
Understanding the Huffman Data Compression Algorithm

in Java

Learn how to write a Java program that exposes the inner workings of the Huffman lossless data

compression algorithm. Apply the algorithm to different test messages.

Published: May 2, 2006

By Richard G. Baldwin

Java Programming Notes # 2442

 Preface

 General Background Information

 Preview

 Discussion and Sample Code

o Encode the Message

o Decode the Message

 Run the Program

 Summary

 What's Next?

 References

 Complete Program Listing

Preface

This is the second lesson in a series of lessons that will teach you about data and image

compression. The series began with the lesson entitled Understanding the Lempel-Ziv Data

Compression Algorithm in Java (commonly known as LZ77).

Different variations of the LZ algorithms, the Huffman algorithm, and other compression

algorithms are often combined in data and image compression programs. For example,

numerous sources on the web indicate that commercially available zip programs often

incorporate something called DEFLATE. According to Wikipedia,

"DEFLATE is a lossless data compression algorithm that uses a combination of

the LZ77 algorithm and Huffman coding. It was originally defined by Phil Katz

for version 2 of his PKZIP archiving tool, and was later specified in RFC 1951."

This lesson will teach you about Huffman coding.

Future lessons will cover a variety of compression schemes, including:

 Run-length data encoding

mailto:Baldwin@DickBaldwin.com
http://www.developer.com/java/data/article.php/3586396
http://www.developer.com/java/data/article.php/3586396
http://en.wikipedia.org/wiki/DEFLATE_(algorithm)
http://en.wikipedia.org/wiki/Phil_Katz
http://en.wikipedia.org/wiki/PKZIP
http://en.wikipedia.org/wiki/Request_for_Comments

 GIF image compression

 JPEG image compression

Use at your own risk

The programs that I will provide in these lessons are provided for educational purposes only. If

you use these programs for any purpose, you are using them at your own risk. I accept no

responsibility for any damages that you may incur as a result of the use of these programs.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

I particularly recommend that you study my earlier lessons in the section entitled References in

preparation for understanding the material in this lesson.

General Background Information

Most of us use data or image compression on a daily basis without even thinking about it. If you

use one of the popular zip programs to archive your data, you are using a program that typically

implements several different data compression algorithms in combination. If you take pictures

with a digital camera, you are probably creating files that describe images using the JPEG image

compression format.

What is Huffman coding?

According to Wikipedia,

"... Huffman coding is an entropy encoding algorithm used for lossless data

compression. The term refers to the use of a variable-length code table for

encoding a source symbol (such as a character in a file) where the variable-

length code table has been derived in a particular way based on the estimated

probability of occurrence for each possible value of the source symbol."

Other variable-length entropy coding systems

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Entropy_encoding
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Lossless_data_compression

Huffman coding is not the only encoding scheme to use variable-length code based on the

probability of occurrence of the characters in a message. For example, the International Morse

Code, originally created by Samuel Morse in the mid-1830s is a variable-length code, apparently

based on his concept of the probability of occurrence of the letters in the English alphabet. For

example, the code for the letter E is the shortest code. The letter E occurs very frequently in

English text. The longest code is for the number 0. Excluding the numbers, however, the two

longest codes are for the letters Q and W. The letter Q doesn't appear very often in English Text.

(As an aside, one might surmise that similar probability tables were used to

develop the QWERTY keyboard where the key for the letter E is relatively easy to

strike. On the other hand, the key for the letter Q is more difficult for many

people to strike because it requires the use of the little finger on the left hand.)

Morse is not a prefix-free code

While Morse code is easy for a trained radio operator to understand (this author was a radio

operator in the U.S. Air Force for several years), the code has a characteristic that makes it

difficult, or at least inefficient to implement using a computer. In particular, the code sequences

for the most probable characters occur as the beginning parts of the code sequences for other

characters. (For example, the entire code sequence for the letter E occurs as the first element in

the codes for many other letters.) A trained human can easily deal with that situation but a

significant amount of overhead is required to cause a computer to deal with it.

Huffman is a prefix-free code

Huffman coding solves this problem. The methodology used for Huffman coding results in a

prefix-free code. A prefix-free code is one in which the bit coding sequence representing some

particular character is never a prefix of the bit coding sequence representing any other

character. For example, here is a possible bit sequence for a Huffman code on an alphabet with

four characters where D is the most probable and A is the least probable:

A 110

D 0

C 10

B 111

Code length is based on probability of occurrence

As with Morse code, the methodology used for the Huffman coding causes the bit coding

sequence to be shortest for the most frequently occurring characters, and causes the coding

sequence to be longest for the least frequently occurring characters. Unlike the Morse code,

however, the probabilities for Huffman are usually determined on a message-by-message basis

instead of being based on some general overall expectation of the probability of occurrence of

the characters.

Message-by-message probabilities

http://en.wikipedia.org/wiki/Morse_Code
http://en.wikipedia.org/wiki/Morse_Code
http://en.wikipedia.org/wiki/Samuel_Morse
http://en.wikipedia.org/wiki/Prefix-free_code

The upside of determining the probabilities on a message-by-message basis is that the encoding

can be optimized for each specific message. The downside is that the probability encoding table

used to encode a specific message must also be used to decode the message. The requirement to

transport the encoding table along with the message adds some overhead to the overall process.

An optimal encoding scheme

Once again, according to Wikipedia,

"Huffman was able to design the most efficient compression method of this type:

no other mapping of individual source symbols to unique strings of bits will

produce a smaller average output size when the actual symbol frequencies agree

with those used to create the code."

Some caution is advised

Wikipedia goes on to caution us,

"Assertions of the optimality of Huffman coding should be phrased carefully,

because its optimality can sometimes accidentally be over-stated. For example,

arithmetic coding ordinarily has better compression capability, because it does

not require the use of an integer number of bits for encoding each source symbol.

LZW coding can also often be more efficient, particularly when the input symbols

are not independently-distributed, because it does not depend on encoding each

input symbol one at a time (instead, it batches up a variable number of input

symbols into each encoded syntax element). The efficiency of Huffman coding also

depends heavily on having a good estimate of the true probability of the value of

each input symbol."

As mentioned earlier, some data compression schemes combine Huffman coding with one of the

Lempel-Ziv (LZ) coding schemes to get the best of both worlds.

A binary tree

As you will soon see, Huffman coding works by creating a binary tree of nodes, with each node

being either a leaf node or an internal node.

(A picture of an actual Huffman binary tree, along with a corresponding example,

can be seen at the Binary Essence web site. Additional Huffman binary trees are

also shown in Figure 6, Figure 8, and Figure 10 later in this lesson.)

All nodes are initially leaf nodes, and there is one leaf node for every character in the message

being compressed. Then the leaf nodes are combined with internal nodes to form the tree.

As mentioned above, here is one leaf node for each character in the message. A leaf node

contains the character and the frequency of usage for that character.

http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Arithmetic_coding
http://en.wikipedia.org/wiki/LZW
http://en.wikipedia.org/wiki/Binary_tree
http://www.binaryessence.com/dct/en000080.htm

Internal nodes contain links to two child nodes plus a frequency which is the sum of the

frequencies of the two child nodes.

A variable-length bit sequence

A different, variable-length bit sequence is assigned to each character used in the message. The

specific bit sequence assigned to an individual character is determined by tracing out the path

from the root of the tree to the leaf that represents that character. By convention, bit '0'

represents following the left child when tracing out the path and bit '1' represents following the

right child when tracing out the path.

Path lengths are different

The tree is constructed such that the paths from the root to the most frequently used characters

are short while the paths to less frequently used characters are long. This results in short codes

for frequently used characters and long codes for less frequently used characters.

Preview

The program named Huffman01

In this lesson, I will present and explain a program named Huffman01, which illustrates the

encoding and subsequent decoding of a text message using the Huffman encoding algorithm.

Get and use an encoder object

Overall control of this operation of this program takes place in the main method. I will begin by

instantiating an object of the HuffmanEncoder class and by invoking the encode method on that

object from the main method.

Create a frequency chart

Inside the encode method, I will invoke the createFreqData method to create a frequency table

that identifies each of the individual characters in the original message and the number of times

(frequency) that each character appears in the message being compressed.

Create the leaves and construct the tree

Next, I will invoke the createLeaves method to create a HuffLeaf object for each character

identified in the frequency table. I will store the HuffLeaf objects in a TreeSet object. Each

HuffLeaf object encapsulates the character that it represents as well as the number of times that

the character appears in the original message (frequency).

Then I will invoke the createHuffTree method to assemble the HuffLeaf objects into a

Huffman tree (a HuffTree object). A Huffman tree is a special form of a binary tree consisting

of properly linked HuffNode and HuffLeaf objects.

When the createHuffTree method returns, the HuffTree object will remain as the only object

stored in the TreeSet object that previously contained all of the HuffLeaf objects. This is

because all of the HuffLeaf objects will have been combined with HuffNode objects to form the

tree. When two HuffLeaf objects are combined with a single HuffNode object, the two

HuffLeaf objects are removed from the TreeSet object, and the HuffNode object is added to the

TreeSet object.

Create the bit codes

Following that, I will invoke the createBitCodes method, which uses the Huffman tree in a

recursive manner to create a bit code for each character in the message.

(As mentioned earlier, the bit codes are different lengths with the shorter codes

corresponding to the characters with a high frequency value and the longer codes

corresponding to the characters with the lower frequency values.)

The createBitCodes method populates a data structure that is used to encode the message and is

also required later to decode the encoded message.

Dealing with a difficult bit-manipulation challenge

At this point in the execution of the program, I know the variable-length bit code that is required

to replace each character in the original message to produce a Huffman-encoded message.

(The compression provided by Huffman encoding depends on the frequently used

characters having short bit codes and the less frequently used characters having

longer bit codes.)

Although I know the bit code required to replace each character in the original message, a direct

transformation from characters in the message to a stream of contiguous bit codes is something

of a challenge. The computer's memory is organized on 8-bit boundaries. I am unaware of any

capability in Java that allows the memory to be viewed simply as a continuous sequence of

individual bits.

(Note that it may be possible to accomplish this by using a Java BitSet object. I

may give that a try someday when I have the time.)

This program deals with this challenge in a way that is straightforward, but is probably

inefficient from both a speed and memory requirements viewpoint.

Not a production compression program

This program was specifically designed to serve its primary purpose of education. No thought or

effort was given to speed, efficiency, memory utilization, or any other factor that would be

important in a program written for production data compression purposes. In some cases, the

program was purposely made less efficient (in the name of clarity) by using two or more

statements to accomplish a task that could be accomplished by a single more complex statement.

The solution to the bit-manipulation challenge

The solution to the bit-manipulation challenge mentioned above was to do a simple table lookup

and to create a long String object consisting of only 1 and 0 characters. Each character in the

original message is represented by a substring that matches the required bit code.

This is easy to accomplish because (unlike a long sequence of bits) there are no artificial

boundaries requiring the length of the String to be some multiple of a fixed number of

characters.

I will invoke the encodeToString method to encode the message into a String representation of

the bits that will make up the final encoded message. After the String containing 1 and 0

characters representing the bits in the Huffman-encoded message is created, this String will be

processed to produce the Huffman-encoded message in a binary bit stream format.

Creating the binary bit stream format

Creation of the Huffman-encoded message in a binary bit stream format is accomplished using

another lookup table containing 256 entries (the number of possible combinations of eight bits).

I will invoke the buildEncodingBitMap method to populate a lookup table that relates eight bits

represented as a String to every possible combination of eight actual bits. Then I will invoke the

encodeStringToBits method to encode the String representation of the bits that make up the

encoded message into the actual bits that make up the encoded message.

Extraneous characters at the end

The encodeStringToBits method doesn't handle the end of the message very gracefully for those

cases where the number of required bits is not a multiple of 8. The method simply adds enough

"0" characters to the end of the String to cause the length to be a multiple of 8. This will usually

result in extraneous characters at the end of the decoded message later.

Some mechanism must be found to eliminate the extraneous characters when decoding the

message later. This program assumes that the length of the original message is preserved and

provided to the decoding software along with the required decoding table. Since the length of

the decoded message must match the length of the original message, this value is used to

eliminate extraneous characters at the end of the decoded message.

Having created the Huffman-encoded message in a binary bit stream format, I will return the

encoded message from the encode method back to the main method.

Hexadecimal display

At this point in the program, the message has been Huffman encoded. Back in the main method,

I will provide the capability to display the binary encoded data in Hexadecimal format for

comparison with the original message.

Decode the encoded message

The program continues the demonstration by decoding and displaying the Huffman-encoded

message.

I will begin the decoding process by instantiating a HuffmanDecoder object from within the

main method. Then I will invoke the decode method on the HuffmanDecoder object to decode

the message.

I will pass the encoded message along with a reference to a data structure containing encoding

particulars and the length of the original message to the decode method so that extraneous

characters on the end can be eliminated.

Decode from binary to String representation

Inside the decode method, I will invoke the buildDecodingBitMap method to create a decoding

bit map, which is essentially the reverse of the encoding bit map that was used to encode the

original message.

I will invoke the decodeToBitsAsString method to decode the encoded message from a binary

bit stream representation to a String of 1 and 0 characters that represent the actual bits in the

encoded message.

Decode from string representation back to the original characters

I will invoke the buildHuffDecodingTable method to create a Huffman decoding table by

swapping the keys and the values from the Huffman encoding table received as an incoming

parameter by the decode method.

Finally, I will invoke the decodeStringBitsToCharacters method to decode the String

containing only 1 and 0 characters that represent the bits in the encoded message. This will

produce a replica of the original message that was subjected to Huffman encoding.

Remove extraneous characters and return the decoded message

I will write the resulting decoded message into a String object and return the String with any

extraneous characters at the end having been removed.

Display results at critical points in the process

Numerous opportunities will be provided to enable code that will display information that is

useful towards gaining an understanding of the Huffman encoding algorithm. I will present and

discuss much of that information in this lesson.

Program testing

The program was tested using J2SE 5.0 and WinXP. The program requires J2SE 5.0 or later to

support generics.

Sample messages

Three test messages are hard-coded into the program. You can switch among those messages by

enabling and disabling them using comments and by then recompiling the program. You can

also insert your own test message and recompile the program to see the result of compressing

your message.

Discussion and Sample Code

The class named Huffman01

I will discuss this program in fragments. You can view a complete listing of the program in

Listing 45 near the end of the lesson.

The class definition for the class named Huffman01 along with the main method begins in

Listing 1.

public class Huffman01{

 public static void main(String[] args){

 Hashtable

<Character,String>huffEncodeTable;

Listing 1

Listing 1 declares a data structure that is used to communicate encoding particulars from the

Huffman encoder to the Huffman decoder. Because the encoding particulars are different for

every message, this is necessary for the decoder to be able to decode the encoded message.

