 

    // output. 

    for(int row = 0;row < imgRows;row++){ 

      for(int col = 0;col < imgCols;col++){ 

//        working3D[row][col][1] = 0; 

//        working3D[row][col][2] = 0; 

//        working3D[row][col][3] = 0; 

      }//end inner loop 

    }//end outer loop 

     

    //Extract and process the red plane 

    double[][] redPlane = extractPlane(working3D,1); 

    processPlane(redPlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,redPlane,1); 

     

    //Extract and process the green plane 

    double[][] greenPlane = extractPlane(working3D,2); 

    processPlane(greenPlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,greenPlane,2); 

     

    //Extract and process the blue plane 

    double[][] bluePlane = extractPlane(working3D,3); 

    processPlane(bluePlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,bluePlane,3); 

 

    //Convert the image color planes to type int and return 

    // the array of pixel data to the calling method. 

    output = copyToInt(working3D); 

    //Return a reference to the output array. 

    return output; 

 

  }//end processImg method 



  //-----------------------------------------------------// 

 

  //The purpose of this method is to extract a specified 

  // row from a double 2D plane and to return it as a one- 

  // dimensional array of type double. 

  double[] extractRow(double[][] colorPlane,int row){ 

    int numCols = colorPlane[0].length; 

    double[] output = new double[numCols]; 

    for(int col = 0;col < numCols;col++){ 

      output[col] = colorPlane[row][col]; 

    }//end outer loop 

    return output; 

  }//end extractRow 

  //-----------------------------------------------------// 

 

  //The purpose of this method is to insert a specified 

  // row of double data into a double 2D plane. 

  void insertRow(double[][] colorPlane, 

                 double[] theRow, 

                 int row){ 

    int numCols = colorPlane[0].length; 

    double[] output = new double[numCols]; 

    for(int col = 0;col < numCols;col++){ 

      colorPlane[row][col] = theRow[col]; 

    }//end outer loop 

  }//end insertRow 

  //-----------------------------------------------------// 

 

  //The purpose of this method is to extract a specified 

  // col from a double 2D plane and to return it as a one- 

  // dimensional array of type double. 

  double[] extractCol(double[][] colorPlane,int col){ 

    int numRows = colorPlane.length; 

    double[] output = new double[numRows]; 

    for(int row = 0;row < numRows;row++){ 

      output[row] = colorPlane[row][col]; 

    }//end outer loop 

    return output; 

  }//end extractCol 

  //-----------------------------------------------------// 

 

  //The purpose of this method is to insert a specified 

  // col of double data into a double 2D color plane. 

  void insertCol(double[][] colorPlane, 

                 double[] theCol, 

                 int col){ 

    int numRows = colorPlane.length; 

    double[] output = new double[numRows]; 

    for(int row = 0;row < numRows;row++){ 

      colorPlane[row][col] = theCol[row]; 

    }//end outer loop 

  }//end insertCol 

  //-----------------------------------------------------// 

 

  //The purpose of this method is to extract a color plane 

  // from the double version of an image and to return it 



  // as a 2D array of type double. 

  public double[][] extractPlane( 

                              double[][][] threeDPixDouble, 

                              int plane){ 

     

    int numImgRows = threeDPixDouble.length; 

    int numImgCols = threeDPixDouble[0].length; 

     

    //Create an empty output array of the same 

    // size as a single plane in the incoming array of 

    // pixels. 

    double[][] output =new double[numImgRows][numImgCols]; 

 

    //Copy the values from the specified plane to the 

    // double array. 

    for(int row = 0;row < numImgRows;row++){ 

      for(int col = 0;col < numImgCols;col++){ 

        output[row][col] = 

                          threeDPixDouble[row][col][plane]; 

      }//end loop on col 

    }//end loop on row 

    return output; 

  }//end extractPlane 

  //-----------------------------------------------------// 

   

  //The purpose of this method is to insert a double 2D 

  // plane into the double 3D array that represents an 

  // image.  This method also trims off any extra rows and 

  // columns in the double 2D plane. 

