
Adaptive Prediction using Java

Learn how to use a Java adaptive filter to predict future values in a time series. Discover the

relationship between the properties of the time series and the quality of the prediction.

Published: June 27, 2006

by Richard G. Baldwin

Java Programming Notes # 2362

 Preface

 Preview

 Experimental Results

 Discussion and Sample Code

 Run the Program

 Summary

 References

 Complete Program Listings

Preface

DSP and adaptive filtering

Digital Signal Processing (DSP) is showing up in everything from cell phones to hearing aids

and rock concerts. A particularly interesting branch of DSP is adaptive filtering. This is a

scenario where the characteristics of the digital processor change with time, circumstances, or

both.

Seventh in a series

This is the seventh lesson in a series designed to teach you about adaptive filtering in Java. The

first lesson, titled Adaptive Filtering in Java, Getting Started, introduced you to the topic of

adaptively designing a convolution filter using an LMS adaptive algorithm.

A general-purpose adaptive engine

The third lesson in the series, titled A General-Purpose LMS Adaptive Engine in Java, presented

and explained a general-purpose LMS adaptive engine written in Java. That engine can be used

to solve a wide variety of adaptive problems.

Adaptive noise cancellation

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/tocdsp.htm
http://cnx.org/content/m49840/latest/?collection=col11642/latest
http://cnx.rice.edu/content/m11829/latest/
http://cnx.org/content/m49849/latest/?collection=col11642/latest
http://cnx.rice.edu/content/m11829/latest/

The previous lesson titled Adaptive Noise Cancellation using Java showed you how to

accomplish the third item, Noise Cancellation, in the following list of common applications of

adaptive filtering:

 System Identification

 Inverse System Identification

 Noise Cancellation

 Prediction

Adaptive prediction

This lesson presents and explains a program named Adapt09, which demonstrates the use of

adaptive filtering for the prediction of future values in a time series.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

In preparation for understanding the material in this lesson, I recommend that you also study the

lessons identified in the References section of this document.

Preview

What is adaptive prediction?

Quite simply, adaptive prediction is the ability to adaptively design a convolution filter that can

be applied to a time series in order to predict future values of the time series. I will let you use

your own imagination (or perhaps research on the web) to come up with various scenarios

where this may be useful.

The program named Adapt09

The purpose of this program is to illustrate an adaptive prediction filter. The user can

experiment with adaptive prediction by making changes to the following program parameters

and observing the printed and graphic results:

http://cnx.org/content/m49867/latest/?collection=col11642/latest
http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/

 feedbackGain

 adaptiveFilterLength

 predictionDistance

 signalScale

 noiseScale

 bandpassFilterLength (and hence bandwidth)

A block diagram

See the following URL for a brief description and a block diagram of an adaptive prediction

filter.

http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/

adaptiv8.html#5576

I will refer to this block diagram later when discussing this program.

Classes required

This program requires the following classes:

 Adapt09.class

 AdaptEngine02.class

 AdaptiveResult.class

 ForwardRealToComplex01.class

 PlotALot01.class

 PlotALot03.class

 PlotALot05.class

The source code for the class named Adapt09 is presented in Listing 14 near the end of the

lesson. The source code for the other classes in the above list can be found in the lessons

referred to in the References section of this lesson.

A general-purpose adaptive engine

This program uses the adaptive engine named AdaptEngine02 to adaptively develop a

convolution prediction filter. The adaptive engine is represented by the shaded portion of the

block diagram.

One of the inputs to the adaptive engine is the current sample of the sum of signal plus noise,

shown as d(k) in the block diagram. This is the target of the prediction process.

The other input to the adaptive engine is an historical sample of signal plus noise shown as x(k)

in the block diagram.

http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576

The adaptive engine develops a convolution filter (shown as Adaptive Filter in the block

diagram) that attempts to use historical signal plus noise samples to predict the value of the

current sample of signal plus noise (target). Thus, the program attempts to adaptively develop a

convolution filter that can operate on a time series to predict a future value of the time series.

The distance in time to the future value being predicted is a user input parameter.

The iterative process

The program performs 9890 iterations during which the convolution filter coefficients are

adaptively updated. Then the adaptive update process is disabled. The program then performs

9890 more iterations during which time the quality of the prediction is measured and reported.

The prediction quality

The quality of the prediction is measured by:

 Computing the Root-Mean-Square (RMS) value of the target (shown as d(k) in the block

diagram) averaged over 9890 samples.

 Computing the RMS value of the prediction error (shown as e(k) in the block diagram)

averaged over 9890 samples.

 Computing the percentage of the RMS target value represented by the RMS error value.

Signal and noise characteristics

The signal consists of a pure tone at a frequency that is one eighth of the sampling frequency

(eight samples per cycle). The peak-to-peak value of the signal prior to scaling is 2.

The noise consists of white noise produced by a random number generator with a uniform

distribution between -1.0 and 1.0 prior to scaling.

The scaled signal is added to the scaled white noise.

Conditioning the signal plus noise

The sum of signal plus white noise can be passed through a variable-width band pass filter with a

center frequency equal to one-eighth of the sampling frequency.

(The band pass filter is not shown in the block diagram. Consider it to be to the

left of the block diagram with s(k) as its output.)

The center frequency of the band pass filter is the same as the frequency of the signal. Thus, the

signal plus noise consists of a pure tone surrounded by noise for which the noise bandwidth can

be controlled by the user. The frequency band for the noise is centered on the signal

frequency. The user controls the signal level and the noise level and hence the signal-to-noise

ratio.

http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://mathworld.wolfram.com/Root-Mean-Square.html
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576

The band pass filter

The band pass filter consists of a convolution filter in the form of a truncated sinusoid with a

frequency of one-eighth of the sampling frequency. The user specifies the length of the

convolution filter, (up to a limit of 128 coefficients), thereby specifying the bandwidth of the

filter. The bandwidth of the filter is roughly proportional to the reciprocal of the length of the

convolution filter.

The shape of the amplitude response of the pass band for the filter is roughly that of a sin(x)/x

function.

The graphic program output

The program produces three graphs in a vertical stack on the screen as shown in Figure 1.

Figure 1

The three graphs display the following information in order from top to bottom:

 The band pass convolution filter used to filter the raw signal plus noise (see the left panel

in Figure 12 as an example).