Test messages

Listing 2 creates and displays the raw test message that will be encoded. The message is

displayed 48 characters to the line.

/*

 //The following test message was copied

directly from

 // an Internet news site. It is probably

 // representative of typical English text.

 String rawData = "BAGHDAD, Iraq Violence

increased "

 + "across Iraq after a lull following the

Dec. 15 "

 + "parliamentary elections, with at least

two dozen "

 + "people including a U.S. soldier killed

Monday in "

 + "shootings and bombings mostly targeting

the Shiite-"

 + "dominated security services. The Defense

Ministry "

 + "director of operations, Brig. Gen. Abdul

Aziz "

 + "Mohammed-Jassim, blamed increased

violence in the "

 + "past two days on insurgents trying to

deepen the "

 + "political turmoil following the

elections. The "

 + "violence came as three Iraqi opposition

groups "

 + "threatened another wave of protests and

civil "

 + "disobedience if allegations of fraud are

not "

 + "properly investigated.";

*/

/*

 String rawData = "Now is the time for all

good men "

 + "to come to the aid of their country.";

*/

 //Use the following test message or some

other

 // similarly short test message to

illustrate the

 // construction of the HuffTree object.

 String rawData = "AAAAABBBBCCCDDE";

 System.out.println("Raw Data");

 display48(rawData);

Listing 2

As mentioned earlier, you can modify the comment indicators to enable any one of the test

messages in Listing 2, or you can insert a test message of your own and then recompile the

program.

Listing 2 invokes the utility method named display48 to display the message 48 characters to the

line. That method is straightforward and shouldn't require an explanation. You can view the

method in its entirety in Listing 45.

Program output

The text at the top of Figure 1 was produced by the code in Listing 2 after modifying the

comment indicators to enable the news story shown in Listing 2.

Raw Data

BAGHDAD, Iraq Violence increased across Iraq aft

er a lull following the Dec. 15 parliamentary el

ections, with at least two dozen people includin

g a U.S. soldier killed Monday in shootings and

bombings mostly targeting the Shiite-dominated s

ecurity services. The Defense Ministry director

of operations, Brig. Gen. Abdul Aziz Mohammed-Ja

ssim, blamed increased violence in the past two

days on insurgents trying to deepen the politica

l turmoil following the elections. The violence

came as three Iraqi opposition groups threatened

another wave of protests and civil disobedience

if allegations of fraud are not properly invest

igated.

Number raw data bits: 5048

Number binary encoded data bits: 2816

Compression factor: 1.7926136363636365

Binary Encoded Data in Hexadecimal Format

b889531b2812a0668f6b9c2eaf9759dceb2c86d996148

9a3c1ae734124336fabffe82bffa8dcf7e9f4e50563e1a8

778c1fe684bcb0b8fcae7a9d0668dd3ee69df2c93a6356b

54717de1af3e773afeadb9efcdae3c4f92bf6e2186fdff

9b689a7b30bb9f27b553cf7a667b68b5c5e7bd343493f17

4b5e679efd3e9d11ef74911b543ced26d90ad50e91721b

bcb283e52f4e50602e8744f3f248badc057341aa0d5e16

9ea7419ae21d78f94cb8f84c5b2bfc263ba3b44d7ad0c26c

2235644e84668bf684db73acb21b6bbd5f2eb3b9f4fa778

c93a6356b3a9a9f73a2a179794d202f3dfa6b589fbe9f4

ef2bfd3cb6fe95421aefe82bffa8dcf7e9f4e3f2b9ea741f

297a75deaf9759cb684e64d3e813a3c1ae7b579e5274f53e

bc295f134fa05a4b9b667a9f4868cd74ea8378152525333d

b2faef7f5b92a29b71759dd066ffcded3d4e9aa0d032b6c

c073d4ef2bc21f1773dd293d7b49be

Decoded Data

BAGHDAD, Iraq Violence increased across Iraq aft

er a lull following the Dec. 15 parliamentary el

ections, with at least two dozen people includin

g a U.S. soldier killed Monday in shootings and

bombings mostly targeting the Shiite-dominated s

ecurity services. The Defense Ministry director

of operations, Brig. Gen. Abdul Aziz Mohammed-Ja

ssim, blamed increased violence in the past two

days on insurgents trying to deepen the politica

l turmoil following the elections. The violence

came as three Iraqi opposition groups threatened

another wave of protests and civil disobedience

if allegations of fraud are not properly invest

igated.

Figure 1

A compression factor of 1.793

The statistics following the test message in Figure 1 show that the compression factor achieved

by the Huffman algorithm for this particular message was 1.793. This can also be thought of as a

compression ratio of 0.558. In other words, the compressed message requires 55.8 percent of the

number of bits required by the original uncompressed message.

As you will see later, different messages result in different compression factors.

The binary encoded test message

The block of text near the middle of Figure 1 shows the binary version of the encoded message

displayed in Hexadecimal format. At the surface, this may appear to be longer than the original

message. Recall, however, that in the display of the original message at the top of Figure 1, each

character represents eight bits. However, in the Hexadecimal display, each character represents

only four bits. As mentioned above, the number of actual bits in the compressed message was

only 55.8 percent of the number of bits in the original message.

The decoded message

The bottom block of text in Figure 1 is a replica of the original message that was produced by

decoding the binary version of the encoded message. Hopefully, this is an exact copy of the

original message at the top of Figure 1, which is a requirement for a lossless compression

algorithm.

Display raw data length

Listing 3 gets and displays the length of the test message in bits, as shown in the upper half of

Figure 1.

 int rawDataLen = rawData.length();

 System.out.println("\nNumber raw data bits:

"

 +

rawData.length() * 8);

Listing 3

Instantiate a HuffmanEncoder object

Listing 4 instantiates a new object of the HuffmanEncoder class. The instance method named

encode belonging to that object will be used to encode the test message using the Huffman

compression algorithm.

 HuffmanEncoder encoder = new

HuffmanEncoder();

Listing 4

Encode the Message

Listing 5 begins by instantiating a new Hashtable object that will be passed to the encode

method to be populated with encoding particulars. This object will be used to encode the

message and will also be required later to decode the message.

Still in the main method, Listing 5 invokes the encode method of the HuffmanEncoder object

to perform the actual encoding. (Control is transferred from the main method to the encode

method.)

The test message and the Hashtable mentioned above are passed as parameters to the encode

method.

 huffEncodeTable = new

Hashtable<Character,String>();

 ArrayList<Byte> binaryEncodedData =

encoder.encode(

rawData,huffEncodeTable);

Listing 5

The encoded message is received back later as bytes stored in an ArrayList object.

The HuffmanEncoder class

At this point, I am going to set the main method aside and explain the encode method of the

HuffmanEncoder class. I will return to the discussion of the main method later.

The HuffmanEncoder class definition begins in Listing 6. An object of this class can be used to

encode a message using the Huffman encoding algorithm.

class HuffmanEncoder{

 String rawData;

 TreeSet <HuffTree>theTree = new

TreeSet<HuffTree>();

 ArrayList <Byte>binaryEncodedData =

 new

ArrayList<Byte>();

 Hashtable <Character,Integer>frequencyData =

 new

Hashtable<Character,Integer>();

 StringBuffer code = new StringBuffer();

 Hashtable <Character,String>huffEncodeTable;

 String stringEncodedData;

 Hashtable <String,Byte>encodingBitMap =

 new

Hashtable<String,Byte>();

Listing 6

Declaration of instance variables

Listing 6 contains the declaration of several instance variables along with the initialization of

some of them. I will discuss the instance variables in conjunction with the code that uses them

later.

(By the way, in case you are unfamiliar with the syntax of the boldface statement

in Listing 6 that declares a reference to and instantiates a new TreeSet object, see

my earlier lesson entitled Generics in J2SE 5.0, Getting Started.)

The encode method

The encode method begins in Listing 7.

 ArrayList<Byte> encode(

 String rawData,

 Hashtable

<Character,String>huffEncodeTable){

 //Save the incoming parameters.

 this.rawData = rawData;

 this.huffEncodeTable = huffEncodeTable;

Listing 7

The encode method encodes an incoming String message using the Huffman encoding

algorithm. The method also receives a reference to an empty data structure of type

Hashtable. This data structures is populated with encoding particulars. These encoding

particulars are used to encode the message. They are also required later by the decode method to

decode and transform the encoded message back into the original String version.

In order to keep this method simple, pad characters may be appended onto the end of the original

message when it is encoded. This is done to cause the number of bits in the encoded message to

be a multiple of eight, thus causing the length of the encoded message to be an integral number

of bytes. Additional code would be required to avoid this at this point. However, it is easy to

http://www.developer.com/java/other/article.php/3495121

eliminate the extraneous characters during decoding if the length of the original message is

known.

The code in Listing 7 saves the incoming parameters in a pair of local variables.

Display original message as bits

Listing 8 shows the first of several opportunities throughout this program to remove comment

indicators and cause information of interest be displayed.

/*

 System.out.println("\nRaw Data as Bits");

 displayRawDataAsBits();

*/

Listing 8

By removing the comment indicators to enable the two statements shown in Listing 8, you can

display the original message as a stream of bits. This can be visually compared with a similar

display for the encoded message later to illustrate the amount of compression provided by the

encoding process.

Display the message as a stream of bits

The bottom portion of Figure 2 shows the result of enabling these two statements and running the

program using the test message shown at the top of Figure 2. (This test message is much shorter

than the test message from Figure 1.)

Raw Data

Now is the time for all good men to come to the

aid of their country.

Number raw data bits: 552

Raw Data as Bits

010011100110111101110111001000000110100101110011

001000000111010001101000011001010010000001110100

011010010110110101100101001000000110011001101111

011100100010000001100001011011000110110000100000

011001110110111101101111011001000010000001101101

011001010110111000100000011101000110111100100000

011000110110111101101101011001010010000001110100

011011110010000001110100011010000110010100100000

011000010110100101100100001000000110111101100110

001000000111010001101000011001010110100101110010

001000000110001101101111011101010110111001110100

011100100111100100101110

Figure 2

The method named displayRawDataAsBits

The utility method named displayRawDataAsBits, which is invoked in Listing 8, is relatively

straightforward and shouldn't require an explanation. You can view the method in its entirety in

Listing 45.

Create a frequency chart

Listing 9 invokes the method named createFreqData to create a frequency chart that identifies

each of the individual characters in the original message and the number of times (frequency)

that each character appears in the message.

 createFreqData();

 //For illustration purposes only, enable

the following

 // statement to display the contents of the

frequency

 // chart created above.

/*

 displayFreqData();

*/

Listing 9

Listing 9 also optionally invokes the method named displayFreqData to display the results.

The createFreqData method

Listing 10 shows the createFreqData in its entirety.

 void createFreqData(){

 for(int cnt = 0;cnt <

rawData.length();cnt++){

 char key = rawData.charAt(cnt);

 if(frequencyData.containsKey(key)){

 int value = frequencyData.get(key);

 value += 1;

 frequencyData.put(key,value);

 }else{

 frequencyData.put(key,1);

 }//end else

 }//end for loop

 }//end createFreqData

Listing 10

The createFreqData method creates the frequency chart described above. The results are stored

in a Hashtable with the characters being the keys and the usage frequency values of each

character being the corresponding Hashtable values for those key.

The code in Listing 10 is relatively straightforward and shouldn't require a detailed explanation.

The displayFreqData method

The method named displayFreqData that is called in Listing 9 can be viewed in its entirety in

Listing 45. It is too simple to require an explanation.

The frequency data

The bottom portion of Figure 3 shows the frequency data for each of the characters contained in

the test message shown at the top of Figure 3.

Raw Data

Now is the time for all good men to come to the

aid of their country.

Number raw data bits: 552

Frequency Data

. 1

 15

N 1

y 1

w 1

u 1

t 7

s 1

r 3

o 9

n 2

m 3

l 2

i 4

h 3

g 1

f 2

e 6

d 2

c 2

a 2

Figure 3

And the results are...

As you can see, for this message, the space character occurred most frequently for a total of 15

occurrences. The character 'o' occurred next most frequently with nine occurrences followed by

the 't' with seven occurrences. The period character and the characters 'N', 'y', 'w', 'u', 's', and 'q'

tied for last place with only one occurrence each.

Three special classes

At this point, I need to explain the following three special classes in order for everything that

follows to make sense:

 HuffTree

 HuffLeaf

 HuffNode

The HuffTree class

The HuffTree class is the abstract superclass of the other two classes in the above list. Objects

of the HuffNode and HuffLeaf classes are used to construct the binary tree mentioned earlier.

The class definition for the HuffTree class begins in Listing 11. Note that this class implements

the Comparable interface.

abstract class HuffTree implements Comparable{

 int frequency;

 public int getFrequency(){

 return frequency;

 }//end getFrequency

Listing 11

The Comparable interface

In case you are unfamiliar with the use and purposes of the Comparable interface, see Part 1 and

Part2 my earlier lesson on that topic. Pay particular attention to the discussion of the

requirement for objects that will be stored in a TreeSet object to implement the interface and to

define the compareTo method.

The frequency property

Listing 11 declares the property variable named frequency.

Listing 11 also provides the property method named getFrequency, which when called on an

object of the class, will return the value of the frequency property.

(In the event that you are unfamiliar with properties in Java, see the lessons on

properties in the References section.)

The compareTo method

The method named compareTo is declared by the Comparable interface and therefore must be

defined by the HuffTree class. Here is some of what Sun has to say about the method:

http://www.developer.com/java/article.php/803891
http://www.developer.com/java/article.php/809421

"Compares this object with the specified object for order. Returns a negative

integer, zero, or a positive integer as this object is less than, equal to, or greater

than the specified object."

Listing 12 shows the definition of the compareTo method in the HuffTree class. Along with

the property named frequency, the compareTo method is inherited by both HuffNode and

HuffLeaf. Listing 12 also signals the end of the HuffTree class definition.

 public int compareTo(Object obj){

 HuffTree theTree = (HuffTree)obj;

 if (frequency == theTree.frequency){

 //The objects are in a tie based on the

frequency

 // value. Return a tiebreaker value

based on the

 // relative hashCode values of the two

objects.

 return (hashCode() - theTree.hashCode());

 }else{

 //Return negative or positive as this

frequency is

 // less than or greater than the

frequency value of

 // the object referred to by the

parameter.

 return frequency - theTree.frequency;

 }//end else

 }//end compareTo

}//end HuffTree class

Listing 12

Purpose and description of the compareTo method

The purpose of the compareTo method in this program is to make it possible for a collection

object of the TreeSet class to compare two objects of the HuffTree class (HuffNode or

HuffLeaf objects) to determine which is greater when sorting the objects into ascending order.