  public void insertPlane( 

                              double[][][] threeDPixDouble, 

                              double[][] colorPlane, 

                              int plane){ 

     

    int numImgRows = threeDPixDouble.length; 

    int numImgCols = threeDPixDouble[0].length; 

     

    //Copy the values from the incoming color plane to the 

    // specified plane in the 3D array. 

    for(int row = 0;row < numImgRows;row++){ 

      for(int col = 0;col < numImgCols;col++){ 

        threeDPixDouble[row][col][plane] =  

                                      colorPlane[row][col]; 

      }//end loop on col 

    }//end loop on row 

  }//end insertPlane 

  //-----------------------------------------------------// 

 

  //This method copies an int version of a 3D pixel array 

  // to an new pixel array of type double. 

  double[][][] copyToDouble(int[][][] threeDPix){ 

    int imgRows = threeDPix.length; 

    int imgCols = threeDPix[0].length; 

     

    double[][][] new3D = new double[imgRows][imgCols][4]; 

    for(int row = 0;row < imgRows;row++){ 



      for(int col = 0;col < imgCols;col++){ 

        new3D[row][col][0] = threeDPix[row][col][0]; 

        new3D[row][col][1] = threeDPix[row][col][1]; 

        new3D[row][col][2] = threeDPix[row][col][2]; 

        new3D[row][col][3] = threeDPix[row][col][3]; 

      }//end inner loop 

    }//end outer loop 

    return new3D; 

  }//end copyToDouble 

  //-----------------------------------------------------// 

   

  //This method copies double version of a 3D pixel array 

  // to a new pixel array of type int. 

  int[][][] copyToInt(double[][][] threeDPixDouble){ 

    int imgRows = threeDPixDouble.length; 

    int imgCols = threeDPixDouble[0].length; 

     

    int[][][] new3D = new int[imgRows][imgCols][4]; 

    for(int row = 0;row < imgRows;row++){ 

      for(int col = 0;col < imgCols;col++){ 

        new3D[row][col][0] =  

                         (int)threeDPixDouble[row][col][0]; 

        new3D[row][col][1] =  

                         (int)threeDPixDouble[row][col][1]; 

        new3D[row][col][2] =  

                         (int)threeDPixDouble[row][col][2]; 

        new3D[row][col][3] =  

                         (int)threeDPixDouble[row][col][3]; 

      }//end inner loop 

    }//end outer loop 

    return new3D; 

  }//end copyToInt 

  //-----------------------------------------------------// 

   

  //This method processes a color plane received as an 

  // incoming parameter.  First it performs a 2D-DCT on 

  // the color plane producing spectral results.  Then it 

  // normalizes the spectral values in the plane to make 

  // them compatible with being displayed as an image.  In 

  // so doing, it converts the spectral data to decibels in 

  // order to preserve the plotting dynamic range. 

 

  void processPlane(double[][] colorPlane){ 

     

    int imgRows = colorPlane.length; 

    int imgCols = colorPlane[0].length; 

     

    //Extract each row from the color plane and perform a 

    // forward DCT on the row.  Then insert it back into 

    // the color plane. 

    for(int row = 0;row < imgRows;row++){ 

      double[] theRow = extractRow(colorPlane,row); 

       

      double[] theXform = new double[theRow.length]; 

      ForwardDCT01.transform(theRow,theXform); 

       



      //Insert the transformed row into the color plane. 

      // The row now contains spectral data. 

      insertRow(colorPlane,theXform,row); 

    }//end for loop 

     

    //Extract each col from the color plane and perform a 

    // forward DCT on the column.  Then insert it back into 

    // the color plane. 

    for(int col = 0;col < imgCols;col++){ 

      double[] theCol = extractCol(colorPlane,col); 

 

      double[] theXform = new double[theCol.length]; 

      ForwardDCT01.transform(theCol,theXform); 

 

      insertCol(colorPlane,theXform,col); 

    }//end for loop 

     

    //At this point, the image has been transformed from 

    // image or space data to spectral data in both 

    // dimensions. 