 The frequency response of the band pass filter used to filter the raw signal plus noise (see

the right panel in Figure 12 as an example). The frequency response extends from a

frequency of zero to one-half the sampling frequency (the Nyquist folding frequency).

 Four traces of adaptive time-series data (see Figure 3 for an example).

Multiple stacked pages

The bottom graph consists of multiple pages stacked on top of one another. (There are 230

samples plotted in each trace on each page.) You must physically move the pages on the top of

the stack to view the pages further down. The pages on the top of the stack represent the results

produced early in the adaptive process while those further down represent the results produced

later in the adaptive process.

The time series

The four time series that are plotted in the bottom graph are, from top to bottom (in the colors

indicated):

 (Black) The historical signal plus noise input to the adaptive prediction filter, shown as

x(k) in the block diagram.

 (Red) The signal plus noise target for the adaptive prediction filter shown as d(k) in the

block diagram.

 (Blue) The output from the adaptive prediction filter shown as y(k) in the block diagram.

 (Green) The prediction error, shown as e(k) in the block diagram. The prediction error is

the difference between the red target and the blue output from the adaptive prediction

filter. Ideally, the prediction error approaches zero as the process converges to a solution.

The printed program output

In addition to the graphic output, the program displays the quality of the prediction process and

the program parameters on the command-line screen as shown in Figure 2.

RMS target: 6.410217370961125

RMS error: 1.4675827349708308

Percent error: 22.894430095601994

feedbackGain: 1.0E-5

numberAdaptiveIterations: 9890

adaptiveFilterLength: 26

predictionDistance: 1

signalScale: 0.0

noiseScale: 87.5

bpFilterLength: 128

rmsAveragingLength: 9890

Figure 2

User input

User input is provided by way of command-line parameters. If no command-line parameters are

provided, default values are used for the program parameters.

The command-line parameters in order are:

1. double feedbackGain: The gain used in the adaptive feedback loop. The default value

is 0.00001.

2. int adaptiveFilterLength: The default value is 26.

http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576

3. int predictionDistance: The distance in the future, (measured in samples), that the

adaptive process attempts to predict the value of signal plus noise (target). The default

value is 1 sample.

4. double signalScale: The default value is 0. Adjust this and the following parameter to

adjust the signal-to-noise ratio, and also to cause the time-series plots to be in good

plotting range.

5. double noiseScale: The default value is 87.5.

6. int bandpassFilterLength: The length of the convolution filter that is applied to the raw

signal plus noise. This value must be less than or equal to 128. If it is greater than 128, it

is automatically set to 128.

Program testing

The program was tested using J2SE 5.0 and WinXP. J2SE 5.0 or later is required.

Experimental Results

Before getting into the program details, I'm going to show you some experimental results.

The bottom line at the beginning

As you will see from these experimental results, the ability to predict future values in a time

series tends to vary inversely with the bandwidth of the time series. Future values of narrow-

band time series can be predicted reasonably well. Future values of wide-band time series

cannot be predicted well at all.

I will begin by showing you results for the two extremes:

 A pure tone (narrow-band to the extreme).

 A white time series (wide-band to the extreme).

A pure tone

A pure tone has the narrowest band width of all time series (theoretically it has zero width). As

you will see, a pure tone in the absence of noise is totally predictable.

The results of applying the adaptive prediction process to a pure tone are shown in Figure 3 and

Figure 4.

Figure 3

The time series data

Going from top to bottom, Figure 3 shows the time series output for the first, second, and

thirteenth pages. (Recall that each trace on each page shows 230 samples of the time series

data.) The black trace shows the input to the adaptive filter and the red trace shows the

target. The blue trace shows the output from the adaptive filter. The green trace shows the error.

In the top page of Figure 3, the blue output is small and the green error is large. By the thirteenth

page, the blue output is almost an exact match for the red target and the green error has been

reduced to almost zero.

The numeric prediction error

The numeric prediction error (along with some other information) is shown in Figure 4.

RMS target: 8.838387896368511

RMS error: 0.0027504970625717136

Percent error: 0.031119895334100794

feedbackGain: 1.0E-5

numberAdaptiveIterations: 9890

adaptiveFilterLength: 3

predictionDistance: 6

signalScale: 12.5

noiseScale: 0.0

bpFilterLength: 1

rmsAveragingLength: 9890

Figure 4

As you can see in Figure 4, the prediction error was only 0.03-percent of the target.

The prediction distance

Also note in Figure 4 that the prediction distance is six samples. In other words, the adaptive

process was asked to design a convolution filter that can predict the value of a pure tone six

samples into the future.

The adaptive filter length

Also note that the adaptive filter contained only three coefficients in this scenario.

A somewhat pathological case

This is a case for which it is easy to develop a purely deterministic mathematical solution. All

that is required is the solution of a set of simultaneous equations that will produce a convolution

filter whose amplitude response is unity and whose phase response is a specified value at the

frequency of the tone.

The case of a pure tone in the total absence of noise rarely occurs in the real world. Thus, the

mathematical solution described above can produce undesirable results. While the amplitude

response can be forced to unity at a particular frequency by solving the simultaneous equations,

it is likely to be much larger than unity at other frequencies. If there is noise at those other

frequencies, that noise will be amplified in the output of the adaptive filter. A much more

realistic scenario is shown in Figure 5 and Figure 6.

A more realistic scenario

Figure 5 shows the results of applying the adaptive prediction process (with a three-coefficient

prediction filter) to a tone buried in white noise. The peak amplitude of the tone is ten times

greater than the peak amplitude of the noise. Figure 5 shows the same three pages that were

shown for the pure tone in Figure 3.

Figure 5

The error is not zero

As you can see, the green error is not zero in Figure 5. In fact, the error never goes to zero. As

shown in Figure 6, the prediction error is approximately ten percent of the target.

RMS target: 8.866400709397215

RMS error: 0.9514570545236098

Percent error: 10.731040539541494

feedbackGain: 1.0E-5

numberAdaptiveIterations: 9890

adaptiveFilterLength: 3

predictionDistance: 6

signalScale: 12.5

noiseScale: 1.25

bpFilterLength: 1

rmsAveragingLength: 9890

Figure 6

A mathematical solution

While there is a non-adaptive mathematical solution for this scenario, it is by no means a simple

one and it is not deterministic. The solution involves computing a cross-correlation function

between the signal plus noise and the target and then solving a matrix equation to compute the

coefficient values for the prediction filter.