The compareTo method compares the object on which it is invoked to another object whose

reference is received as an incoming parameter. The method guarantees that sorting processes

that depend on this method, such as TreeSet objects, will sort the objects into a definitive order.

If the frequency property values of the two objects are different, the sort is based on the

frequency values.

If the frequency values of the two objects are equal, the objects are sorted based on their relative

hashCode values. Thus, if the same two objects with the same frequency value are compared

two or more times during the execution of the program, those two objects will always be sorted

into the same order. There is no chance of an ambiguous tie as to which object should be first

except for the case where an object is compared to itself using two references to the same object.

The HuffNode class

The inner class named HuffNode is used to construct a node object in the Huffman tree. The

class definition is shown in its entirety in Listing 13.

 class HuffNode extends HuffTree{

 private HuffTree left;

 private HuffTree right;

 //HuffNode constructor

 public HuffNode(

 int frequency,HuffTree

left,HuffTree right){

 this.frequency = frequency;

 this.left = left;

 this.right = right;

 }//end HuffNode constructor

 public HuffTree getLeft(){

 return left;

 }//end getLeft

 public HuffTree getRight(){

 return right;

 }//end getRight

 }//end HuffNode class

Listing 13

HuffNode extends HuffTree

As you should expect from the previous discussion, the HuffNode class extends the HuffTree

class. The class declares two instance variables named left and right. The purpose of these

instance variables can best be explained by referring to the picture of the Huffman binary tree on

the Binary Essence web site.

The HuffNode class is used to create internal node objects in the Huffman tree. (See the node

labeled 38 on the Binary Essence web site for example.) Except for the root node, each such

internal node is either a left or right child of a parent node. Also, each such node holds

references to two child objects, which may be either HuffNode objects or HuffLeaf

objects. The references to those two child objects are stored in the instance variables named left

and right in Listing 13.

(The two instance variables named left and right can hold references to

HuffNode objects or HuffLeaf objects because they are declared as type

http://www.binaryessence.com/dct/en000080.htm
http://www.binaryessence.com/dct/en000080.htm

HuffTree. HuffTree is the abstract superclass of both HuffNode and

HuffLeaf.)

Beyond the explanation given above, the HuffNode code shown in Listing 13 is pretty

straightforward and shouldn't require further explanation.

The HuffLeaf class

The inner class named HuffLeaf is used to construct a leaf object in the Huffman tree. The class

definition for the HuffLeaf class is shown in its entirety in Listing 14.

 class HuffLeaf extends HuffTree{

 private int value;

 //HuffLeaf constructor

 public HuffLeaf(int value, int frequency){

 this.value = value;

 //Note that frequency is inherited from

HuffTree

 this.frequency = frequency;

 }//end HuffLeaf constructor

 public int getValue(){

 return value;

 }//end getValue

 }//End HuffLeaf class

Listing 14

Once again, as you should expect from the previous discussion, the HuffLeaf class extends the

HuffTree class.

Two instance variables

The class declares a single instance variable named value and inherits another instance variable

named frequency from the HuffTree class. The purpose of these instance variables can once

again be explained by referring to the picture of the Huffman binary tree on the Binary Essence

web site.

The HuffLeaf class is used to create leaf objects in the Huffman tree. (See the leaf nodes labeled

A, B, C, D, and E on the Binary Essence web site for example.) Each such leaf node is either a

left or right child of a parent node of type HuffNode.

(Leaf node B is the left child of the parent node labeled 22 and leaf node C is the

right child of the parent node labeled 22.)

http://www.binaryessence.com/dct/en000080.htm
http://www.binaryessence.com/dct/en000080.htm

Leaf nodes do not hold references to child objects. Rather, they hold two values. One value is

the representation of a character or symbol that appears in the message being compressed. The

other value is the frequency, or the number of times that the character appears in the message

being compressed. These two values are stored in the instance variables named frequency and

value belonging to an object of the HuffLeaf class.

HuffNode objects also contain a value

I didn't mention it in the earlier discussion of the HuffNode objects because it didn't seem to be

germane at that point. However, in addition to the two references to child objects that are held

by HuffNode objects, HuffNode objects also hold a frequency value. In the case of a HuffNode

object, the frequency value is the sum of the frequency values of its two child objects.

For example, in the picture of the Huffman binary tree on the Binary Essence web site, the

internal node labeled 22 holds a frequency value of 22, which is the sum of the frequency values

of the child nodes labeled B and C. The frequency value held by child node B is 12, and the

frequency value held by child node C is 10. The sum of these two frequency values is 22, the

value held by their parent node.

The character values held by those two child nodes are respectively B and C.

Now that we understand the HuffTree, HuffNode, and HuffLeaf classes, I can resume the

discussion of the encode method of the HuffmanEncoder class.

Create a set of HuffLeaf objects

Returning now to the discussion of the encode method, Listing 15 invokes the createLeaves

method to create a HuffLeaf object for every character identified in the frequency chart that was

created in Listing 9.

 createLeaves();

Listing 15

The createLeaves method

The createLeaves method is shown in its entirety in Listing 16.

 void createLeaves(){

 Enumeration <Character>enumerator =

frequencyData.keys();

 while(enumerator.hasMoreElements()){

 Character nextKey =

enumerator.nextElement();

 theTree.add(new HuffLeaf(

nextKey,frequencyData.get(nextKey)));

http://www.binaryessence.com/dct/en000080.htm

 }//end while

 }//end createLeaves

Listing 16

As mentioned above, the createLeaves method creates a HuffLeaf object for every character

identified in the frequency chart. The HuffLeaf objects are stored in a TreeSet object. Each

HuffLeaf object encapsulates the character as well as the number of times that the character

appears in the original message that is being compressed.

(In case you are unfamiliar with the Enumeration interface, see my earlier lesson

entitled Vectors, Hashtables, and Enumerations.)

Create the Huffman tree

Listing 17 invokes the createHuffTree method to assemble the collection of HuffLeaf objects

stored in the TreeSet object into a Huffman tree (a HuffTree object), also stored in the same

TreeSet object.

 createHuffTree();

Listing 17

A Huffman tree is a special form of a binary tree consisting of properly linked HuffNode objects

and HuffLeaf objects.

When the createHuffTree method in Listing 17 returns, the HuffTree object remains as the

only object stored in the TreeSet object that previously contained all of the HuffLeaf

objects. This is because all of the HuffLeaf objects have been combined with HuffNode objects

to form the single HuffTree object.

The createHuffTree method

The createHuffTree method begins in Listing 18.

 void createHuffTree(){

 //Enable the following statements to see

the original

 // contents of the TreeSet object. Do this

only for

 // small trees because it generates lots of

output.

/*

 System.out.println("\n\nDisplay Original

TreeSet");

 Iterator <HuffTree> originalIter =

theTree.iterator();

http://www.dickbaldwin.com/java/Java076.htm

 while(originalIter.hasNext()){

 System.out.println(

 "\nHuffNode, HuffLeaf, or

HuffTree");

 displayHuffTree(originalIter.next(),0);

 }//end while loop

 //End code to display the TreeSet

*/

Listing 18

When enabled, the code in Listing 18 displays the contents of the TreeSet object before the

effort is begun to combine the HuffLeaf objects with HuffNode objects to create the HuffTree

object.

(Note the caution in Listing 18 against enabling this display code for large trees,

meaning messages that contain lots of different characters.)

A short example

Figure 4 shows the output produced by the code in Listing 18 (and the code from some earlier

listings) for the short message shown at the top of Figure 4.

Raw Data

AAAAABBBBCCCDDE

Number raw data bits: 120

Frequency Data

A 5

E 1

D 2

C 3

B 4

Display Original TreeSet

HuffNode, HuffLeaf, or HuffTree

Leaf:E

Back

HuffNode, HuffLeaf, or HuffTree

Leaf:D

Back

HuffNode, HuffLeaf, or HuffTree

Leaf:C

Back

HuffNode, HuffLeaf, or HuffTree

Leaf:B

Back

HuffNode, HuffLeaf, or HuffTree

Leaf:A

Back

Figure 4

Five HuffLeaf objects

The frequency chart for this message appears near the top of Figure 4. From this frequency chart

(and also from the text of the test message at the top), we can see that the TreeSet object should

contain five HuffLeaf objects encapsulating the character values A, B, C, D, and E.

The bottom portion of Figure 4 shows the five HuffLeaf objects.

(I manually colored the individual elements with alternating colors of blue and

red to make them visually distinguishable. I will have more to say about the

display format later.)

At this point, it important to note that the five HuffLeaf objects have been sorted into ascending

order based on their frequency values as shown in the frequency chart near the top of Figure 4. I

will be referring back to that fact later.

The displayHuffTree method

Listing 18 invokes the displayHuffTree method to produce the output shown in the bottom

portion of Figure 4. I will be calling that method again later in a more significant way (insofar

as the output format is concerned) so I will defer any further discussion until then.

Create the Huffman tree

The code that creates the Huffman tree begins in Listing 19. Before getting into the details of the

code, here is a general description of the behavior of the code that creates the Huffman tree

Overall, the code assembles the collection of HuffLeaf objects into a HuffTree object. A

HuffTree object is a special form of a binary tree consisting of properly linked HuffNode

objects and HuffLeaf objects.

When the operation has been completed, the HuffTree object remains as the only object stored

in the TreeSet object that previously contained all of the HuffLeaf objects. This is because, at

that point in the execution of the code, all of the HuffLeaf objects have been removed from the

TreeSet object and combined with HuffNode objects to form the Huffman tree (as represented

by the single HuffTree object).

Displays at runtime

The createHuffTree method contains two sections of code that can be enabled to display:

1. The contents of the original TreeSet object.

2. The contents of the TreeSet object for each iteration during which HuffLeaf objects are

being combined with HuffNode objects to form the final HuffTree object.

You have already seen an example of the first display in Figure 4. You will see an example of

the second display later in Figure 5.

These displays are very useful for understanding how the Huffman tree is actually constructed.

Steps in constructing the HuffTree object

The HuffTree object is constructed by performing the following operations:

1. Extracting pairs of HuffLeaf and/or HuffNode objects from the TreeSet object in

ascending order based on their frequency values.

2. Using the pair of extracted objects to construct a new HuffNode object where the two

extracted objects become children of the new HuffNode object, and where the frequency

value stored in the new HuffNode object is the sum of the frequency values in the two

child objects.

3. Removing the two original HuffLeaf and/or HuffNode objects from the TreeSet object

and adding the new HuffNode object to the TreeSet object. The position of the new

HuffNode object in the sorted TreeSet object is determined by its frequency value

relative to the other HuffNode and/or HuffLeaf objects in the collection. The new

HuffNode object will eventually become a child of another new HuffNode object unless

it ends up as the root of the HuffTree object.

4. Continuing this process until the TreeSet object contains a single object of type

HuffTree.

Iterate on the TreeSet object

Listing 19 shows the beginning of a while loop that iterates on the TreeSet object until the

number of elements contained in the object is equal to 1. When the number of elements in the

TreeSet object has been reduced to 1, all of the HuffNode and HuffLeaf elements in the

collection will have been combined into a single element of type HuffTree.

 while(theTree.size() > 1){

 //Get, save, and remove the first two

elements.

 HuffTree left = theTree.first();

 theTree.remove(left);

 HuffTree right = theTree.first();

 theTree.remove(right);

Listing 19

As we saw in Figure 4, the collection of HuffLeaf objects in the TreeSet object is initially sorted

into ascending order based on the frequency values encapsulated in the objects.

The code in Listing 19 removes and saves the first two objects in the collection, which are the

objects containing the lowest frequency values.

(Initially, these two objects are both HuffLeaf objects, but later they may be

either HuffLeaf objects or HuffNode objects or both.)

Create and save a HuffNode object

Listing 20 combines the two saved objects into a new HuffNode object (forming a three-object

sub tree) and adds the sub tree to the TreeSet object.

 HuffNode tempNode = new

HuffNode(left.getFrequency()

 +

right.getFrequency(),left,right);

 theTree.add(tempNode);

Listing 20

Thus, each pass through the while loop removes the first two elements from the TreeSet

collection, uses those two elements to create a sub tree, and adds the sub tree back to the

collection. This process continues until the sub tree is the final tree, at which point the number

of elements in the collection has been reduced to one and the while loop terminates.

Display the contents of the TreeSet object

Still in the while loop, Listing 21 contains code that can be enabled to display the contents of the

TreeSet object at the end of each iteration.

 //Enable the following statements to see

the HuffTree

 // being created from HuffNode and

HuffLeaf objects.

 // Do this only for small trees because

it will

 // generate a lot of output.

/*

 System.out.println("\n\nDisplay Working

TreeSet");

 Iterator <HuffTree> workingIter =

theTree.iterator();

 while(workingIter.hasNext()){

 System.out.println(

 "\nHuffNode, HuffLeaf, or

HuffTree");

 displayHuffTree(workingIter.next(),0);

 }//end while loop

 //End code to display the TreeSet

*/

 }//end while

 }//end createHuffTree

Listing 21

Listing 21 also signals the end of the while loop and the end of the createHuffTree method.

The program output

The bottom portion of Figure 5 shows the output produced during the first iteration of the while

loop by enabling the display code in Listing 21.

Raw Data

AAAAABBBBCCCDDE

Number raw data bits: 120

Display Working TreeSet

HuffNode, HuffLeaf, or HuffTree

Leaf:C

Back

HuffNode, HuffLeaf, or HuffTree

Left to 1 Leaf:E

Back Right to 1 Leaf:D

Back Back

HuffNode, HuffLeaf, or HuffTree

Leaf:B

Back

HuffNode, HuffLeaf, or HuffTree

Leaf:A

Back

Figure 5

At the end of the first iteration...

At the end of the first iteration of the while loop, the collection contains four different

elements. (Recall from Figure 4 that the collection originally contained five elements.)

I colored the four elements in Figure 5 with alternating colors of blue and red to make them

visually distinguishable.

In Figure 4, the first two elements in the collection were the HuffLeaf objects encapsulating the

characters E and D. In Figure 5, those two elements have been removed and combined with a

HuffNode object to form a sub tree, which is shown as the first red element in Figure 5.

The sub tree

Figure 6 is an attempt to show a picture of the sub tree, which is the second (red) element in the

collection shown in Figure 5. (Hopefully this picture will survive the various publishing

programs to which this lesson will be subjected)

 Root

Level 0 O

 / \

Level 1 E D

Figure 6

The sub tree consists of three parts. The root of the sub tree is a HuffNode object (shown by the

O in Figure 6). The left child of the node is a HuffLeaf object (shown by the E in Figure

6). The right child of the node is also a HuffLeaf object (shown by the D in Figure 6).