     

    //Normalize the spectral values to the range 0 - 255. 

    normalize(colorPlane); 

  }//end processPlane 

  //-----------------------------------------------------// 

  //Normalizes the data in a 2D double plane to make it 

  // compatible with being displayed as an image plane. 

  //First all negative values are converted to positive 

  // values. 

  //Then all values are converted to log base 10 to 

  // preserve the dynamic range of the plotting system.  

  // All negative values are set to 0 at this point. 

  //Then all values that are below X-percent of the maximum 

  // value are set to X-percent of the maximum value 

  // producing a floor for the values. 

  //Then all values are biased so that the minimum value 

  // (the floor) becomes 0. 

  //Then all values are scaled so that the maximum value 

  // becomes 255. 

  void normalize(double[][] plane){ 

    int rows = plane.length; 

    int cols = plane[0].length; 

     

    //Begin by converting all negative values to positive 

    // values.  This is equivalent to the computation of 

    // the magnitude for purely real data. 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] < 0){ 

          plane[row][col] = - plane[row][col]; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

     

    //Convert the values to log base 10 to preserve the 

    // dynamic range of the plotting system.  Set negative 



    // values to 0. 

 

    //First eliminate or change any values that are 

    // incompatible with log10 method. 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] == 0.0){ 

          plane[row][col] = 0.0000001; 

        }else if(plane[row][col] == Double.NaN){ 

          plane[row][col] = 0.0000001; 

        }else if(plane[row][col] ==  

                                 Double.POSITIVE_INFINITY){ 

          plane[row][col] = 9999999999.0; 

        }//end else 

      }//end inner loop 

    }//end outer loop 

 

    //Now convert the data to log base 10 setting all 

    // negative results to 0. 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        plane[row][col] = log10(plane[row][col]); 

        if(plane[row][col] < 0){ 

          plane[row][col] = 0; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

 

 

    //Now set everything below X-percent of the maximum 

    // value to X-percent of the maximum value where X is 

    // determined by the value of scale. 

    double scale = 1.0/7.0; 

    //First find the maximum value. 

    double max = Double.MIN_VALUE; 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] > max){ 

          max = plane[row][col]; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

 

    //Now set everything below X-percent of the maximum to 

    // X-percent of the maximum value and slide 

    // everything down to cause the new minimum to be 

    // at 0.0 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] < scale * max){ 

          plane[row][col] = scale * max; 

        }//end if 

        plane[row][col] -= scale * max; 

      }//end inner loop 

    }//end outer loop 

     



    //Now scale the data so that the maximum value is 255. 

 

    //First find the maximum value 

    max = Double.MIN_VALUE; 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        if(plane[row][col] > max){ 

          max = plane[row][col]; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

    //Now scale the data. 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        plane[row][col] = plane[row][col] * 255.0/max; 

      }//end inner loop 

    }//end outer loop 

 

  }//end normalize 

  //-----------------------------------------------------// 

 

}//end class ImgMod34a 

 

Listing 23 

Listing 24 

/*File ImgMod34.java 

Copyright 2006, R.G.Baldwin 

 

This program performs a forward DCT on an image followed by 

an inverse DCT on the spectral planes produced by the  

forward DCT. 

 

To partially simulate the behavior of JPEG, the spectral 

results produced by the forward transform are requantized 

so that the data could be stored in an eleven-bit twos 

complement format (-1024 to +1023).  However, the data is 

never actually stored in an integer format.  However, this 

process should create the same requantization noise that 

would be experienced if the data were actually stored in 

eleven bits. 

 

Other than the requantization to eleven bits mentioned  

above, nothing is done to the spectral planes following the 

forward DCT and before the inverse DCT.  However,  

additional processing, such as high-frequency  

requantization and entropy compression, followed by  

decompression could be inserted at that point in the  

program for demonstration purposes. 