Probably better behaved

The frequency response of the adaptive filter developed for this scenario is probably better

behaved than is the case for the pure tone shown in Figure 3. It is unlikely that the amplitude

response for this scenario will amplify the noise at frequencies other than the frequency of the

tone, at least not in significant ways. (This characteristic could be improved by using a longer

adaptive filter.)

Increased prediction error

On the other hand, the prediction error for this scenario is significantly greater than the

prediction error for the scenario involving the pure tone in the absence of noise.

(By the way, increasing the filter length for the scenario involving the pure tone

probably won't improve the final prediction error, but it may cause the adaptive

process to converge to a solution more quickly.)

Predictability of white noise

Now, let's take a look at the other extreme: white noise.

Figure 7 and Figure 8 show the results of applying the adaptive prediction process to white noise

produced by a random number generator.

Figure 7

The time series output

Figure 7 shows the time-series output at the beginning of the adaptive process and at the end of

9890 adaptive iterations.

(The bottom panel of Figure 7 shows the final 230 adaptive iterations ending at

iteration number 9890.)

As you can see, the blue output from the adaptive filter in the bottom panel of Figure 7 is very

nearly zero, and the green error hasn't been reduced at all. The error trace is simply an upside-

down version of the target trace.

The numeric prediction error

Figure 8 shows the prediction error to be about 100 percent.

RMS target: 7.195524462306129

RMS error: 7.225023010529711

Percent error: 100.40995688887043

feedbackGain: 1.0E-5

numberAdaptiveIterations: 9890

adaptiveFilterLength: 26

predictionDistance: 1

signalScale: 0.0

noiseScale: 12.5

bpFilterLength: 1

rmsAveragingLength: 9890

Figure 8

Conclusion

The conclusion is that white noise is not predictable, even over a prediction distance of only one

sample with an adaptive filter having 26 coefficients.

(If it were found to be predictable, that would indicate that the random number

generator used to produce the white noise doesn't really produce random

numbers after all.)

Predictability of narrow-band noise

So far, we have seen experimental results for the following three scenarios:

 A single-frequency tone.

 White noise.

 A single-frequency tone in white noise.

On the basis of those experiments, we have concluded:

 A single-frequency tone is totally predictable.

 White noise is totally unpredictable.

 A single-frequency tone in white noise is partially predictable, with the quality of the

prediction being a function of the signal-to-noise ratio.

These scenarios represented the extremes. Now let's look at some in-between scenarios

involving narrow-band time series for which the bandwidth is greater than a single

frequency. We will begin with a scenario where the bandwidth has been reduced to that shown

in the right panel of Figure 9.

Figure 9

The display format

The curve in the left panel of Figure 9 shows a convolution filter having two coefficients.

The top curve in the right panel shows the amplitude response of that convolution filter

computed and displayed from a frequency of zero to the Nyquist folding frequency. The bottom

curve in the right panel shows the phase response of the convolution filter.

Apply band pass filter to white noise

This convolution filter was applied to the white noise, producing an output time series having

approximately one-half the bandwidth of the white noise.

(Note that there are several different ways to measure bandwidth. This estimate

is based on the width of the lobe between the three-db down points in the

amplitude response.)

The time series data

The adaptive prediction process was applied to this time series in an attempt to predict the value

of the time series with a prediction distance of one sample and an adaptive filter length of 26

coefficients. The results are shown in Figure 10 and Figure 11.

Figure 10

The top panel in Figure 10 shows the time series at the beginning of the run. The bottom panel

shows the time series ending at adaptive iteration number 9890. As you can see in the bottom

panel of Figure 9, the blue output trace from the adaptive filter does look something like the red

target trace. The green error trace in the bottom panel is smaller than the green output trace at

the beginning of the run in the top panel.

The numeric prediction error

As shown in Figure 11, the prediction error was reduced from 100 percent for white noise to

about 82 percent for this scenario. Reducing the bandwidth of the white noise caused the time

series to become partially predictable.

RMS target: 8.889476886391076

RMS error: 7.3078201913053915

Percent error: 82.20753914657176

feedbackGain: 1.0E-5

numberAdaptiveIterations: 9890

adaptiveFilterLength: 26

predictionDistance: 1

signalScale: 0.0

noiseScale: 12.5

bpFilterLength: 2

rmsAveragingLength: 9890

Figure 11

Bandwidth at one-sixteenth of white noise

Figure 12, Figure 13, and Figure 14 show the results of applying the adaptive prediction process

to a time series having a bandwidth approximately equal to one-sixteenth of the bandwidth of the

white noise shown in Figure 7.

Figure 12

The left panel in Figure 12 shows the impulse response of a convolution filter having sixteen

coefficients in the form of a truncated sinusoid. The right panel in Figure 12 shows the

frequency response of the convolution filter computed and displayed from a frequency of zero to

the Nyquist folding frequency. The bandwidth of the filter is approximately one-sixteenth of the

bandwidth of the white noise shown in Figure 7 when measured at the three-db down points.

Apply the band pass filter

The filter shown in Figure 12 was applied to the white noise producing the time series shown in

the top trace in each panel of Figure 13.

Figure 13

The time series output

This time series was subjected to the adaptive prediction process with a prediction distance of

one sample and an adaptive filter length of 26 coefficients, producing the results shown in Figure

13 and Figure 14.

The top panel in Figure 13 shows the time series at the beginning of the run. The bottom panel

shows the time series at the end of 9890 adaptive iterations. As you can see, the blue output

trace from the prediction filter is a reasonably good representation of the red target trace in the

bottom panel of Figure 13. Also, the green error trace in the bottom panel is much smaller than

the green error trace at the beginning of the run in the top panel.

The numeric prediction error

In fact, this reduction in bandwidth caused the prediction error to be reduced to about forty-six

percent as shown in Figure 14.