The format of the printed description

Conceptually, we can think of the root node as existing at Level 0 in the tree and the two child

nodes existing at Level 1 in the tree. That brings us to the format used to describe the elements

in Figure 5.

Consider the first line in the description of the sub tree in Figure 5, which reads HuffNode,

HuffLeaf, or HuffTree. This line simply serves as a separator between the elements.

Beginning with the second line in the description of the sub tree, the text is a verbal description

of how to start at the root and to traverse the tree. This text describes the sub tree by the

traversal path. It says:

 Starting at the root (Level 0 implied), go down and to the left to Level 1. There you will

find a Leaf that encapsulates the character E.

 Then go back up one level. This will return you to Level 0. Go down and to the right to

Level 1. There you will find a Leaf that encapsulates the character D.

 Then go back up two levels, which will pop you out of the top of the tree.

Adding the sub tree to the TreeSet collection

After the E and D leaves were removed from the collection and combined with a node to form a

sub tree, that sub tree was added back to the collection as shown in Listing 20.

The node that forms the root of the sub tree was assigned the frequency value 3, which is the sum

of the frequency values for D and E as shown in the frequency chart in Figure 4. As a result, the

frequency value for the root of the sub tree has the same frequency value as the leaf for the

character C.

Tied for position in the collection

This causes the new sub tree to be tied for position in the sorted collection with the leaf for the

character C. It also causes the frequency value for the sub tree to be less than the frequency

value for the B leaf which has a frequency value of 4.

Given these values, the sub tree could have ended up as either the first or the second element in

the collection shown in Figure 5, because it tied for the first position with the C leaf. However, it

had to be closer to the beginning than the B leaf. As it turns out, the tie-breaker methodology

used in the compareTo method in Listing 12 placed it after the C leaf in Figure 5.

Output following the second iteration

Figure 7 shows the state of the TreeSet object following the completion of the second iteration

of the while loop that began in Listing 19.

HuffNode, HuffLeaf, or HuffTree

Leaf:B

Back

HuffNode, HuffLeaf, or HuffTree

Leaf:A

Back

HuffNode, HuffLeaf, or HuffTree

Left to 1 Leaf:C

Back Right to 1 Left to 2 Leaf:E

Back Right to 2 Leaf:D

Back Back Back

Figure 7

At this point, the number of elements in the collection has been reduced from the four elements

shown in Figure 5 to the three shown in Figure 7. The reduction was accomplished by removing

the C leaf in the first element and the sub tree from the second element in Figure 5 and using

them to construct a larger sub tree. That larger sub tree is shown as the last element in Figure 7.

(See if you can create a sketch of the new sub tree on the basis of the traversal

description in Figure 7.)

The new sub tree

The pictorial representation of this larger sub tree, shown as the last element in the collection in

Figure 7, is shown in Figure 8.

 Root

Level 0 O

 / \

Level 1 C O

 / \

Level 2 E D

Figure 8

The Huffman tree

Skipping ahead to the last iteration, Figure 9 shows the state of the TreeSet object following the

final iteration of the while loop. At this point, the collection contains only one element, and it is

the Huffman tree produced by combining all of the leaf elements shown in Figure 4 with nodes

to produce the tree.

HuffNode, HuffLeaf, or HuffTree

Left to 1 Left to 2 Leaf:C

Back Right to 2 Left to 3 Leaf:E

Back Right to 3 Leaf:D

Back Back Back Right to 1 Left to 2 Leaf:B

Back Right to 2 Leaf:A

Back Back Back

Figure 9

Pictorial representation of the Huffman tree

The pictorial representation of the Huffman tree described in Figure 9 is shown in Figure 10

 Root

Level 0 X

 / \

 0/ \1

 / \

 / \

Level 1 X X

 0/ \1 0/ \1

Level 2 C X B A

 0/ \1

Level 3 E D

Figure 10

In Figure 10, I used the character X to indicate an internal node in place of the character O that

was used to depict the internal nodes in the earlier pictures of the trees. This is because I wanted

to decorate the tree in Figure 10 with 0 and 1 characters and I wanted to avoid confusion between

the character for an internal node and the zero character.

(You will see the reason for the decoration of the tree using 0 and 1 characters

later.)

Hopefully you now understand how the TreeSet object containing a collection of HuffLeaf

objects is processed to produce a single HuffTree object, which is the required Huffman tree.

The displayHuffTree method

The output shown in Figure 4, Figure 5, Figure 7, and Figure 9 was produced by the invocation

of the displayHuffTree method in Listing 18 and Listing 21. You can view the

displayHuffTree method in its entirety in Listing 45. This is a recursive method, which is very

similar to another recursive method named createBitCodes that I will discuss later, so I will

leave it up to you to understand the inner workings of the displayHuffTree method on your own

at this point.

Recap

At this point, I have developed the frequency information for the characters in the short test

message at the top of Figure 4. I displayed the frequency information in Figure 4.

I used the frequency information to create a HuffLeaf object for every character in the message

where the HuffLeaf object encapsulates the character and the frequency information for that

character. I displayed the HuffLeaf objects in Figure 4 also.

Then I combined those HuffLeaf objects with HuffNode objects to create a HuffTree object. I

displayed intermediate pictorial versions of the HuffTree object in Figure 6 and Figure 8, and

displayed the final version in Figure 10. Figure 10 shows the Huffman binary tree for the short

test message at the top of Figure 4.

If we compare the Huffman tree in Figure 10 with the frequency information in Figure 4, we see

that the leaf objects representing the characters with the highest frequency of usage in the

message (C, B, and A) occur closest to the root of the tree (Level 2) and those with the lowest

frequency of usage (E and D) occur further from the root of the tree (Level 3).

Traversing the Huffman tree

The next task is to use the Huffman tree to create a unique binary bit code for every character

used in the original test message.

(That is the reason that I decorated the tree in Figure 10 with 0 and 1

characters.)

The way that I will create the binary codes is to traverse the path from the root of the binary tree

to each leaf of the tree, keeping track of the decorations that I encounter along the way. Each

time I encounter a 0, I will append a 0 to the bit code for that character. Each time I encounter a

1, I will append 1 to the bit code for that character.

Manually generated bit codes

Figure 11 shows the result of manually performing this operation for each of the leaves in Figure

10 in left-to-right order for the leaves.

C 00

E 010

D 011

B 10

A 11

Figure 11

Now that you know how the task is accomplished, we will take a look at the code that automates

this process.

Automate the task of creating bit codes

Back in the encode method, Listing 22 invokes the method named createBitCodes to automate

the task of traversing the Huffman tree for the purpose of creating a unique bit code for every

character described by a leaf of the tree. A reference to the single HuffTree object stored in the

TreeSet object is passed to the createBitCodes method.

 createBitCodes(theTree.first());

Listing 22

A recursive method

The createBitCodes method traverses the Huffman tree in a recursive manner to create a bit

code for each character in the message. The bit codes are different lengths with the shorter codes

corresponding to the characters with a high frequency value and the longer codes corresponding

to the characters with the lower frequency values.

Note that the method call extracts the reference to the Huffman tree from the TreeSet object and

passes that reference to the method. This is necessary because the createBitCodes method is

recursive and can't conveniently work directly with the TreeSet object.

The createBitCodes method populates the data structure that is used to encode the message and

required later to decode the encoded message.

Recursion in Java

In order to understand the method named createBitCodes, you must understand

recursion. Unfortunately, none of the several hundred Java programming tutorials that I have

published in recent years, (several of which use recursion), are dedicated to an understanding of

recursion in Java.

(The writing of a tutorial on recursion has been on my list of things to do for

several years now.)

Fortunately, if you Google the keywords Java and recursion, you will find a variety of

references, some good, and some not so good. One that seems to be very good can be found on

the web site of the City University, London.

The createBitCodes method

The createBitCodes method begins in Listing 23. This method traverses the Huffman tree in a

recursive manner to create a bit code for each character in the message. The bit codes are

http://en.wikipedia.org/wiki/Recursion
http://www.dickbaldwin.com/toc.htm
http://www.google.com/
http://www.soi.city.ac.uk/~sg331/java/eckel/javanotes3/c11/s1.html

different lengths with the shorter bit codes corresponding to the characters with a high usage

frequency value and the longer bit codes corresponding to the characters with the lower

frequency values.

This method receives a reference to the Huffman tree that was earlier contained as the only

object in the TreeSet object.

A Huffman encoding table

The createBitCodes method creates a Huffman encoding table as a Hashtable object that relates

the variable-length bit codes to the characters in the original message. The bit codes are

constructed as objects of type StringBuffer consisting of sequences of the characters 1 and 0 and

converted to type String for storage in the Hashtable.

The traversal path

Each bit code describes the traversal path from the root of the Huffman tree to a leaf on that

tree. Each time the path turns to the left, a 0 character is appended onto the StringBuffer object

and becomes a part of the resulting bit code. Each time the path turns to the right, a 1 character

is appended onto the StringBuffer object.

When a leaf is reached at the end of the traversal path, the character stored in that leaf is

retrieved and put into the Hashtable object as a key. A String representation of the

StringBuffer object is used as the value for that key in the Hashtable.

The final result

At completion, the Hashtable object contains a series of keys consisting of the original

characters in the message and a series of corresponding values as String objects (consisting only

of 1 and 0 characters) representing the bit codes that will eventually be used to encode the

original message.

The Hashtable object that is populated by this method is the data structure that is used to encode

the message and is required later to decode the encoded message.

Test for the type of node

If you understand recursion in Java, you should find the createBitCodes method to be

straightforward. If not, you will probably find it to be very difficult to understand.

Listing 23 begins by testing the node to determine if it is an internal node or a leaf node.

 void createBitCodes(HuffTree tree){

 if(tree instanceof HuffNode){

 // This is a node, not a leaf. Process

it as a node.

 //Cast to type HuffNode.

 HuffNode node = (HuffNode)tree;

 // Get and save the left and right

branches

 HuffTree left = node.getLeft();

 HuffTree right = node.getRight();

 //Append a 0 onto the StringBuffer

object. Then make

 // a recursive call to this method

passing a

 // reference to the left child as a

parameter. This

 // recursive call will work its way all

the way down

 // to a leaf before returning. Then it

will be time

 // to process the right path.

 code.append("0");

 createBitCodes(left);

Listing 23

If you understand recursion, the comments in Listing 23 should cause the code in Listing 23 to

be self explanatory.

Process the right leg

Listing 24 picks up at the point where the recursive process has finally returned from its traversal

down the left leg of the binary tree. The code in Listing 24 processes the right leg of the binary

tree.

 //Return to here from recursive call on

left child.

 //Delete the 0 from the end of the

StringBuffer

 // object to restore the contents of that

object to

 // the same state that it had before

appending the 0

 // and making the recursive call on the

left branch.

 //Now we will make a right turn. Append

a 1 to the

 // StringBuffer object and make a

recursive call to

 // this method passing a reference to the

right child

 // as a parameter. Once again, this

recursive call

 // will work its way all the way down to

a leaf

 // before returning.

 code.deleteCharAt(code.length() -

1);//Delete the 0.

 code.append("1");

 createBitCodes(right);

 //Return to here from recursive call on

right child.

 //Delete the character most recently

appended to the

 // StringBuffer object and return from

this recursive

 // call to the method. The character is

deleted

 // because control is being transferred

back one

 // level in the recursive process and the

 // StringBuffer object must be restored

to the same

 // state that it had when this recursive

call was

 // made.

 code.deleteCharAt(code.length() - 1);

Listing 24

Process a leaf node

Listing 23 and Listing 24 were both concerned with the processing of internal nodes in the binary

tree. Listing 25 picks up at the point where it has been determined that the node is a leaf node

instead of an internal node. Listing 25 processes the leaf node.

 }else{

 //This is a leaf. Process it as such.

 //Cast the object to type HuffLeaf.

 HuffLeaf leaf = (HuffLeaf)tree;

 //Put an entry into the Hashtable. The

Hashtable

 // key consists of the character value

stored in the

 // leaf. The value in the Hashtable

consists of the

 // contents of the StringBuffer object

representing

 // the path from the root of the tree to

the leaf.

 // This is the bitcode and is stored in

the Hashtable

 // as a String consisting of only 1 and 0

characters.

 huffEncodeTable.put((char)(

leaf.getValue()),code.toString());

 }//end else

 }//end createBitCodes

Listing 25

Understanding the inner workings

Hopefully, you have been able to understand the inner workings of the method named

createBitCodes. If not, just take my word for it that the behavior of the method is to automate

the process that I described earlier in the section entitled Traversing the Huffman tree. Even if

you don't understand exactly how the method named createBitCodes does its job, you should

understand the outcome of invoking that method.

Display the bit codes

The code in Listing 26 can be enabled to display the bit codes that were created above and which

are used to populate the Huffman encoding table.

 //For purposes of illustration only, enable

the

 // following two statements to display a

table showing

 // the relationship between the characters

in the

 // original message and the bitcodes that

will replace

 // those characters to produce the Huffman-

encoded

 // message.

/*

 System.out.println();

 displayBitCodes();

*/

Listing 26

The displayBitCodes method

You can view the displayBitCodes method in its entirety in Listing 45. This method is very

straightforward and should not require further explanation.

Sample bit code display

The bottom portion of Figure 12 shows the bit codes for the characters in the short message at

the top of Figure 12. Compare these bit codes with the bit codes that I produced manually in

Figure 11. Except for the display order, you should find that they match exactly.

Raw Data

AAAAABBBBCCCDDE

Number raw data bits: 120

Message Characters versus Huffman BitCodes

A 11

E 010

D 011

C 00

B 10

Figure 12

(If you investigate deeply enough, you will find that the method named

createBitCodes develops the bit codes and populates the Hashtable in the same

order as shown in Figure 11. However, when an Enumeration object is used to

retrieve and display the codes in the displayBitCodes method, the enumerator

retrieves them in a different order.)

Bit codes for a longer message

The bottom portion of Figure 13 shows the variable-length bit codes for the somewhat longer test

message shown at the top of Figure 13.

Raw Data

Now is the time for all good men to come to the

aid of their country.

Number raw data bits: 552

Message Characters versus Huffman BitCodes

. 100111

 00

N 111000

y 011101

w 110010

u 100110

t 010

s 011100

r 11101

o 101

n 10000

m 11110

l 10001

i 0110

h 11111

g 110011

f 01111

e 1101

d 111001

c 11000

a 10010

Figure 13

Whereas the bit codes in Figure 12 were all either two bits or three bits in length, the bit codes in

Figure 13 range from two bits (00) at the shortest to six bits (111000 for example) at the longest.

Bit codes for a much longer message

The bottom portion of Figure 14 shows the bit codes for the characters in the even longer

message shown at the top of Figure 14.