 

This program runs significantly slower than ImgMod35, 

which sub-divides the image into 8x8-pixel subplanes and  

processes the subplanes separately. 

 



The class is designed to be driven by the class named  

ImgMod02a.   

 

Enter the following at the command line to run this 

program: 

 

java ImgMod02a ImgMod34 ImageFileName 

 

where ImageFileName is the name of a .gif or .jpg file,  

including the extension. 

 

 

When you click the Replot button, the process will be  

repeated and the results will be re-displayed.  Because 

there is no opportunity for user input after the program is 

started, the Replot button is of little value to this  

program. 

  

This program requires access to the following class files  

plus some inner classes that are defined inside the 

following classes: 

 

ImgIntfc02.class 

ImgMod02a.class 

ImgMod34.class 

InverseDCT01.class 

ForwardDCT01.class 

 

Tested using J2SE 5.0 and WinXP.  J2SE 5.0 or later is  

required due to the use of static imports. 

**********************************************************/ 

import java.awt.*; 

import java.io.*; 

import static java.lang.Math.*; 

 

class ImgMod34 implements ImgIntfc02{ 

                                         

  //This method is required by ImgIntfc02.  It is called at 

  // the beginning of the run and each time thereafter that 

  // the user clicks the Replot button on the Frame 

  // contaning the images. 

  public int[][][] processImg(int[][][] threeDPix, 

                              int imgRows, 

                              int imgCols){ 

 

    //Create an empty output array of the same size as the 

    // incoming array. 

    int[][][] output = new int[imgRows][imgCols][4]; 

 

    //Make a working copy of the 3D pixel array as type 

    // double to avoid making permanent changes to the 

    // original image data.  Also, all processing will be 

    // performed as type double. 

    double[][][] working3D = copyToDouble(threeDPix); 

     

    //The following code can be enabled to set any of the 



    // three colors to black, thus removing them from the 

    // output. 

    for(int row = 0;row < imgRows;row++){ 

      for(int col = 0;col < imgCols;col++){ 

//        working3D[row][col][1] = 0; 

//        working3D[row][col][2] = 0; 

//        working3D[row][col][3] = 0; 

      }//end inner loop 

    }//end outer loop 

     

    //Extract and process the red plane 

    double[][] redPlane = extractPlane(working3D,1); 

    processPlane(redPlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,redPlane,1); 

     

    //Extract and process the green plane 

    double[][] greenPlane = extractPlane(working3D,2); 

    processPlane(greenPlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,greenPlane,2); 

     

    //Extract and process the blue plane 

    double[][] bluePlane = extractPlane(working3D,3); 

    processPlane(bluePlane); 

    //Insert the plane back into the 3D array 

    insertPlane(working3D,bluePlane,3); 

 

    //Convert the image color planes to type int and return 

    // the array of pixel data to the calling method. 

    output = copyToInt(working3D); 

    //Return a reference to the output array. 

    return output; 

 

  }//end processImg method 

  //-----------------------------------------------------// 

 

  //The purpose of this method is to extract a specified 

  // row from a double 2D plane and to return it as a one- 

  // dimensional array of type double. 

  double[] extractRow(double[][] colorPlane,int row){ 

    int numCols = colorPlane[0].length; 

    double[] output = new double[numCols]; 

    for(int col = 0;col < numCols;col++){ 

      output[col] = colorPlane[row][col]; 

    }//end outer loop 

    return output; 

  }//end extractRow 

  //-----------------------------------------------------// 

 

  //The purpose of this method is to insert a specified 

  // row of double data into a double 2D plane. 

  void insertRow(double[][] colorPlane, 

                 double[] theRow, 

                 int row){ 

    int numCols = colorPlane[0].length; 



    double[] output = new double[numCols]; 

    for(int col = 0;col < numCols;col++){ 

      colorPlane[row][col] = theRow[col]; 

    }//end outer loop 

  }//end insertRow 

  //-----------------------------------------------------// 

 