RMS target: 7.490714340573816

RMS error: 3.479276931459588

Percent error: 46.447865627633355

feedbackGain: 1.0E-5

numberAdaptiveIterations: 9890

adaptiveFilterLength: 26

predictionDistance: 1

signalScale: 0.0

noiseScale: 37.5

bpFilterLength: 16

rmsAveragingLength: 9890

Figure 14

Predictability of a very narrow-band time series

Let's examine one more set of experimental results. These are the results produced by the default

program parameters that are used if the user doesn't provide the appropriate number of

command-line parameters.

For this experiment, we will reduce the bandwidth to approximately 1/128 of the bandwidth of

the white noise shown in Figure 7.

The band pass filter

Figure 15 shows the convolution filter having 128 coefficients.

Figure 15

Figure 16 shows the frequency response of the convolution filter, computed and displayed from a

frequency of zero to the Nyquist folding frequency.

Figure 16

Apply the band pass filter

As you can see, the bandwidth of this filter is quite narrow, as compared to Figure 12, for

example. This filter was applied to white noise, producing the top (black) trace in both panels of

Figure 17.

Figure 17

As before, the top panel in Figure 17 shows the time series at the beginning of the run. The

bottom panel shows the time series at the end of 9890 adaptive iterations. The output from the

adaptive filter (blue) is a good replica of the target (red). Thus, the green error trace is quite

small.

The numeric prediction error

Figure 18 shows that this reduction in bandwidth resulted in a reduction in the prediction error to

about 23 percent.

RMS target: 6.482512172567318

RMS error: 1.4847104556284205

Percent error: 22.903319208738477

feedbackGain: 1.0E-5

numberAdaptiveIterations: 9890

adaptiveFilterLength: 26

predictionDistance: 1

signalScale: 0.0

noiseScale: 87.5

bpFilterLength: 128

rmsAveragingLength: 9890

Figure 18

An exercise for the student

This is the longest convolution filter (128 coefficients) that is supported by the program in its

current state. However, this limitation has nothing to do with the process of applying the filter to

the noise. Rather, it has to do with the method named displayFreqResponse that is used to

compute and display the frequency response of the filter. As an exercise, you may find it

interesting to eliminate that limitation and observe how the prediction error behaves as you use

longer and longer convolution filters (narrower and narrower bandwidth).

Probably the easiest way to eliminate the limitation of 128 filter coefficients would be to disable

the call to the method named displayFreqResponse and simply forego the computation and

display of the frequency response. By now, you should have a pretty good idea how the

frequency response behaves as you increase the length of the convolution filter anyway.

(In addition, you will need to disable the code that limits the filter length to 128

when you enter a command-line parameter greater than 128.)

That's it for experimental results. I recommend that you do some experimentation on your own

to gain a better understanding as to how the predictability behaves with respect to the various

program parameters.

Now let's see some code.

Discussion and Sample Code

The class named Adapt09

The class named Adapt09 is presented in its entirety in Listing 14 near the end of the lesson.

I will discuss the program in fragments. The beginning of the class named Adapt09 and the

beginning of the main method are shown in Listing 1.

class Adapt09{

 public static void main(String[] args){

 //Default parameter values

 double feedbackGain = 0.00001;

 int numberAdaptiveIterations = 9890;//fixed value

 int adaptiveFilterLength = 26;

 int predictionDistance = 1;

 double signalScale = 0;

 double noiseScale = 87.5;

 int bpFilterLength = 128;//Must be <= 128.

 int rmsAveragingLength = 9890;//fixed value

 if(args.length == 6){

 //Get and save command-line parameters.

 feedbackGain = Double.parseDouble(args[0]);

 adaptiveFilterLength = Integer.parseInt(args[1]);

 predictionDistance = Integer.parseInt(args[2]);

 signalScale = Double.parseDouble(args[3]);

 noiseScale = Double.parseDouble(args[4]);

 bpFilterLength = Integer.parseInt(args[5]);

 if(bpFilterLength > 128){

 //Make sure this value is not greater than 128.

 bpFilterLength = 128;

 System.out.println(

 "bpFilterLength must be <=

128");

 System.out.println("Using bpFilterLength = 128");

 }//end if

 }else{

 System.out.println(

 "Using default program

parameters.");

 }//end else

Listing 1

All of the code in Listing 1 is straightforward and shouldn't require explanation beyond the

comments embedded in the code.

Create the band pass filter

The code in Listing 2:

 Creates an array object suitable for storing the band pass filter.

 Creates an object of the Adapt09 class, making it possible to call a method of that class

to get the convolution filter coefficients for the band pass filter.

 Iteratively invokes the method named getCosine to get the filter coefficients and store

them in the array mentioned above.

 //Create an array object to store the bandpass filter

 // coefficients.

 double[] bpFilterOperator = new

double[bpFilterLength];

 //Instantiate a new object of the Adapt09 class.

 Adapt09 thisObject = new Adapt09();

 //Prepare the bandpass filter,which is a truncated

 // sinusoid with a frequency of one-eighth of the

 // sampling frequency.

 for(int cnt = 0;cnt < bpFilterLength;cnt++){

 bpFilterOperator[cnt] = thisObject.getCosine(cnt);

 }//end for loop

Listing 2

The getCosine method

For every scenario, the band pass filter is simply a truncated cosine function with a frequency

that is one-eighth of the sampling frequency. Thus, the coefficient values repeat with eight

coefficient values occurring during each cycle of the cosine function.

The source code for the getCosine method is shown in Listing 14 near the end of the

lesson. That code is straightforward and shouldn't require further explanation.

The remainder of the main method

The remainder of the main method is shown in Listing 3.

 //Invoke the method named process.

 thisObject.process(feedbackGain,

 numberAdaptiveIterations,

 rmsAveragingLength,

 adaptiveFilterLength,

 signalScale,

 noiseScale,

 bpFilterOperator,

 predictionDistance);

 //Display program parameters at the end of the run.

 System.out.println("\nfeedbackGain: " + feedbackGain);

 System.out.println("numberAdaptiveIterations: "

 +

numberAdaptiveIterations);

 System.out.println("adaptiveFilterLength: "

 +

adaptiveFilterLength);

 System.out.println("predictionDistance: "

 +

predictionDistance);

 System.out.println("signalScale: " + signalScale);

 System.out.println("noiseScale: " + noiseScale);

 System.out.println("bpFilterLength: "

 +

bpFilterLength);

 System.out.println("rmsAveragingLength: "

 +

rmsAveragingLength);

 }//end main

Listing 3

The code in Listing 3 invokes the process method of the Adapt09 class, where all the hard work

is done. When the process method returns, the code in Listing 3 displays some summary

information (see Figure 18 for example) and terminates the program.