Raw Data

BAGHDAD, Iraq Violence increased across Iraq

aft

er a lull following the Dec. 15 parliamentary

el

ections, with at least two dozen people

includin

g a U.S. soldier killed Monday in shootings and

bombings mostly targeting the Shiite-dominated

s

ecurity services. The Defense Ministry director

of operations, Brig. Gen. Abdul Aziz Mohammed-

Ja

ssim, blamed increased violence in the past two

days on insurgents trying to deepen the

politica

l turmoil following the elections. The violence

came as three Iraqi opposition groups

threatened

another wave of protests and civil disobedience

if allegations of fraud are not properly invest

igated.

Number raw data bits: 5048

Message Characters versus Huffman BitCodes

V 000100000 U 101110000 T 01010010 S

10001000

M 10001001 J 000110101 I 10001111 H

000110110

G 01010011 D 0101000 B 101110001 A

0001001

5 000100001 1 000110100 . 000111 -

00010001

, 0001100 110 z 10001110 y

000101

w 1000110 v 1011101 u 010101 t

1001

s 0100 r 0000 q 10111001 p

111100

o 1010 n 0111 m 100001 l

11111

k 000110111 i 1110 h 111101 g

101111

f 100000 e 001 d 10110 c

01011

b 1000101 a 0110

Figure 14

The bit codes for the message in Figure 14 range from three bits for the 'e' and the space

character to nine bits for several characters including 'U', 'V', and 'k'.

(Note that I manually rearranged the bit codes in Figure 14 so that they would fit

on a single screen for easier viewing.)

Encode message into a String of 1 and 0 characters

Back in the encode method, Listing 27 invokes the encodeToString method to encode the

message into a String representation of the bits that will make up the final encoded message.

 encodeToString();

Listing 27

The encodeToString method also provides the optional capability to display the String showing

the bit values that will appear in the final Huffman-encoded message. This can be useful for

comparing back against the bits in the original message for purposes of evaluating the amount of

compression provided by encoding the message.

The encodeToString method

The encodeToString method is shown in its entirety in Listing 28.

 void encodeToString(){

 StringBuffer tempEncoding = new

StringBuffer();

 for(int cnt = 0;cnt <

rawData.length();cnt++){

 //Do a table lookup to get the substring

that

 // represents the bitcode for each

message character.

 // Append those substrings to the string

that

 // represents the Huffman-encoded

message.

 tempEncoding.append(huffEncodeTable.get(

rawData.charAt(cnt)));

 }//end for loop

 //Convert the StringBuffer object to a

String object.

 stringEncodedData =

tempEncoding.toString();

 //For illustration purposes, enable the

following two

 // statements to display the String showing

the bit

 // values that will appear in the Huffman-

encoded

 // message. Display 48 bits to the line

except for

 // the last line, which may be shorter, and

which may

 // not be a multiple of 8 bits.

/*

 System.out.println("\nString Encoded

Data");

 display48(stringEncodedData);

*/

 }//end encodeToString

Listing 28

The encodeToString method encodes the message into a String representation of the bits that

will make up the final encoded message. The String consists of only 1 and 0 characters where

each character represents the state of one of the bits in the Huffman-encoded message. Also for

illustration purposes, this method optionally displays the String showing the bit values that will

appear in the Huffman-encoded message.

The encodeToString method is completely straightforward and shouldn't require further

explanation.

Build an encoding bit map

Back in the encode method, Listing 29 invokes the buildEncodingBitMap method to populate a

lookup table that relates eight bits represented as a String to every possible combination of eight

actual bits.

 buildEncodingBitMap();

Listing 29

You can view the buildEncodingBitMap method in Listing 45. It is so straightforward as to not

warrant an explanation here.

Encode the String representation into actual bits

Listing 30 invokes the method named encodeStringToBits to encode the String representation

of the bits that make up the encoded message to the actual bits that make up the encoded

message.

 encodeStringToBits();

Listing 30

The encodeStringToBits method

The encodeStringToBits method is shown in its entirety in Listing 31.

 void encodeStringToBits(){

 //Extend the length of the

stringEncodedData to cause

 // it to be a multiple of 8.

 int remainder =

stringEncodedData.length()%8;

 for(int cnt = 0;cnt < (8 -

remainder);cnt++){

 stringEncodedData += "0";

 }//end for loop

 //For illustration purposes only, enable

the following

 // two statements to display the extended

 // stringEncodedData in the same format as

the

 // original stringEncodedData.

/*

 System.out.println("\nExtended String

Encoded Data");

 display48(stringEncodedData);

*/

 //Extract the String representations of the

required

 // eight bits. Generate eight actual

matching bits by

 // looking the bit combination up in a

table.

 for(int cnt = 0;cnt <

stringEncodedData.length();

cnt += 8){

 String strBits =

stringEncodedData.substring(

cnt,cnt+8);

 byte realBits =

encodingBitMap.get(strBits);

 binaryEncodedData.add(realBits);

 }//end for loop

 }//end encodeStringToBits

Listing 31

The purpose of the encodeStringToBits method is to create actual bit data that matches the 1

and 0 characters in the stringEncodedData that represents bits with the 1 and 0 characters.

Pad characters at the end

Note that this method doesn't handle the end of the data very gracefully for those cases where the

number of required bits is not a multiple of 8. The method simply adds enough "0" characters to

the end to cause the length to be a multiple of 8. This may result in extraneous characters at the

end of the decoded message later. However, it isn't difficult to remove the extraneous characters

at decode time as long as the length of the original message is known.

For illustration purposes, this method may optionally display the extended version of the

stringEncodedData for comparison with the non-extended version.

Output format

The binary Huffman-encoded data produced by this method is stored in a data structure of type

ArrayList <Byte>.

Once you understand the methodology, the code in Listing 31 is straightforward and should not

require further explanation.

Return from the encode method

Back in the encode method, the code in Listing 32 returns the binary Huffman-encoded data,

terminates the encode method, and returns control to the main method where it was called in

Listing 5.

 return binaryEncodedData;

 }//end encode method

Listing 32

Listing 32 also signals the end of the class definition for the class named HuffmanEncoder.

Meanwhile, back in the main method...

Listing 33 displays the number of bits in the encoded message and then computes and displays

the compression factor.

 System.out.println("Number binary encoded data

bits: "

 +

binaryEncodedData.size() * 8);

 System.out.println("Compression factor: "

 +

(double)rawData.length()/binaryEncodedData.size());

Listing 33

An example of compression factor

Listing 33 produces the compression-factor output shown in the bottom portion of Figure 15 for

the test message shown in the top of Figure 15.

Raw Data

BAGHDAD, Iraq Violence increased across Iraq

aft

er a lull following the Dec. 15 parliamentary

el

ections, with at least two dozen people

includin

g a U.S. soldier killed Monday in shootings and

bombings mostly targeting the Shiite-dominated

s

ecurity services. The Defense Ministry director

of operations, Brig. Gen. Abdul Aziz Mohammed-

Ja

ssim, blamed increased violence in the past two

days on insurgents trying to deepen the

politica

l turmoil following the elections. The violence

came as three Iraqi opposition groups

threatened

another wave of protests and civil disobedience

if allegations of fraud are not properly invest

igated.

Number raw data bits: 5048

Number binary encoded data bits: 2816

Compression factor: 1.7926136363636365

Figure 15

Another example of compression factor

Similarly, the bottom portion of Figure 16 shows the compression factor achieved for the test

message shown in the top of Figure 16.

Raw Data

Now is the time for all good men to come to the

aid of their country.

Number raw data bits: 552

Number binary encoded data bits: 272

Compression factor: 2.0294117647058822

Figure 16

Comparing the results in Figure 15 with the results in Figure 16, you can see that the

compression results are highly dependent on the content of the message, even for the case where

the message is composed entirely of English text.

Display the encoded message in hexadecimal format

The test message has now been Huffman encoded. Continuing with the main method, Listing 34

invokes the method named hexDisplay48 to display the binaryEncodedData in hexadecimal

format, 48 characters per line.

 System.out.println(

 "\nBinary Encoded Data in

Hexadecimal Format");

 hexDisplay48(binaryEncodedData);

 System.out.println();

Listing 34

The method named hexDisplay48

The method named hexDisplay48 can be viewed in its entirety in Listing 45. The code in this

method is completely straightforward and shouldn't require further explanation.

Sample hexadecimal display of Huffman-encoded data

The bottom portion of Figure 17 shows a hexadecimal display of the binary Huffman-encoded

version of the message shown at the top of Figure 17

Raw Data

Now is the time for all good men to come to the

aid of their country.

Number raw data bits: 552

Number binary encoded data bits: 272

Compression factor: 2.0294117647058822

Binary Encoded Data in Hexadecimal Format

e2e43382fe89bda3ef49462676f27b602a62fb4545fd24dc

95e2feb74c59a0baece0

Figure 17

Comparing hexadecimal and raw data displays

When comparing the hexadecimal display with the display of the raw data, remember that each

raw-data character represents eight bits while each hexadecimal character represents only four

bits. Therefore, even though the hexadecimal display appears to be about as long as the raw-data

display, the number of bits required to represent the Huffman-encoded version of the message in

Figure 17 is only 49.2 percent of the number of bits required to represent the raw unencoded

version. This results in a compression factor of 2.029 for this particular message.

Having encoded the message, the time has come to decode it to produce an exact (lossless)

replica of the original message.

Decode the Message

Still in the main method, I will continue the demonstration by decoding the encoded message. I

will accomplish this by instantiating an object of the HuffmanDecoder class and invoking the

decode method on that object as shown in Listing 35.

 HuffmanDecoder decoder = new

HuffmanDecoder();

 String decodedData =

decoder.decode(binaryEncodedData,

huffEncodeTable,

rawDataLen);

Listing 35

(As you will soon see, it is somewhat easier to decode a Huffman-encoded

message than it is to encode it.)

Information required to decode the message

Listing 35 passes the encoded message to the decode method of the HuffmanDecoder object

along with a reference to the data structure containing the encoding particulars as well as the

length of the original message.

(The length of the original message is used to eliminate extraneous characters on

the end of the decoded message.)

The HuffmanDecoder class

Putting the main method aside for awhile, the beginning of the class definition of the

HuffmanDecoder class begins in Listing 36.

class HuffmanDecoder{

 Hashtable <String,Character>huffDecodeTable =

 new

Hashtable<String,Character>();

 String stringDecodedData;

 String decodedData = "";

 Hashtable <Byte,String>decodingBitMap =

 new

Hashtable<Byte,String>();

 ArrayList <Byte>binaryEncodedData;

 //The following structure contains

particulars as to how

 // the original message was encoded, and must

be received

 // as an incoming parameter to the decode

method along

 // with the encoded message and the length of

the

 // original message.

 Hashtable <Character,String>huffEncodeTable;

 //Used to eliminate the extraneous characters

on the end.

 int rawDataLen;

Listing 36

An object of the HuffmanDecoder class can be used to decode a Huffman-encoded message

given the encoded message, a data structure containing particulars as to how the original

message was encoded, and the length of the original message.

The code in Listing 36 gets things started by declaring several instance variables and initializing

some of them. I will discuss the instance variables in conjunction with the code that uses them.

The decode method

Listing 37 shows the beginning of the decode method of the HuffmanDecoder class.

 String decode(ArrayList

<Byte>binaryEncodedData,

 Hashtable

<Character,String>huffEncodeTable,

 int rawDataLen){

 //Save the incoming parameters.

 this.binaryEncodedData = binaryEncodedData;

 this.huffEncodeTable = huffEncodeTable;

 this.rawDataLen = rawDataLen;

Listing 37

The decode method receives a Huffman-encoded message along with a data structure containing

particulars as to how the original message was encoded and the length of the original message. It

decodes the original message and returns the decoded version as a String object.

Listing 37 saves the incoming parameters in instance variables that were declared in Listing 36.

Create a decoding bit map

Listing 38 invokes the buildDecodingBitMap method, which is essentially the reverse of the

encoding bit map that was used to encode the original message.

 buildDecodingBitMap();

Listing 38

The buildDecodingBitMap method

The buildDecodingBitMap method can be viewed in its entirety in Listing 45. This method

populates a lookup table that relates eight bits represented as a String to eight actual bits for all

possible combinations of eight bits.

This is essentially a reverse lookup table relative to the encodingBitMap table that is used to

encode the message. The only difference between the two is a reversal of the key and the value

in the Hashtable that contains the table.

Decode from binary to String

Listing 39 invokes the decodeToBitsAsString method to decode the encoded message from a

binary representation to a String of 1 and 0 characters that represent the actual bits in the

encoded message.

 decodeToBitsAsString();

Listing 39

The decodeToBitAsString method

This method, which can be viewed in its entirety in Listing 45 is very straightforward. Therefore

no further discussion is warranted.

Build a decoding table

Listing 40 invokes the buildHuffDecodingTable method to create a Huffman decoding lookup

table by swapping the keys and values from the Huffman encoding table received as an incoming

parameter by the decode method.

 buildHuffDecodingTable();

Listing 40

The buildHuffDecodingTable method

You guessed it! Once again, this method, which can be viewed in Listing 45, is too simple to

deserve further discussion.

Decode the message

Listing 41 invokes the decodeStringBitsToCharacters method to decode the String containing

only 1 and 0 characters that represent the bits in the encoded message. This produces a replica of

the original message that was subjected to Huffman encoding.

 decodeStringBitsToCharacters();

Listing 41

The decodeStringBitsToCharacters method

The decodeStringBitsToCharacters method is shown in its entirety in Listing 42.

 void decodeStringBitsToCharacters(){

 StringBuffer output = new StringBuffer();

 StringBuffer workBuf = new StringBuffer();

 for(int cnt = 0;cnt <

stringDecodedData.length();

cnt++){

 workBuf.append(stringDecodedData.charAt(cnt));

if(huffDecodeTable.containsKey(workBuf.toString())){

 output.append(

huffDecodeTable.get(workBuf.toString()));

 workBuf = new StringBuffer();

 }//end if

 }//end for loop

 decodedData = output.toString();

 }//End decodeStringBitsToCharacters();

Listing 42

Two empty StringBuffer objects

The decodeStringBitsToCharacters method begins with one empty StringBuffer object

referred to by the variable named workBuf and another empty StringBuffer object referred to

by the variable named output.

The StringBuffer object referred to by output is used to construct the decoded message. The

StringBuffer object referred to by workBuf is used as a temporary holding area for substring

data.

Build a working string one character at a time

The method reads the String containing only 1 and 0 characters that represent the bits in the

encoded message (stringDecodedData). The characters are read from this string one character at

a time. As each new character is read, it is appended to the StringBuffer object referred to by

workBuf.

Compare the working string to the decoding keys

As each new character is appended to the StringBuffer object, a test is performed to determine if

the current contents of the StringBuffer object match one of the keys in a Hashtable table that

relates strings representing Huffman bit codes to characters in the original message.