  //The purpose of this method is to extract a specified 

  // col from a double 2D plane and to return it as a one- 

  // dimensional array of type double. 

  double[] extractCol(double[][] colorPlane,int col){ 

    int numRows = colorPlane.length; 

    double[] output = new double[numRows]; 

    for(int row = 0;row < numRows;row++){ 

      output[row] = colorPlane[row][col]; 

    }//end outer loop 

    return output; 

  }//end extractCol 

  //-----------------------------------------------------// 

 

  //The purpose of this method is to insert a specified 

  // col of double data into a double 2D color plane. 

  void insertCol(double[][] colorPlane, 

                 double[] theCol, 

                 int col){ 

    int numRows = colorPlane.length; 

    double[] output = new double[numRows]; 

    for(int row = 0;row < numRows;row++){ 

      colorPlane[row][col] = theCol[row]; 

    }//end outer loop 

  }//end insertCol 

  //-----------------------------------------------------// 

 

  //The purpose of this method is to extract a color plane 

  // from the double version of an image and to return it 

  // as a 2D array of type double. 

  public double[][] extractPlane( 

                              double[][][] threeDPixDouble, 

                              int plane){ 

     

    int numImgRows = threeDPixDouble.length; 

    int numImgCols = threeDPixDouble[0].length; 

     

    //Create an empty output array of the same 

    // size as a single plane in the incoming array of 

    // pixels. 

    double[][] output =new double[numImgRows][numImgCols]; 

 

    //Copy the values from the specified plane to the 

    // double array. 

    for(int row = 0;row < numImgRows;row++){ 

      for(int col = 0;col < numImgCols;col++){ 

        output[row][col] = 

                          threeDPixDouble[row][col][plane]; 

      }//end loop on col 

    }//end loop on row 



    return output; 

  }//end extractPlane 

  //-----------------------------------------------------// 

   

  //The purpose of this method is to insert a double 2D 

  // plane into the double 3D array that represents an 

  // image.  This method also trims off any extra rows and 

  // columns in the double 2D plane. 

  public void insertPlane( 

                              double[][][] threeDPixDouble, 

                              double[][] colorPlane, 

                              int plane){ 

     

    int numImgRows = threeDPixDouble.length; 

    int numImgCols = threeDPixDouble[0].length; 

     

    //Copy the values from the incoming color plane to the 

    // specified plane in the 3D array. 

    for(int row = 0;row < numImgRows;row++){ 

      for(int col = 0;col < numImgCols;col++){ 

        threeDPixDouble[row][col][plane] =  

                                      colorPlane[row][col]; 

      }//end loop on col 

    }//end loop on row 

  }//end insertPlane 

  //-----------------------------------------------------// 

 

  //This method copies an int version of a 3D pixel array 

  // to an new pixel array of type double. 

  double[][][] copyToDouble(int[][][] threeDPix){ 

    int imgRows = threeDPix.length; 

    int imgCols = threeDPix[0].length; 

     

    double[][][] new3D = new double[imgRows][imgCols][4]; 

    for(int row = 0;row < imgRows;row++){ 

      for(int col = 0;col < imgCols;col++){ 

        new3D[row][col][0] = threeDPix[row][col][0]; 

        new3D[row][col][1] = threeDPix[row][col][1]; 

        new3D[row][col][2] = threeDPix[row][col][2]; 

        new3D[row][col][3] = threeDPix[row][col][3]; 

      }//end inner loop 

    }//end outer loop 

    return new3D; 

  }//end copyToDouble 

  //-----------------------------------------------------// 

   

  //This method copies double version of a 3D pixel array 

  // to a new pixel array of type int. 

  int[][][] copyToInt(double[][][] threeDPixDouble){ 

    int imgRows = threeDPixDouble.length; 

    int imgCols = threeDPixDouble[0].length; 