The process method

Listing 4 shows the beginning of the process method.

 void process(double feedbackGain,

 int numberAdaptiveIterations,

 int rmsAveragingLength,

 int adaptiveFilterLength,

 double signalScale,

 double noiseScale,

 double[] bpFilterOperator,

 int predictionDistance){

 //Display the bandpassFilterOperator

 //First instantiate a plotting object.

 PlotALot01 bpFilterPlotObj = new PlotALot01(

 "Noise Filter Operator",

 (bpFilterOperator.length * 2) +

8,148,70,2,0,0);

 //Feed the data to the plotting object.

 for(int cnt = 0;cnt < bpFilterOperator.length;cnt++){

 bpFilterPlotObj.feedData(40*bpFilterOperator[cnt]);

 }//end for loop

 //Cause the graph to be displayed on the computer

 // screen in the upper left corner.

 bpFilterPlotObj.plotData(0,0);

 //Now compute and plot the frequency response of the

 // bandpass filter.

 //Instantiate a plotting object for two channels of

 // frequency response data. One channel is for

 // the amplitude and the other channel is for the

 // phase.

 PlotALot03 bpFilterFreqPlotObj = new PlotALot03(

 "Noise Filter Freq

Response",264,148,35,2,0,0);

 //Compute the frequency response and feed the results

 // to the plotting object.

 displayFreqResponse(

bpFilterOperator,bpFilterFreqPlotObj,128,0);

 //Cause the frequency response data stored in the

 // plotting object to be displayed on the screen in

 // the middle position.

 bpFilterFreqPlotObj.plotData(0,148);

Listing 4

All of the code in Listing 4 is the same as, or very similar to code that has been previously

explained in lessons referred to in the References section of this lesson. Therefore, it shouldn't

be necessary to provide further explanation of that code beyond the comments contained in

Listing 4.

Two delay lines

Listing 5 instantiates an array object that will be used as a delay line for the signal plus white

noise data in order to convolve the samples with the band pass filter later.

 double[] whiteNoiseDelayLine =

 new

double[bpFilterOperator.length];

Listing 5

Note that the length of the delay line is determined by the length of the array created earlier and

referred to by the reference variable named bpFilterOperator. In other words, the length of the

delay line matches the length of the convolution operator used to implement the band pass

filter. The length of the convolution filter is a user input parameter.

Listing 6 instantiates an array object that will be used as a delay line for the filtered signal plus

noise data. This delay line is used to obtain a target sample that is advanced in time relative to

the data that is used to predict the target. The target sample is advanced in time by a number of

samples equal to predictionDistance.

 double[] signalPlusNoiseDelayLine =

 new double[predictionDistance +

1];

Listing 6

The delay line created in Listing 6 corresponds to the box labeled Delay in the block diagram.

A plotting object and working variables

Listing 7 instantiates a plotting object that will be used to plot the four channels of time-series

data shown in Figure 3. This code is similar to code that was explained in previous lessons

referred to in the References section of this lesson.

 //Instantiate a plotting object for four channels of

 // time-series data at 230 samples per page.

 int sampPerPage = 230;

 PlotALot05 timePlotObj = new PlotALot05(

 "Time-Domain Adaptive Data",

 (2*sampPerPage +

8),148,25,2,0,0);

 //Declare and initialize working variables.

 double output = 0;

 double err = 0;

 double target = 0;

 double input = 0;

 double signal = 0;

 double whiteNoise = 0;

 boolean adaptOn;

 double targetSumSq = 0;

 double errSumSq = 0;

Listing 7

Listing 7 also declares and initializes some working variables.

None of the code in Listing 7 should require further explanation.

An adaptive engine object

http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576

Listing 8 instantiates an object of the class named AdaptEngine02 to handle the adaptive

behavior of this program. This class was explained earlier in the lesson titled Adaptive

Identification and Inverse Filtering using Java. That explanation won't be repeated here.

 AdaptEngine02 adapter = new AdaptEngine02(

adaptiveFilterLength,feedbackGain);

Listing 8

The object of the AdaptEngine02 class represents the shaded portion of the block diagram.

Perform adaptive iterations

Listing 9 contain the beginning of a for loop that is used to perform the required number of

iterations. The required number of iterations is the sum of the specified number of adaptive

iterations plus the non-adaptive iterations that are used to compute the percent error after the

adaptive update process is disabled.

 for(int cnt = 0;

 cnt < numberAdaptiveIterations +

rmsAveragingLength;

cnt++){

Listing 9

Routine processing steps

Listing 10 performs a number of routine processing steps. These steps are either completely

straightforward, or are very similar to code that has been explained in previous lessons, which

are referred to in the References section of this lesson. Therefore, no explanation beyond the

embedded comments will be provided in this lesson.

 //The following variable is used to control whether

 // or not the adapt method of the adaptive engine

 // updates the filter coefficients when it is

called.

 // The filters are updated when this variable is

 // true and are not updated when this variable is

 // false.

 adaptOn = true;

 //Get and scale the next sample of white noise data

 // from a random number generator. Before scaling by

 // noiseScale, the values are uniformly distributed

 // from -1.0 to 1.0.

 whiteNoise = noiseScale*(2*(random() - 0.5));

http://cnx.org/content/m49852/latest/?collection=col11642/latest
http://cnx.org/content/m49852/latest/?collection=col11642/latest
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576

 //Get and scale the next sample of signal. The

 // signal is a pure tone with a frequency equal to

 // one-eighth of the sampling frequency. Before

 // scaling by signalScale, the peak-to-peak value

 // is 2.

 signal = signalScale * getCosine(cnt);

 //Insert the signal plus white noise data into the

 // delay line that will be used to convolve the

 // signal plus white noise data with the bandpass

 // filter.

 double signalPlusNoise = whiteNoise + signal;

 flowLine(whiteNoiseDelayLine,signalPlusNoise);

 //Declare a variable to receive the filtered signal

 // plus noise sample.

 double filteredSignalPlusNoise = 0;

 //Apply the bandpass filter operator to the signal

 // plus white noise data. If the filter length is

1,

 // bypass the filtering operation and use the raw

 // signal plus white noise.

 if(bpFilterOperator.length == 1){

 filteredSignalPlusNoise = signalPlusNoise;

 }else{

 filteredSignalPlusNoise = reverseDotProduct(

 whiteNoiseDelayLine,

bpFilterOperator)/(bpFilterOperator.length/2.0);

 }//end else

 //Insert the filtered signal plus noise into the

 // delay line that is used to obtain a time-advanced

 // sample of the target.

 flowLine(

signalPlusNoiseDelayLine,filteredSignalPlusNoise);

 //Declare a variable that will be populated with the

 // results returned by the adapt method of the

 // adaptive engine.