When a match is found...

When a match is found, the value associated with that key is retrieved from the Hashtable and

appended onto the StringBuffer object referred to by output. Thus, the output text is built up

one character at a time.

Clear the working string

Having processed the matching key, a new empty StringBuffer object is instantiated and is

referred to by workBuf. The process of reading, appending, and testing for a match is repeated

until all of the characters in the string that represents the bits in the encoded message have been

processed.

The original message has been reconstructed, with extra characters

At that point, the StringBuffer object referred to by output contains the entire decoded

message. (It may contain extraneous characters at the end.) It is converted to type String and

referred to by decodedData. Then the decodeStringBitsToCharacters method returns control

to the decode method with the task of decoding the encoded message having been completed.

Back in the decode method...

As shown in Listing 43, the decode method returns control to the main method returning a

reference to a String containing a replica of the original message in the process.

 return decodedData.substring(0,rawDataLen);

 }//end decode method

Listing 43

Note that the code in Listing 43 uses the known length of the original message to trim extraneous

characters from the end of the decoded message.

Listing 43 signals the end of the decode method and the end of the HuffmanDecoder class.

Back in the main method...

Listing 44 invokes the display48 method to display the decoded results, 48 characters to the line

as shown near the bottom of Figure 1.

 System.out.println("\nDecoded Data");

 display48(decodedData);

 }//end main

Listing 44

And that's a wrap! I hope that you have enjoyed this lesson on Huffman encoding.

Run the Program

I encourage you to copy the code from Listing 45 into your text editor, compile it, and execute

it. Experiment with it, making changes, and observing the results of your changes.

Create a variety of test messages of your own and determine the compression factor for different

types of messages. For example apply the Huffman compression algorithm to raw HTML

messages to see if they compress more than straight text messages. Create a simulation of an

encrypted message using byte values from a random number generator as the message content

and see how well that message compresses.

Summary

In this lesson, I have taught you about the inner workings of the Huffman lossless compression

algorithm. I also showed you the results obtained by applying the algorithm to several different

test messages.

What's Next?

Future lessons in this series will explain the inner workings behind several other data and image

compression schemes, including the following:

 Run-length data encoding

 GIF image compression

 JPEG image compression

References

2440 Understanding the Lempel-Ziv Data Compression Algorithm in Java

076 Vectors, Hashtables, and Enumerations

508 JavaBeans, Properties of Beans, Simple and Indexed

510 JavaBeans, Properties of Beans, Bound Properties

512 JavaBeans, Properties of Beans, Constrained Properties

1350 Data Structures in Java: Part 1, Getting Started

1352 Data Structures in Java: Part 2, What Is a Collection?

1354 Data Structures in Java: Part 3, Purpose of Framework Interfaces

1356 Data Structures in Java: Part 4, Purpose of Implementations and Algorithms

1358 Data Structures in Java: Part 5, The Core Collection Interfaces

1360 Data Structures in Java: Part 6, Data Structures in Java: Part 6, Duplicate Elements,

Ordered Collections, Sorted Collections, and Interface Specialization

1362 Data Structures in Java: Part 7, The Comparable Interface, Part 1

1364 Data Structures in Java: Part 8, The Comparable Interface, Part 2

1366 Data Structures in Java: Part 9, The Comparator Interface, Part 1

1368 Data Structures in Java: Part 10, The Comparator Interface, Part 2

1370 Data Structures in Java: Part 11, The Comparator Interface, Part 3

1372 Data Structures in Java: Part 12, The Comparator Interface, Part 4

1374 Data Structures in Java: Part 13, The Comparator Interface, Part 5

1376 Data Structures in Java: Part 14, The Comparator Interface, Part 6

1378 Data Structures in Java: Part 15, The toArray Method, Part 1

1380 Data Structures in Java: Part 16, The toArray Method, Part 2

2300 Generics in J2SE, Getting Started

Complete Program Listing

A complete listing of the program discussed in this lesson is shown in Listing 45 below.

/*File Huffman01.java

This program illustrates the encoding and later decoding of

a text message using the Huffman encoding technique.

This program is provided for educational purposes only. If

you use the program for any purpose, you use it at your

own risk. The author of the program accepts no

responsibility for any damages that may result from your

use of the program.

We begin by instantiating an object of the HuffmanEncoder

class and invoking the encode method on that object.

Inside the encode method, we invoke the createFreqData

method to create a frequency chart that identifies each of

the individual characters in the original message and the

number of times (frequency) that each character appeared in

the message.

Next, we invoke the createLeaves method to create a

http://www.developer.com/java/data/article.php/3586396
http://www.dickbaldwin.com/java/Java076.htm
http://www.dickbaldwin.com/java/Java508.htm
http://www.dickbaldwin.com/java/Java510.htm
http://www.dickbaldwin.com/java/Java512.htm
http://www.developer.com/java/article.php/763411
http://softwaredev.earthweb.com/java/article/0,,12082_767451,00.html
http://softwaredev.earthweb.com/java/sdjjavase/article/0,,12395_774751,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_778571,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_795301,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_799661,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_803891,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_809421,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_858411,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_862991,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_867311,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_871771,00.html
http://www.developer.com/java/other/article.php/876331
http://softwaredev.earthweb.com/java/article/0,,12082_879601,00.html
http://softwaredev.earthweb.com/java/sdjjavaee/article/0,,12396_883811,00.html
http://www.developer.com/java/article.php/888731
http://www.developer.com/java/other/article.php/3495121

HuffLeaf object for each character identified in the

frequency chart. We store the HuffLeaf objects in a

TreeSet object. Each HuffLeaf object encapsulates the

character as well as the number of times that the

character appeared in the original message (frequency).

Then we invoke the createHuffTree method to assemble the

HuffLeaf objects into a Huffman tree (a HuffTree object).

A Huffman tree is a special form of a binary tree

consisting of properly linked HuffNode and HuffLeaf

objects.

When the createHuffTree method returns, the HuffTree

object remains as the only object stored in the TreeSet

object that previously contained all of the HuffLeaf

objects. This is because all of the HuffLeaf objects have

been combined with HuffNode objects to form the tree.

Following that, we invoke the createBitCodes method. This

method uses the Huffman tree in a recursive manner to

create a bit code for each character in the message. The

bit codes are different lengths with the shorter codes

corresponding to the characters with a high frequency

value and the longer codes corresponding to the characters

with the lower frequency values. The createBitCodes

method populates a data structure that is required later

to decode the encoded message.

At this point, we know the variable-length bitcode that is

required to replace each character in the original message

to produce a Huffman-encoded message. (The compression

provided by Huffman encoding depends on the frequently

used characters having short bitcodes and the less

frequently used characters having longer bitcodes.)

Although we know the bitcode required to replace each

character in the original message, a direct transformation

from characters in the message to a stream of contiguous

bitcodes is something of a challenge. The computer's

memory is organized on 8-bit boundaries. I am unaware of

any capability in Java that allows the memory to be viewed

simply as a continuous sequence of individual bits.

(Note that it may be possible to accomplish this by using

a Java BitSet object. I may give that a try someday when I

have the time.)

This program uses a solution to this challenge that is

straightford, but is probably inefficient from both a speed

and memory requirement viewpoint. The solution is to do a

simple table lookup in order to create a long String object

consisting of only 1 and 0 characters. Each character in

the original message is represented by a substring that

matches the required bitcode. This is easy to accomplish

because (unlike a long sequence of bits) there are no

artificial boundaries requiring the length of the String to

be some multiple of a fixed number of characters.

We invoke the encodeToString method to encode the message

into a String representation of the bits that will make up

the final encoded message.

After the String containing 1 and 0 characters representing

the bits in the Huffman-encoded message is created, this

String is processed to produce the Huffman-encoded message

in a binary bit stream format. This is accomplished using

another lookup table containing 256 entries (the number of

possible combinations of eight bits).

We invoke the buildEncodingBitMap method to populate a

lookup table that relates eight bits represented as a

String to every possible combination of eight actual bits.

Then we invoke the encodeStringToBits method to Encode the

String representation of the bits that make up the encoded

message to the actual bits that make up the encoded

message.

Note that this method doesn't handle the end of the message

very gracefully for those cases where the number of

required bits is not a multiple of 8. The method simply

adds enough "0" characters to the end of the String to

cause the length to be a multiple of 8. This will usually

result in extraneous characters at the end of the decoded

message later. Some mechanism must be found to eliminate

the extraneous characters when decoding the message. This

program assumes that the length of the original message is

preserved and provided to the decoding software along with

the decoding table. Since the length of the decoded

message must match the length of the original message, this

value is used to eliminate extraneous characters at the

end of the decoded message.

Then we return the binaryEncodedData from the encode method

to the main method. The message has now been Huffman

encoded. We provide the capability to display the

binaryEncodedData in Hexadecimal format at this point for

comparison with the original message.

The program continues the demonstration by decoding and

displaying the Huffman-encoded message.

We begin the decoding process by instantiating a

HuffmanDecoder object.

Then we invoke the decode method on the HuffmanDecoder

object to decode the message. We pass the encoded message

along with a reference to a data structure containing

encoding particulars and the length of the original

message so that extraneous characters on the end can be

eliminated.

Inside the decode method, we invoke the buildDecodingBitMap

method to create a decoding bit map, which is essentially

the reverse of the encoding bit map that was used to encode

the original message.

We invoke the decodeToBitsAsString method to decode the

encoded message from a binary representation to a String of

1 and 0 characters that represent the actual bits in the

encoded message.

We invoke the buildHuffDecodingTable method to create a

Huffman decoding table by swapping the keys and the values

from the Huffman encoding table received as an incoming

parameter by the decode method.

Finally, we invoke the decodeStringBitsToCharacters method

to decode the String containing only 1 and 0 characters

that represent the bits in the encoded message. This

produces a replica of the original message that was

subjected to Huffman encoding. We write the resulting

decoded message into a String object and return the

decoded message with any extraneous characters at the end

having been removed.

The program was tested using J2SE 5.0 and WinXP.

Requires J2SE 5.0 to support generics.

**/

import java.util.*;

import java.io.*;

public class Huffman01{

 public static void main(String[] args){

 //The following data structure is used to

 // communicate encoding particulars from the Huffman

 // encoder to the Huffman decoder. This is necessary

 // for the decoder to be able to decode the encoded

 // message. Note that this data structure must be

 // empty when it is passed to the encode method.

 Hashtable <Character,String>huffEncodeTable;

 //Begin the demonstration by applying Huffman encoding

 // to a text message.

 //Create and display the raw text message that will be

 // encoded. Display 48 characters to the line.

 //Modify the comment indicators to enable one of the

 // following test messages, or insert a test message

 // of your own and then recompile the program.

/*

 //The following test message was copied directly from

 // an Internet news site. It is probably

 // representative of typical English text.

 String rawData = "BAGHDAD, Iraq Violence increased "

 + "across Iraq after a lull following the Dec. 15 "

 + "parliamentary elections, with at least two dozen "

 + "people including a U.S. soldier killed Monday in "

 + "shootings and bombings mostly targeting the Shiite-"

 + "dominated security services. The Defense Ministry "

 + "director of operations, Brig. Gen. Abdul Aziz "

 + "Mohammed-Jassim, blamed increased violence in the "

 + "past two days on insurgents trying to deepen the "

 + "political turmoil following the elections. The "

 + "violence came as three Iraqi opposition groups "

 + "threatened another wave of protests and civil "

 + "disobedience if allegations of fraud are not "

 + "properly investigated.";

*/

/*

 String rawData = "Now is the time for all good men "

 + "to come to the aid of their country.";

*/

 //Use the following test message or some other

 // similarly short test message to illustrate the

 // construction of the HuffTree object.

 String rawData = "AAAAABBBBCCCDDE";

 //Enable the following two statements to display the

 // raw data 48 characters to the line.

 System.out.println("Raw Data");

 display48(rawData);

 int rawDataLen = rawData.length();

 System.out.println("\nNumber raw data bits: "

 + rawData.length() * 8);

 //Instantiate a Huffman encoder object

 HuffmanEncoder encoder = new HuffmanEncoder();

 //Encode the raw text message. The encoded message

 // is received back as bytes stored in an ArrayList

 // object. Pass the raw message to the encode

 // method. Also pass a reference to the empty data

 // structure mentioned above to the encode method where

 // it will be populated with encoding particulars

 // needed to decode the message later

 huffEncodeTable = new Hashtable<Character,String>();

 ArrayList<Byte> binaryEncodedData = encoder.encode(

 rawData,huffEncodeTable);

 System.out.println("Number binary encoded data bits: "

 + binaryEncodedData.size() * 8);

 System.out.println("Compression factor: "

 + (double)rawData.length()/binaryEncodedData.size());

 //The message has now been Huffman encoded. Display the

 // binaryEncodedData in Hexadecimal format, 48

 // characters per line.

 System.out.println(

 "\nBinary Encoded Data in Hexadecimal Format");

 hexDisplay48(binaryEncodedData);

 System.out.println();

 //Now continue the demonstration by decoding the

 // Huffman-encoded message.

 //Instantiate a Huffman decoder object.

 HuffmanDecoder decoder = new HuffmanDecoder();

 //Pass the encoded message to the decode method of the

 // HuffmanDecoder object. Also pass a reference

 // to the data structure containing encoding

 // particulars to the decode method. Also pass the

 // length of the original message so that extraneous

 // characters on the end of the decoded message can be

 // eliminated.

 String decodedData = decoder.decode(binaryEncodedData,

 huffEncodeTable,

 rawDataLen);

 //Display the decoded results, 48 characters to the

 // line

 System.out.println("\nDecoded Data");

 display48(decodedData);

 }//end main

 //---//

 //Utility method to display a String 48 characters to

 // the line.

 static void display48(String data){

 for(int cnt = 0;cnt < data.length();cnt += 48){

 if((cnt + 48) < data.length()){

 //Display 48 characters.

 System.out.println(data.substring(cnt,cnt+48));

 }else{

 //Display the final line, which may be short.

 System.out.println(data.substring(cnt));

 }//end else

 }//end for loop

 }//end display48

 //---//

 //Utility method to display hex data 48 characters to

 // the line

 static void hexDisplay48(

 ArrayList<Byte> binaryEncodedData){

 int charCnt = 0;

 for(Byte element : binaryEncodedData){

 System.out.print(

 Integer.toHexString((int)element & 0X00FF));

 charCnt++;

 if(charCnt%24 == 0){

 System.out.println();//new line

 charCnt = 0;

 }//end if

 }//end for-each

 }//end hexDisplay48

 //---//

}//end class Huffman01

//===//

//An object of this class can be used to encode a raw text

// message using the Huffman encoding methodology.

class HuffmanEncoder{

 String rawData;

 TreeSet <HuffTree>theTree = new TreeSet<HuffTree>();

 ArrayList <Byte>binaryEncodedData =

 new ArrayList<Byte>();

 Hashtable <Character,Integer>frequencyData =

 new Hashtable<Character,Integer>();

 StringBuffer code = new StringBuffer();

 Hashtable <Character,String>huffEncodeTable;

 String stringEncodedData;

 Hashtable <String,Byte>encodingBitMap =

 new Hashtable<String,Byte>();

 //---//

 //This method encodes an incoming String message using

 // the Huffman encoding methodology. The method also

 // receives a reference to an empty data structure.