     

    int[][][] new3D = new int[imgRows][imgCols][4]; 

    for(int row = 0;row < imgRows;row++){ 

      for(int col = 0;col < imgCols;col++){ 

        new3D[row][col][0] =  



                         (int)threeDPixDouble[row][col][0]; 

        new3D[row][col][1] =  

                         (int)threeDPixDouble[row][col][1]; 

        new3D[row][col][2] =  

                         (int)threeDPixDouble[row][col][2]; 

        new3D[row][col][3] =  

                         (int)threeDPixDouble[row][col][3]; 

      }//end inner loop 

    }//end outer loop 

    return new3D; 

  }//end copyToInt 

  //-----------------------------------------------------// 

   

  //The purpose of this method is to clip all negative  

  // color values in a double color plane to a value of 0. 

  void clipToZero(double[][] colorPlane){ 

    int numImgRows = colorPlane.length; 

    int numImgCols = colorPlane[0].length; 

    //Do the clip 

    for(int row = 0;row < numImgRows;row++){ 

      for(int col = 0;col < numImgCols;col++){ 

        if(colorPlane[row][col] < 0){ 

          colorPlane[row][col] = 0; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

  }//end clipToZero 

  //-----------------------------------------------------// 

  //The purpose of this method is to clip all color values 

  // in a double color plane that are greater than 255 to 

  // a value of 255. 

  void clipTo255(double[][] colorPlane){ 

    int numImgRows = colorPlane.length; 

    int numImgCols = colorPlane[0].length; 

    //Do the clip 

    for(int row = 0;row < numImgRows;row++){ 

      for(int col = 0;col < numImgCols;col++){ 

        if(colorPlane[row][col] > 255){ 

          colorPlane[row][col] = 255; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

  }//end clipTo255 

  //-----------------------------------------------------// 

   

  //This method processes a color plane received as an 

  // incoming parameter.  First it performs a 2D-DCT on 

  // the color plane producing spectral results.  Then it 

  // performs an inverse DCT on the spectral plane 

  // producing an image color plane. 

  void processPlane(double[][] colorPlane){ 

     

    int imgRows = colorPlane.length; 

    int imgCols = colorPlane[0].length; 

     

    //Extract each row from the color plane and perform a 



    // forward DCT on the row.  Then insert it back into 

    // the color plane. 

    for(int row = 0;row < imgRows;row++){ 

      double[] theRow = extractRow(colorPlane,row); 

       

      double[] theXform = new double[theRow.length]; 

      ForwardDCT01.transform(theRow,theXform); 

       

      //Insert the transformed row into the color plane. 

      // The row now contains spectral data. 

      insertRow(colorPlane,theXform,row); 

    }//end for loop 

     

    //Extract each col from the color plane and perform a 

    // forward DCT on the column.  Then insert it back into 

    // the color plane. 

    for(int col = 0;col < imgCols;col++){ 

      double[] theCol = extractCol(colorPlane,col); 

 

      double[] theXform = new double[theCol.length]; 

      ForwardDCT01.transform(theCol,theXform); 

 

      insertCol(colorPlane,theXform,col); 

    }//end for loop 

     

    //To approximate the behavior of JPEG, I need to 

    // re-quantize the data such that it would fit into 

    // eleven bits (-1024 to +1023) as an integer type. 

    // This is probably not exactly how it is done in 

    // JPEG, but hopefully it is a good approximation. 

    // I am assuming that the maximum value for this 

    // plane can be saved along with the spectral data 

    // until time comes to perform the inverse transform. 

    //Note that in this program, even though the spectral 

    // data is requantized so that it will fit into 

    // an eleven-bit integer format, the data is never 

    // actually stored in an eleven-bit integer format. 

    // Rather, immediately after being requantized, each 

    // value is converted back to type double for storage 

    // in the array of type double[][]. 

     

    //Get, save, and display the max value. 

    double max = getMax(colorPlane); 

    System.out.println(max); 

    requanToElevenBits(colorPlane,max/1023); 

    //Display requantized max value. (Should be 1023.) 