 AdaptiveResult result = null;

 //Disable adaptive updates when the specified number

 // of adaptive iterations has been performed.

 if(cnt > numberAdaptiveIterations){

 adaptOn = false;

 }//end if

Listing 10

Perform the adaptive processing

The most important code in this class is contained in Listing 11. This code establishes the

appropriate input values and invokes the adapt method of the AdaptEngine02 object to perform

the adaptive updates to the adaptive filter coefficients.

 input = signalPlusNoiseDelayLine[0];//historical

samp

 target =

signalPlusNoiseDelayLine[predictionDistance];

 result = adapter.adapt(input,target,adaptOn);

Listing 11

Just to get our bearings, input in Listing 11 corresponds to x(k) in the block diagram. Similarly,

target in Listing 11 corresponds to d(k) in the block diagram.

The oldest data in the delay line referred to by signalPlusNoiseDelayLine in Listing 11 is the

data value at index 0.

The newest data in the delay line is the data value at an index value of predictionDistance. (The

length of the delay line is predictionDistance + 1.)

Thus, the oldest value in the delay line is fed into the adaptive filter as x(k) in the block

diagram. The newest value in the delay line is used to compute the prediction error as shown by

d(k) in the block diagram. As a result, the LMS algorithm attempts to develop an adaptive

convolution filter that will act on the incoming time series to predict the value of a sample that is

predictionDistance samples in the future.

Complete the for loop

Listing 12 completes the for loop that controls the required number of iterations.

 //Get and save adaptive results.

 output = result.output;

 err = result.err;

 //Compute values that will be used later to compute

 // the percent error. This computation is performed

 // only after adaptive updates have been disabled.

 if(!adaptOn){

 //Accumulate the sum of the squares of the target

 // and error values.

 targetSumSq += target * target;

 errSumSq += err * err;

 }//end if

 //Feed the time series data to the plotting object.

 // Plot only two pages of data after adaptive

updates

 // are disabled.

http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576
http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/adaptiv8.html#5576

 if(cnt <= numberAdaptiveIterations + 2*sampPerPage){

 timePlotObj.feedData(input,target,output,err);

 }//end if

 }//End for loop on required number of iterations.

Listing 12

The code in Listing 12 is straightforward and shouldn't require an explanation beyond the

embedded comments.

Complete the adapt method

Listing 13 shows the remaining code in the adapt method of the AdaptEngine02 object.

 //Compute and display the mean square values

 double rmsTarget =

sqrt(targetSumSq/rmsAveragingLength);

 double rmsError = sqrt(errSumSq/rmsAveragingLength);

 System.out.println("\nRMS target: " + rmsTarget);

 System.out.println("RMS error: " + rmsError);

 System.out.println(

 "Percent error: " +

100.0*(rmsError)/(rmsTarget));

 //Cause the data stored in the plotting object to be

 // plotted.

 timePlotObj.plotData(0,296);

 }//end process method

Listing 13

This code is straightforward and shouldn't require further explanation.

Run the Program

I encourage you to copy the code for the class named Adapt09 from the section titled Complete

Program Listings. Compile and execute the program. Experiment with the code. Make changes

to the code, recompile, execute, and observe the results of your changes.

Modify the following program parameters and observe the results of your changes. See if you

can explain the results of your changes.

 feedbackGain

 adaptiveFilterLength

 predictionDistance

 signalScale

 noiseScale

 bandpassFilterLength

For example, what happens if you use a large value for feedbackGain? What happens if you use

a very small value for feedbackGain? What happens if you use a negative value for

feedbackGain? Can you explain the results that you experience?

What happens if you use a large value for predictionDistance?

In particular I encourage you to make the changes suggested in the section titled An exercise for

the student and evaluate the results of those changes.

Other classes required

In addition to the class named Adapt09, you will need access to the following classes. The

source code for these classes can be found in the lessons indicated.

 AdaptEngine02: Adaptive Identification and Inverse Filtering using Java

 AdaptiveResult: Adaptive Identification and Inverse Filtering using Java

 ForwardRealToComplex01: Spectrum Analysis using Java, Sampling Frequency,

Folding Frequency, and the FFT Algorithm

 PlotALot01: Plotting Large Quantities of Data using Java

 PlotALot03: Plotting Large Quantities of Data using Java

 PlotALot05: Adaptive Filtering in Java, Getting Started

Summary

In this lesson, I showed you how to use a Java adaptive filter to predict future values in a time

series. I also introduced you to the relationship between the properties of the time series and the

quality of the prediction.

References

In preparation for understanding the material in this lesson, I recommend that you study the

material in the following previously-published lessons:

 100 Periodic Motion and Sinusoids

 104 Sampled Time Series

 108 Averaging Time Series

 1478 Fun with Java, How and Why Spectral Analysis Works

 1482 Spectrum Analysis using Java, Sampling Frequency, Folding Frequency, and the

FFT Algorithm

 1483 Spectrum Analysis using Java, Frequency Resolution versus Data Length

 1484 Spectrum Analysis using Java, Complex Spectrum and Phase Angle

http://cnx.org/content/m49852/latest/?collection=col11642/latest
http://cnx.org/content/m49852/latest/?collection=col11642/latest
http://cnx.org/content/m49796/latest/?collection=col11642/latest
http://cnx.org/content/m49796/latest/?collection=col11642/latest
http://cnx.org/content/m49805/latest/?collection=col11642/latest
http://cnx.org/content/m49805/latest/?collection=col11642/latest
http://cnx.org/content/m49840/latest/?collection=col11642/latest

 1485 Spectrum Analysis using Java, Forward and Inverse Transforms, Filtering in the

Frequency Domain

 1487 Convolution and Frequency Filtering in Java

 1488 Convolution and Matched Filtering in Java

 1492 Plotting Large Quantities of Data using Java

 2350 Adaptive Filtering in Java, Getting Started

 2352 An Adaptive Whitening Filter in Java

 2354 A General-Purpose LMS Adaptive Engine in Java

 2356 An Adaptive Line Tracker in Java

 2358 Adaptive Identification and Inverse Filtering using Java

 2360 Adaptive Noise Cancellation using Java

Links to the lessons in the above list are available at Digital Signal Processing-DSP.