 // This data structures is populated with encoding

 // particulars required later by the decode method

 // to decode and transform the encoded message back

 // into the original String message. Note that in

 // order to keep this method simple, pad characters may

 // be appended onto the end of the original

 // message when it is encoded. This is done to cause the

 // number of bits in the encoded message to be a multiple

 // of eight, thus causing the length of the encoded

 // message to be an integral number of bytes. Additional

 // code would be required to avoid this at this point.

 // However, it is easy to eliminate the extraneous

 // characters during decoding if the length of the

 // original message is known.

 ArrayList<Byte> encode(

 String rawData,

 Hashtable <Character,String>huffEncodeTable){

 //Save the incoming parameters.

 this.rawData = rawData;

 this.huffEncodeTable = huffEncodeTable;

 //For illustration purposes only, enable the following

 // two statements to display the original message as a

 // stream of bits. This can be visually compared with

 // a similar display for the encoded message later to

 // illustrate the amount of compression provided by

 // the encoding process.

/*

 System.out.println("\nRaw Data as Bits");

 displayRawDataAsBits();

*/

 //Create a frequency chart that identifies each of the

 // individual characters in the original message and

 // the number of times (frequency) that each character

 // appeared in the message.

 createFreqData();

 //For illustration purposes only, enable the following

 // statement to display the contents of the frequency

 // chart created above.

/*

 displayFreqData();

*/

 //Create a HuffLeaf object for each character

 // identified in the frequency chart. Store the

 // HuffLeaf objects in a TreeSet object. Each HuffLeaf

 // object encapsulates the character as well as the

 // number of times that the character appeared in the

 // original message (the frequency).

 createLeaves();

 //Assemble the HuffLeaf objects into a Huffman tree

 // (a HuffTree object). A Huffman tree is a special

 // form of a binary tree consisting of properly linked

 // HuffNode objects and HuffLeaf objects.

 //When the following method returns, the HuffTree

 // object remains as the only object stored in the

 // TreeSet object that previously contained all of the

 // HuffLeaf objects. This is because all of the

 // HuffLeaf objects have been combined with HuffNode

 // objects to form the tree.

 createHuffTree();

 //Use the Huffman tree in a recursive manner to create

 // a bit code for each character in the message. The

 // bit codes are different lengths with the shorter

 // codes corresponding to the characters with a high

 // frequency value and the longer codes corresponding

 // to the characters with the lower frequency values.

 //Note that the method call extracts the reference to

 // the Huffman tree from the TreeSet object and passes

 // that reference to the method. This is necessary

 // because the method is recursive and cannot

 // conveniently work with the TreeSet object.

 //This method populates the data structure that is

 // required later to decode the encoded message.

 createBitCodes(theTree.first());

 //For purposes of illustration only, enable the

 // following two statements to display a table showing

 // the relationship between the characters in the

 // original message and the bitcodes that will replace

 // those characters to produce the Huffman-encoded

 // message.

/*

 System.out.println();

 displayBitCodes();

*/

 //Encode the message into a String representation

 // of the bits that will make up the final encoded

 // message. Also,the following method may optionally

 // display the String showing the bit values that will

 // appear in the final Huffman-encoded message. This

 // is useful for comparing back against the bits in

 // the original message for purposes of evaluating the

 // amount of compression provided by encoding the

 // message.

 encodeToString();

 //Populate a lookup table that relates eight bits

 // represented as a String to every possible combinaion

 // of eight actual bits.

 buildEncodingBitMap();

 //Encode the String representation of the bits that

 // make up the encoded message to the actual bits

 // that make up the encoded message.

 //Note that this method doesn't handle the end of the

 // message very gracefully for those cases where the

 // number of required bits is not a multiple of 8. It

 // simply adds enough "0" characters to the end to

 // cause the length to be a multiple of 8. This may

 // result in extraneous characters at the end of the

 // decoded message later.

 //For illustration purposes only, this method may also

 // display the extended version of the String

 // representation of the bits for comparison with the

 // non-extended version.

 encodeStringToBits();

 //Return the encoded message.

 return binaryEncodedData;

 }//end encode method

 //---//

 //This method displays a message string as a series of

 // characters each having a value of 1 or 0.

 void displayRawDataAsBits(){

 for(int cnt = 0,charCnt = 0;cnt < rawData.length();

 cnt++,charCnt++){

 char theCharacter = rawData.charAt(cnt);

 String binaryString = Integer.toBinaryString(

 theCharacter);

 //Append leading zeros as necessary to show eight

 // bits per character.

 while(binaryString.length() < 8){

 binaryString = "0" + binaryString;

 }//end while loop

 if(charCnt%6 == 0){

 //Display 48 bits per line.

 charCnt = 0;

 System.out.println();//new line

 }//end if

 System.out.print(binaryString);

 }//end for loop

 System.out.println();

 }//end displayRawDataAsBits

 //---//

 //This method creates a frequency chart that identifies

 // each of the individual characters in the original

 // message and the number of times that each character

 // appeared in the message. The results are stored in

 // a Hashtable with the characters being the keys and the

 // usage frequency of each character being the

 // corresponding Hashtable value for that key.

 void createFreqData(){

 for(int cnt = 0;cnt < rawData.length();cnt++){

 char key = rawData.charAt(cnt);

 if(frequencyData.containsKey(key)){

 int value = frequencyData.get(key);

 value += 1;

 frequencyData.put(key,value);

 }else{

 frequencyData.put(key,1);

 }//end else

 }//end for loop

 }//end createFreqData

 //---//

 //This method displays the contents of the frequency

 // chart created by the method named createFreqData.

 void displayFreqData(){

 System.out.println("\nFrequency Data");

 Enumeration <Character>enumerator =

 frequencyData.keys();

 while(enumerator.hasMoreElements()){

 Character nextKey = enumerator.nextElement();

 System.out.println(

 nextKey + " " + frequencyData.get(nextKey));

 }//end while

 }//end displayFreqData

 //---//

 //This method creates a HuffLeaf object for each char

 // identified in the frequency chart. The HuffLeaf

 // objects are stored in a TreeSet object. Each HuffLeaf

 // object encapsulates the character as well as the

 // number of times that the character appeared in the

 // original message.

 void createLeaves(){

 Enumeration <Character>enumerator =

 frequencyData.keys();

 while(enumerator.hasMoreElements()){

 Character nextKey = enumerator.nextElement();

 theTree.add(new HuffLeaf(

 nextKey,frequencyData.get(nextKey)));

 }//end while

 }//end createLeaves

 //---//

 //This inner class is used to construct a leaf object in

 // the Huffman tree.

 class HuffLeaf extends HuffTree{

 private int value;

 //HuffLeaf constructor

 public HuffLeaf(int value, int frequency){

 this.value = value;

 //Note that frequency is inherited from HuffTree

 this.frequency = frequency;

 }//end HuffLeaf constructor

 public int getValue(){

 return value;

 }//end getValue

 }//End HuffLeaf class

 //===//

 //Assemble the HuffLeaf objects into a HuffTree object.

 // A HuffTree object is a special form of a binary tree

 // consisting of properly linked HuffNode objects and

 // HuffLeaf objects.

 //When the method terminates, the HuffTree object

 // remains as the only object stored in the TreeSet

 // object that previously contained all of the HuffLeaf

 // objects. This is because all of the HuffLeaf

 // objects have been removed from the TreeSet object

 // and combined with HuffNode objects to form the

 // Huffman tree (as represented by the single HuffTree

 // object).

 //The method contains two sections of code that can be

 // enabled to display:

 // 1. The contents of the original TreeSet object.

 // 2. The contents of the TreeSet object for each

 // iteration during which HuffLeaf objects are being

 // combined with HuffNode objects to form the final

 // HuffTree object.

 // This display is very useful for understanding how the

 // Huffman tree is constructed. However, this code

 // should be enabled only for small trees because it

 // generates a very large amount of output.

 //The HuffTree object is constructed by:

 // 1. Extracting pairs of HuffLeaf or HuffNode objects

 // from the TreeSet object in ascending order based

 // on their frequency value.

 // 2. Using the pair of extracted objects to construct

 // a new HuffNode object where the two extracted

 // objects become children of the new HuffNode

 // object, and where the frequency value stored in

 // the new HuffNode object is the sum of the

 // frequency values in the two child objects.

 // 3. Removing the two original HuffLeaf or HuffNode

 // objects from the TreeSet and adding the new

 // HuffNode object to the TreeSet object. The

 // position of the new HuffNode object in the Treeset

 // object is determined by its frequency value

 // relative to the other HuffNode or HuffLeaf objects

 // in the collection. The new HuffNode object will

 // eventually become a child of another new HuffNode

 // object unless it ends up as the root of the

 // HuffTree object.

 // 4. Continuing this process until the TreeSet object

 // contains a single object of type HuffTree.

 void createHuffTree(){

 //Enable the following statements to see the original

 // contents of the TreeSet object. Do this only for

 // small trees because it generates lots of output.

/*

 System.out.println("\n\nDisplay Original TreeSet");

 Iterator <HuffTree> originalIter = theTree.iterator();

 while(originalIter.hasNext()){

 System.out.println(

 "\nHuffNode, HuffLeaf, or HuffTree");

 displayHuffTree(originalIter.next(),0);

 }//end while loop

 //End code to display the TreeSet

*/

 //Iterate on the size of the TreeSet object until all

 // of the elements have been combined into a single

 // element of type HuffTree

 while(theTree.size() > 1){

 //Get, save, and remove the first two elements.

 HuffTree left = theTree.first();

 theTree.remove(left);

 HuffTree right = theTree.first();

 theTree.remove(right);

 //Combine the two saved elements into a new element

 // of type HuffNode and add it to the TreeSet

 // object.

 HuffNode tempNode = new HuffNode(left.getFrequency()

 + right.getFrequency(),left,right);

 theTree.add(tempNode);

 //Enable the following statements to see the HuffTree

 // being created from HuffNode and HuffLeaf objects.

 // Do this only for small trees because it will

 // generate a lot of output.

/*

 System.out.println("\n\nDisplay Working TreeSet");

 Iterator <HuffTree> workingIter = theTree.iterator();

 while(workingIter.hasNext()){

 System.out.println(

 "\nHuffNode, HuffLeaf, or HuffTree");

 displayHuffTree(workingIter.next(),0);

 }//end while loop

 //End code to display the TreeSet

*/

 }//end while

 }//end createHuffTree

 //---//

 //Recursive method to display a HufTree object. The

 // first call to this method should pass a value of 0

 // for recurLevel.

 void displayHuffTree(HuffTree tree,int recurLevel){

 recurLevel++;

 if(tree instanceof HuffNode){

 // This is a node, not a leaf. Process it as a node.

 //Cast to type HuffNode.

 HuffNode node = (HuffNode)tree;

 // Get and save the left and right branches

 HuffTree left = node.getLeft();

 HuffTree right = node.getRight();

 //Display information that traces out the recursive

 // traversal of the tree in order to display the

 // contents of the leaves.

 System.out.print(" Left to " + recurLevel + " ");

 //Make a recursive call.

 displayHuffTree(left,recurLevel);

 System.out.print(" Right to " + recurLevel + " ");

 //Make a recursive call.

 displayHuffTree(right,recurLevel);

 }else{

 //This is a leaf. Process it as such.

 //Cast the object to type HuffLeaf.

 HuffLeaf leaf = (HuffLeaf)tree;

 System.out.println(

 " Leaf:" + (char)leaf.getValue());

 }//end else

 System.out.print(" Back ");

 }//end displayHuffTree

 //---//

 //This inner class is used to construct a node object in

 // the Huffman tree.

 class HuffNode extends HuffTree{

 private HuffTree left;

 private HuffTree right;

 //HuffNode constructor

 public HuffNode(

 int frequency,HuffTree left,HuffTree right){

 this.frequency = frequency;

 this.left = left;

 this.right = right;

 }//end HuffNode constructor

 public HuffTree getLeft(){

 return left;

 }//end getLeft

 public HuffTree getRight(){

 return right;

 }//end getRight

 }//end HuffNode class

 //===//

 //This method uses the Huffman tree in a recursive manner

 // to create a bitcode for each character in the message.

 // The bitcodes are different lengths with the shorter

 // bitcodes corresponding to the characters with a high

 // usage frequency value and the longer bitcodes

 // corresponding to the characters with the lower

 // frequency values.

 //Note that this method receives a reference to the

 // Huffman tree that was earlier contained as the only

 // object in the TreeSet object. (Because this method is

 // recursive, it cannot conveniently work with the

 // TreeSet object.

 //This method creates a Huffman encoding table as a

 // Hashtable object that relates the variable length

 // bitcodes to the characters in the original message.

 // The bitcodes are constructed as objects of type

 // StringBuffer consisting of sequences of the characters

 // 1 and 0.

 //Each bitcode describes the traversal path from the root

 // of the Huffman tree to a leaf on that tree. Each time

 // the path turns to the left, a 0 character is appended

 // onto the StringBuffer object and becomes part of the

 // resulting bitcode. Each time the path turns to the

 // right, a 1 character is appended onto the

 // StringBuffer object. When a leaf is reached, the

 // character stored in that leaf is retrieved and put

 // into the Hashtable object as a key. A String

 // representation of the StringBuffer object is used as

 // the value for that key in the Hashtable.

 //At completion,the Hashtable object contains a series of

 // keys consisting of the original characters in the

 // message and a series of values as String objects

 // (consisting only of 1 and 0 characters) representing

 // the bitcodes that will eventually be used to encode

 // the original message.

 //Note that theHashtable object that is populated by this

 // method is the data structure that is required later

 // to decode the encoded message.

 void createBitCodes(HuffTree tree){

 if(tree instanceof HuffNode){

 // This is a node, not a leaf. Process it as a node.

 //Cast to type HuffNode.

 HuffNode node = (HuffNode)tree;

 // Get and save the left and right branches

 HuffTree left = node.getLeft();

 HuffTree right = node.getRight();

 //Append a 0 onto the StringBuffer object. Then make

 // a recursive call to this method passing a

 // reference to the left child as a parameter. This

 // recursive call will work its way all the way down

 // to a leaf before returning. Then it will be time

 // to process the right path.

 code.append("0");

 createBitCodes(left);

 //Return to here from recursive call on left child.