    System.out.println(getMax(colorPlane)); 

     

    //At this point, the image has been transformed from 

    // image or space data to spectral data in both 

    // dimensions. In addition, the spectral data has been 

    // requantized so that could be converted to an 

    // eleven-bit integer format and stored in that format 

    // if there were a need to do so.  

     

    //Now convert the spectral data back into image data. 



     

    //First restore the magnitude of the spectral data 

    // that has been requantized to the range -1024 to 

    // +1023.  This is necessary so that the relative 

    // magnitudes among the spectra for the three color 

    // planes will be correct. 

    //Note that the spectral data may have been corrupted 

    // by quantization noise as a result of having 

    // been requantized. 

    restoreSpectralMagnitude(colorPlane,max/1023); 

    //Display restored max value. 

    System.out.println(getMax(colorPlane)); 

     

    //Extract each col from the spectral plane and perform 

    // an inverse DCT on the column.  Then insert it back 

    // into the color plane. 

    for(int col = 0;col < imgCols;col++){ 

      double[] theXform = extractCol(colorPlane,col); 

       

      double[] theCol = new double[theXform.length]; 

      //Now transform it back 

      InverseDCT01.transform(theXform,theCol); 

       

      //Insert it back into the color plane. 

      insertCol(colorPlane,theCol,col); 

    }//end for loop 

 

    //Extract each row from the plane and perform an 

    // inverse DCT on the row. Then insert it back into the 

    // color plane. 

    for(int row = 0;row < imgRows;row++){ 

      double[] theXform = extractRow(colorPlane,row); 

       

      double[] theRow = new double[theXform.length]; 

      //Now transform it back 

      InverseDCT01.transform(theXform,theRow); 

       

      //Insert it back in 

      insertRow(colorPlane,theRow,row); 

    }//end for loop 

    //End inverse transform code 

 

    //At this point, the spectral data has been converted 

    // back into image color data.  Ultimately it will be 

    // necessary to convert it to 8-bit unsigned pixel 

    // color format in order to display it as an image. 

    //  Clip to zero and 255. 

    clipToZero(colorPlane); 

    clipTo255(colorPlane); 

 

  }//end processPlane 

  //-----------------------------------------------------// 

 

  //Purpose: to find and return the maximum value 

  double getMax(double[][] plane){ 

    int rows = plane.length; 



    int cols = plane[0].length; 

    double max = Double.MIN_VALUE; 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        double value = plane[row][col]; 

        if(value < 0){ 

          value = -value; 

        }//end if 

        if(value > max){ 

          max = value; 

        }//end if 

      }//end inner loop 

    }//end outer loop 

    return max; 

  }//end getMax 

  //-----------------------------------------------------// 

   

  //Purpose:  To requantize the spectral data such that it 

  // would fit into eleven bits (-1024 to 1023).  Note 

  // that even though the data is rounded to type int in 

  // this method, it is immediately converted back to type 

  // double when it is stored in the array referred to by 

  // plane.  Thus, it is never actually stored in an  

  // integer format. 

  void requanToElevenBits(double[][] plane,double divisor){ 

    int rows = plane.length; 

    int cols = plane[0].length; 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        plane[row][col] = round(plane[row][col]/divisor); 

      }//end inner loop 

    }//end outer loop 

  }//end requanToElevenBits 

  //-----------------------------------------------------// 

   

  //Purpose:  To restore the magnitude of spectral data 

  // that has been requantized to the range from -1024 to 

  // +1023.  This is necessary so that the relative 

  // magnitude among the spectra for the three color planes 

  // will be correct. 

  void restoreSpectralMagnitude( 

                           double[][] plane,double factor){ 

    int rows = plane.length; 

    int cols = plane[0].length; 

    for(int row = 0;row < rows;row++){ 

      for(int col = 0;col < cols;col++){ 

        plane[row][col] = factor * plane[row][col]; 

      }//end inner loop 

    }//end outer loop 

  }//end restoreSpectralMagnitude 

  //-----------------------------------------------------// 

}//end class ImgMod34 
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