Complete Program Listings

A complete listings of the class discussed in this lesson is shown in Listing 14 below.

/*File Adapt09.java

Copyright 2005, R.G.Baldwin

The purpose of this program is to illustrate an adaptive

prediction system. The user can experiment with adaptive

prediction by making changes to the following parameters

and observing printed and graphic results:

feedbackGain

adaptiveFilterLength

predictionDistance

signalScale

noiseScale

bandpassFilterLength (and hence bandwidth)

See the following URL for a brief description and a block

diagram of an adaptive prediction system.

http://www.mathworks.com/access/helpdesk/help/toolbox/

filterdesign/adaptiv8.html#5576

This program requires the following classes:

Adapt09.class

AdaptEngine02.class

AdaptiveResult.class

ForwardRealToComplex01.class

PlotALot01.class

PlotALot03.class

PlotALot05.class

This program uses the adaptive engine named AdaptEngine02

to adaptively develop a convolution prediction filter. One

of the inputs to the adaptive engine is the current sample

http://cnx.org/content/col11642/latest/

of the sum of signal plus noise. This is the target of the

prediction process. The other input to the adaptive engine

is an historical sample of signal plus noise.

The adaptive engine develops a convolution filter that

attempts to use historical signal plus noise samples to

predict the value of the current sample of signal plus

noise (target). Thus, the program attempts to adaptively

develop a convolution filter that can operate on a time

series to predict a future value of the time series. The

distance in time to the future value is a user input

parameter.

The program performs 9890 iterations during which the

convolution filter coefficients are adaptively updated.

Then the adaptive update process is disabled. The program

then performs 9890 more iterations during which the

quality of the prediction is measured and reported.

The quality of the prediction is measured by:

1. Computing the RMS value of the target averaged over

9890 samples.

2. Computing the RMS value of the prediction error

averaged over 9890 samples.

3. Computing the percentage of the RMS target value

represented by the RMS error.

The signal consists of a pure tone at a frequency that is

one eighth of the sampling frequency (eight samples per

cycle). The peak-to-peak value of the signal prior to

scaling is 2.

The noise consists of white noise produced by a random

number generator with a uniform distribution between

-1.0 and 1.0 prior to scaling.

The scaled signal is added to the scaled white noise.

The sum of signal plus white noise can be passed through a

bandpass filter with a center frequency equal to one-

eighth of the sampling frequency. The center frequency of

the bandpass filter is the same as the frequency of the

signal.

Thus, the signal plus noise consists of a pure tone

surrounded by noise for which the noise bandwidth can be

controlled by the user. The frequency band for the noise

is centered on the signal frequency. The user controls the

signal level and the noise level, and hence the

signal-to-noise ratio.

The bandpass filter consists of a convolution filter in the

form of a truncated sinusoid with a frequency of one-eighth

of the sampling frequency. The user specifies the length

of the convolution filter, (up to a limit of 128

coefficients), thereby specifying the bandwidth which is

roughly proportional to the reciprocal of the length of the

convolution filter. The shape of the amplitude response of

the pass band for the filter is roughly that of

a sin(x)/x function.

The program produces three graphs in a vertical stack on

the screen. The graphs display the following information

in order from top to bottom:

1. The bandpass convolution filter used to filter the raw

signal plus noise.

2. The frequency response of the bandpass filter used to

filter the raw signal plus noise.

3. Four traces of adaptive time-series data.

Graph 3 consists of multiple pages stacked on top of one

another. You must move the pages on the top of the stack

to view the pages further down. The pages on the top of

the stack represent the results produced early in the

adaptive process while those further down represent the

results produced later in the adaptive process.

The four time series that are plotted are, from top to

bottom in the colors indicated:

1. (Black) The historical signal plus noise input to the

adaptive prediction filter.

2. (Red) The signal plus noise target for the adaptive

prediction filter.

3. (Blue) The output from the adaptive prediction filter.

4. (Green) The error, which is the difference between the

red target and the blue output from the adaptive

prediction filter. Ideally, this trace approaches zero as

the process converges to a solution.

User input is provided by way of command-line parameters.

If no command-line parameters are provided, default values

are used for the program parameters. The command-line

parameters in order are:

1. double feedbackGain: The gain used in the adaptive

feedback loop. The default value is 0.00001.

2. int adaptiveFilterLength: The default value is 26.

3. int predictionDistance: The distance in the future,

(measured in samples), that the adaptive process attempts

to predict the value of signal plus noise (target). The

default value is 1 sample.

4. double signalScale: The default value is 0. Adjust

this and the following parameter to adjust the signal to

noise ratio, and also to cause the time-series plots to be

in good plotting range.

5. double noiseScale: The default value is 87.5.

6. int bandpassFilterLength: The length of the

convolution filter that is applied to the raw signal plus

noise. This value must be less than or equal to 128. If

it is greater than 128, it is automatically set to 128.

Tested using J2SE 5.0 and WinXP. J2SE 5.0 or later is

required.

**/

import static java.lang.Math.*;//J2SE 5.0 req

class Adapt09{

 public static void main(String[] args){

 //Default parameter values

 double feedbackGain = 0.00001;

 int numberAdaptiveIterations = 9890;//fixed value

 int adaptiveFilterLength = 26;

 int predictionDistance = 1;

 double signalScale = 0;

 double noiseScale = 87.5;

 int bpFilterLength = 128;//Must be <= 128.

 int rmsAveragingLength = 9890;//fixed value

 if(args.length == 6){

 //Get and save command-line parameters.

 feedbackGain = Double.parseDouble(args[0]);

 adaptiveFilterLength = Integer.parseInt(args[1]);

 predictionDistance = Integer.parseInt(args[2]);

 signalScale = Double.parseDouble(args[3]);

 noiseScale = Double.parseDouble(args[4]);

 bpFilterLength = Integer.parseInt(args[5]);

 if(bpFilterLength > 128){

 //Make sure this value is not greater than 128.

 bpFilterLength = 128;

 System.out.println(

 "bpFilterLength must be <= 128");

 System.out.println("Using bpFilterLength = 128");

 }//end if

 }else{

 System.out.println(

 "Using default program parameters.");

 }//end else

 //Create an array object to store the bandpass filter

 // coefficients.

 double[] bpFilterOperator = new double[bpFilterLength];

 //Instantiate a new object of the Adapt09 class.