 //Delete the 0 from the end of the StringBuffer

 // object to restore the contents of that object to

 // the same state that it had before appending the 0

 // and making the recursive call on the left branch.

 //Now we will make a right turn. Append a 1 to the

 // StringBuffer object and make a recursive call to

 // this method passing a reference to the right child

 // as a parameter. Once again, this recursive call

 // will work its way all the way down to a leaf

 // before returning.

 code.deleteCharAt(code.length() - 1);//Delete the 0.

 code.append("1");

 createBitCodes(right);

 //Return to here from recursive call on right child.

 //Delete the character most recently appended to the

 // StringBuffer object and return from this recursive

 // call to the method. The character is deleted

 // because control is being transferred back one

 // level in the recursive process and the

 // StringBuffer object must be restored to the same

 // state that it had when this recursive call was

 // made.

 code.deleteCharAt(code.length() - 1);

 }else{

 //This is a leaf. Process it as such.

 //Cast the object to type HuffLeaf.

 HuffLeaf leaf = (HuffLeaf)tree;

 //Put an entry into the Hashtable. The Hashtable

 // key consists of the character value stored in the

 // leaf. The value in the Hashtable consists of the

 // contents of the StringBuffer object representing

 // the path from the root of the tree to the leaf.

 // This is the bitcode and is stored in the Hashtable

 // as a String consisting of only 1 and 0 characters.

 huffEncodeTable.put((char)(

 leaf.getValue()),code.toString());

 }//end else

 }//end createBitCodes

 //---//

 //This method displays a table showing the relationship

 // between the characters in the original message and the

 // bitcodes that will ultimately replace each of those

 // characters to produce the Huffman-encoded message.

 void displayBitCodes(){

 System.out.println(

 "\nMessage Characters versus Huffman BitCodes");

 Enumeration <Character>enumerator =

 huffEncodeTable.keys();

 while(enumerator.hasMoreElements()){

 Character nextKey = enumerator.nextElement();

 System.out.println(

 nextKey + " " + huffEncodeTable.get(nextKey));

 }//end while

 }//end displayBitCodes

 //---//

 //This method encodes the message into a String

 // representation of the bits that will make up the final

 // encoded message. The String consists of only 1 and 0

 // characters where each character represents the state

 // of one of the bits in the Huffman-encoded message.

 //Also for illustration purposes, this method optionally

 // displays the String showing the bit values that will

 // appear in the Huffman-encoded message.

 void encodeToString(){

 StringBuffer tempEncoding = new StringBuffer();

 for(int cnt = 0;cnt < rawData.length();cnt++){

 //Do a table lookup to get the substring that

 // represents the bitcode for each message character.

 // Append those substrings to the string that

 // represents the Huffman-encoded message.

 tempEncoding.append(huffEncodeTable.get(

 rawData.charAt(cnt)));

 }//end for loop

 //Convert the StringBuffer object to a String object.

 stringEncodedData = tempEncoding.toString();

 //For illustration purposes, enable the following two

 // statements to display the String showing the bit

 // values that will appear in the Huffman-encoded

 // message. Display 48 bits to the line except for

 // the last line, which may be shorter, and which may

 // not be a multiple of 8 bits.

/*

 System.out.println("\nString Encoded Data");

 display48(stringEncodedData);

*/

 }//end encodeToString

 //---//

 //This method populates a lookup table that relates eight

 // bits represented as a String to eight actual bits for

 // all possible combinations of eight bits.

 void buildEncodingBitMap(){

 for(int cnt = 0; cnt <= 255;cnt++){

 StringBuffer workingBuf = new StringBuffer();

 if((cnt & 128) > 0){workingBuf.append("1");

 }else{workingBuf.append("0");};

 if((cnt & 64) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 32) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 16) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 8) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 4) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 2) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 1) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 encodingBitMap.put(workingBuf.toString(),

 (byte)(cnt));

 }//end for loop

 }//end buildEncodingBitMap

 //---//

 //The purpose of this method is to create actual bit data

 // that matches the 1 and 0 characters in the

 // stringEncodedData that represents bits with the 1 and

 // 0 characters.

 //Note that this method doesn't handle the end of the

 // data very gracefully for those cases where the number

 // of required bits is not a multiple of 8. It simply

 // adds enough "0" characters to the end to cause the

 // length to be a multiple of 8. This may result in

 // extraneous characters at the end of the decoded

 // message later. However, it isn't difficult to remove

 // the extraneous characters at decode time as long as

 // the length of the original message is known.

 //For illustration purposes, this method may optionally

 // display the extended version of the stringEncodedData

 // for comparison with the non-extended version.

 //Note that the binary Huffman-encoded data produced by

 // this method is stored in a data structure of type

 // ArrayList <Byte>.

 void encodeStringToBits(){

 //Extend the length of the stringEncodedData to cause

 // it to be a multiple of 8.

 int remainder = stringEncodedData.length()%8;

 for(int cnt = 0;cnt < (8 - remainder);cnt++){

 stringEncodedData += "0";

 }//end for loop

 //For illustration purposes only, enable the following

 // two statements to display the extended

 // stringEncodedData in the same format as the

 // original stringEncodedData.

/*

 System.out.println("\nExtended String Encoded Data");

 display48(stringEncodedData);

*/

 //Extract the String representations of the required

 // eight bits. Generate eight actual matching bits by

 // looking the bit combination up in a table.

 for(int cnt = 0;cnt < stringEncodedData.length();

 cnt += 8){

 String strBits = stringEncodedData.substring(

 cnt,cnt+8);

 byte realBits = encodingBitMap.get(strBits);

 binaryEncodedData.add(realBits);

 }//end for loop

 }//end encodeStringToBits

 //---//

 //Method to display a String 48 characters to the line.

 void display48(String data){

 for(int cnt = 0;cnt < data.length();cnt += 48){

 if((cnt + 48) < data.length()){

 //Display 48 characters.

 System.out.println(data.substring(cnt,cnt+48));

 }else{

 //Display the final line, which may be short.

 System.out.println(data.substring(cnt));

 }//end else

 }//end for loop

 }//end display48

 //---//

}//end HuffmanEncoder class

//===//

//An object of this class can be used to decode a

// Huffman-encoded message given the encoded message,

// a data structure containing particulars as to how the

// original message was encoded, and the length of the

// original message..

class HuffmanDecoder{

 Hashtable <String,Character>huffDecodeTable =

 new Hashtable<String,Character>();

 String stringDecodedData;

 String decodedData = "";

 Hashtable <Byte,String>decodingBitMap =

 new Hashtable<Byte,String>();

 ArrayList <Byte>binaryEncodedData;

 //The following structure contains particulars as to how

 // the original message was encoded, and must be received

 // as an incoming parameter to the decode method along

 // with the encoded message and the length of the

 // original message.

 Hashtable <Character,String>huffEncodeTable;

 //Used to eliminate the extraneous characters on the end.

 int rawDataLen;

 //---//

 //This method receives a Huffman-encoded message along

 // with a data structure containing particulars as to how

 // the original message was encoded and the length of the

 // original message. It decodes the original message and

 // returns the decoded version as a String object.

 String decode(ArrayList <Byte>binaryEncodedData,

 Hashtable <Character,String>huffEncodeTable,

 int rawDataLen){

 //Save the incoming parameters.

 this.binaryEncodedData = binaryEncodedData;

 this.huffEncodeTable = huffEncodeTable;

 this.rawDataLen = rawDataLen;

 //Create a decoding bit map, which is essentially the

 // reverse of the encoding bit map that was used to

 // encode the original message.

 buildDecodingBitMap();

 //Decode the encoded message from a binary

 // representation to a String of 1 and 0 characters

 // that represent the actual bits in the encoded

 // message. Also, for illustration purposes only,

 // this method may optionally display the String.

 decodeToBitsAsString();

 //Create a Huffman decoding table by swapping the keys

 // and values from the Huffman encoding table received

 // as an incoming parameter by the decode method.

 buildHuffDecodingTable();

 //Decode the String containing only 1 and 0 characters

 // that represent the bits in the encoded message. This

 // produces a replica of the original message that was

 // subjected to Huffman encoding. Write the resulting

 // decoded message into a String object referred to by

 // decoded data.

 decodeStringBitsToCharacters();

 //Return the decoded message. Eliminate the extraneous

 // characters from the end of the message on the basis

 // of the known length of the original message.

 return decodedData.substring(0,rawDataLen);

 }//end decode method

 //---//

 //This method populates a lookup table that relates eight

 // bits represented as a String to eight actual bits for

 // all possible combinations of eight bits. This is

 // essentially a reverse lookup table relative to the

 // encodingBitMap table that is used to encode the

 // message. The only difference between the two is a

 // reversal of the key and the value in the Hashtable

 // that contains the table.

 void buildDecodingBitMap(){

 for(int cnt = 0; cnt <= 255;cnt++){

 StringBuffer workingBuf = new StringBuffer();

 if((cnt & 128) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 64) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 32) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 16) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 8) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 4) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 2) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 if((cnt & 1) > 0){workingBuf.append("1");

 }else {workingBuf.append("0");};

 decodingBitMap.put((byte)(cnt),workingBuf.

 toString());

 }//end for loop

 }//end buildDecodingBitMap()

 //---//

 //This method decodes the encoded message from a binary

 // representation to a String of 1 and 0 characters that

 // represent the actual bits in the encoded message.

 // Also, for illustration purposes only, this method

 // may optionally display that String.

 void decodeToBitsAsString(){

 StringBuffer workingBuf = new StringBuffer();

 for(Byte element : binaryEncodedData){

 byte wholeByte = element;

 workingBuf.append(decodingBitMap.get(wholeByte));

 }//end for-each

 //Convert from StringBuffer to String

 stringDecodedData = workingBuf.toString();

 //For illustration purposes only, enable the following

 // two statements to display the String containing 1

 // and 0 characters that represent the bits in the

 // encoded message.

/*

 System.out.println("\nString Decoded Data");

 display48(stringDecodedData);

*/

 }//end decodeToBitsAsString

 //---//

 //This method creates a Huffman decoding table by

 // swapping the keys and the values from the Huffman

 // encoding table received as an incoming parameter by

 // the decode method.

 void buildHuffDecodingTable(){

 Enumeration <Character>enumerator =

 huffEncodeTable.keys();

 while(enumerator.hasMoreElements()){

 Character nextKey = enumerator.nextElement();

 String nextString = huffEncodeTable.get(nextKey);

 huffDecodeTable.put(nextString,nextKey);

 }//end while

 }//end buildHuffDecodingTable()

 //---//

 //The method begins with an empty StringBuffer object

 // referred to by the variable named workBuf and another

 // empty StringBuffer object referred to by the variable

 // named output. The StringBuffer object referred to by

 // output is used to construct the decoded message. The

 // StringBuffer object referred to by workBuf is used as

 // a temporary holding area for substring data.

 //The method reads the String containing only 1 and 0

 // characters that represent the bits in the encoded

 // message (stringDecodedData). The characters are read

 // from this string one character at a time. As each new

 // character is read, it is appended to the StringBuffer

 // object referred to by workBuf.

 //As each new character is appended to the StringBuffer

 // object, a test is performed to determine if the

 // current contents of the StringBuffer object match one

 // of the keys in a lookup table that relates strings

 // representing Huffman bitcodes to characters in the

 // original message.

 //When a match is found, the value associated with that

 // key is extracted and appended to the StringBuffer

 // object referred to by output. Thus, the output text

 // is built up one character at a time.

 //Having processed the matching key, A new empty

 // StringBuffer object is instantiated, referred to by

 // workBuf, and the process of reading, appending, and

 // testing for a match is repeated until all of the

 // characters in the string that represents the bits in

 // the encoded message have been processed. At that

 // point, the StringBuffer object referred to by output

 // contains the entire decoded message. It is converted

 // to type String and written into the object referred to

 // by decodedData. Then the method returns with the task

 // of decoding the encoded message having been completed.

 void decodeStringBitsToCharacters(){

 StringBuffer output = new StringBuffer();

 StringBuffer workBuf = new StringBuffer();

 for(int cnt = 0;cnt < stringDecodedData.length();

 cnt++){

 workBuf.append(stringDecodedData.charAt(cnt));

 if(huffDecodeTable.containsKey(workBuf.toString())){

 output.append(

 huffDecodeTable.get(workBuf.toString()));

 workBuf = new StringBuffer();

 }//end if

 }//end for loop

 decodedData = output.toString();

 }//End decodeStringBitsToCharacters();

 //---//

 //Method to display a String 48 characters to the line.

 void display48(String data){

 for(int cnt = 0;cnt < data.length();cnt += 48){

 if((cnt + 48) < data.length()){

 //Display 48 characters.

 System.out.println(data.substring(cnt,cnt+48));

 }else{

 //Display the final line, which may be short.

 System.out.println(data.substring(cnt));

 }//end else

 }//end for loop

 }//end display48

 //---//

}//end HuffmanDecoder class

//===//

//This class is the abstract superclass of the

// HuffNode and HuffLeaf classes. Objects instantiated

// from HuffNode and HuffLeaf are populated and used to

// create a Huffman tree.

abstract class HuffTree implements Comparable{

 int frequency;

 public int getFrequency(){

 return frequency;

 }//end getFrequency

 //This method compares this object to an object whose

 // reference is received as an incoming parameter.

 // The method guarantees that sorting processes that

 // depend on this method, such as TreeSet objects, will

 // sort the objects into a definitive order.

 // If the frequency values of the two objects are

 // different, the sort is based on the frequency values.

 // If the frequency values are equal, the objects are

 // sorted based on their relative hashCode values.

 // Thus, if the same two objects with the same frequency

 // value are compared two or more times during the

 // execution of the program, those two objects will

 // always be sorted into the same order. There is no

 // chance of an ambiguous tie as to which object

 // should be first except for the case where an object

 // is compared to itself using two references to the

 // same object.

 public int compareTo(Object obj){

 HuffTree theTree = (HuffTree)obj;

 if (frequency == theTree.frequency){

 //The objects are in a tie based on the frequency

 // value. Return a tiebreaker value based on the

 // relative hashCode values of the two objects.

 return (hashCode() - theTree.hashCode());

 }else{

 //Return negative or positive as this frequency is

 // less than or greater than the frequency value of

 // the object referred to by the parameter.

 return frequency - theTree.frequency;

 }//end else

 }//end compareTo

}//end HuffTree class

//===//

Listing 45

Copyright 2006, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which have gained a worldwide following among

experienced and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

Keywords
java Huffman Lempel Ziv LZ77 lossless compression algorithm LZW LZSS DEFLATE tuple

-end-

mailto:baldwin@dickbaldwin.com