 Adapt09 thisObject = new Adapt09();

 //Prepare the bandpass filter,which is a truncated

 // sinusoid with a frequency of one-eighth of the

 // sampling frequency.

 for(int cnt = 0;cnt < bpFilterLength;cnt++){

 bpFilterOperator[cnt] = thisObject.getCosine(cnt);

 }//end for loop

 //Invoke the method named process.

 thisObject.process(feedbackGain,

 numberAdaptiveIterations,

 rmsAveragingLength,

 adaptiveFilterLength,

 signalScale,

 noiseScale,

 bpFilterOperator,

 predictionDistance);

 //Display program parameters at the end of the run.

 System.out.println("\nfeedbackGain: " + feedbackGain);

 System.out.println("numberAdaptiveIterations: "

 + numberAdaptiveIterations);

 System.out.println("adaptiveFilterLength: "

 + adaptiveFilterLength);

 System.out.println("predictionDistance: "

 + predictionDistance);

 System.out.println("signalScale: " + signalScale);

 System.out.println("noiseScale: " + noiseScale);

 System.out.println("bpFilterLength: "

 + bpFilterLength);

 System.out.println("rmsAveragingLength: "

 + rmsAveragingLength);

 }//end main

 //---//

 //This is the primary adaptive processing and plotting

 // method for the program.

 void process(double feedbackGain,

 int numberAdaptiveIterations,

 int rmsAveragingLength,

 int adaptiveFilterLength,

 double signalScale,

 double noiseScale,

 double[] bpFilterOperator,

 int predictionDistance){

 //Display the bandpassFilterOperator

 //First instantiate a plotting object.

 PlotALot01 bpFilterPlotObj = new PlotALot01(

 "Noise Filter Operator",

 (bpFilterOperator.length * 2) + 8,148,70,2,0,0);

 //Feed the data to the plotting object.

 for(int cnt = 0;cnt < bpFilterOperator.length;cnt++){

 bpFilterPlotObj.feedData(40*bpFilterOperator[cnt]);

 }//end for loop

 //Cause the graph to be displayed on the computer

 // screen in the upper left corner.

 bpFilterPlotObj.plotData(0,0);

 //Now compute and plot the frequency response of the

 // bandpass filter.

 //Instantiate a plotting object for two channels of

 // frequency response data. One channel is for

 // the amplitude and the other channel is for the

 // phase.

 PlotALot03 bpFilterFreqPlotObj = new PlotALot03(

 "Noise Filter Freq Response",264,148,35,2,0,0);

 //Compute the frequency response and feed the results

 // to the plotting object.

 displayFreqResponse(

 bpFilterOperator,bpFilterFreqPlotObj,128,0);

 //Cause the frequency response data stored in the

 // plotting object to be displayed on the screen in

 // the middle position.

 bpFilterFreqPlotObj.plotData(0,148);

 //Instantiate an array object that will be used as a

 // delay line for the signal plus white noise data in

 // order to convolve the samples with the bandpass

 // filter.

 double[] whiteNoiseDelayLine =

 new double[bpFilterOperator.length];

 //Instantiate an array object that will be used as a

 // delay line for the filtered signal plus noise data.

 // This delay line is used to obtain a target sample

 // advanced in time relative to the data that is used

 // to predict the target. The target sample is

 // advanced in time by a number of samples equal to

 // predictionDistance.

 double[] signalPlusNoiseDelayLine =

 new double[predictionDistance + 1];

 //Instantiate a plotting object for four channels of

 // time-series data at 230 samples per page.

 int sampPerPage = 230;

 PlotALot05 timePlotObj = new PlotALot05(

 "Time-Domain Adaptive Data",

 (2*sampPerPage + 8),148,25,2,0,0);

 //Declare and initialize working variables.

 double output = 0;

 double err = 0;

 double target = 0;

 double input = 0;

 double signal = 0;

 double whiteNoise = 0;

 boolean adaptOn;

 double targetSumSq = 0;

 double errSumSq = 0;

 //Instantiate an object to handle the adaptive behavior

 // of the program.

 AdaptEngine02 adapter = new AdaptEngine02(

 adaptiveFilterLength,feedbackGain);

 //Perform the specified number of iterations. This is

 // the sum of the specified number of adaptive

 // iterations plus the non-adaptive iterations that are

 // used to compute the percent error after the adaptive

 // update process is disabled.

 for(int cnt = 0;

 cnt < numberAdaptiveIterations + rmsAveragingLength;

 cnt++){

 //The following variable is used to control whether

 // or not the adapt method of the adaptive engine

 // updates the filter coefficients when it is called.

 // The filters are updated when this variable is

 // true and are not updated when this variable is

 // false.

 adaptOn = true;

 //Get and scale the next sample of white noise data

 // from a random number generator. Before scaling by

 // noiseScale, the values are uniformly distributed

 // from -1.0 to 1.0.

 whiteNoise = noiseScale*(2*(random() - 0.5));

 //Get and scale the next sample of signal. The

 // signal is a pure tone with a frequency equal to

 // one-eighth of the sampling frequency. Before

 // scaling by signalScale, the peak-to-peak value

 // is 2.

 signal = signalScale * getCosine(cnt);

 //Insert the signal plus white noise data into the

 // delay line that will be used to convolve the

 // signal plus white noise data with the bandpass

 // filter.

 double signalPlusNoise = whiteNoise + signal;

 flowLine(whiteNoiseDelayLine,signalPlusNoise);

 //Declare a variable to receive the filtered signal

 // plus noise sample.

 double filteredSignalPlusNoise = 0;

 //Apply the bandpass filter operator to the signal

 // plus white noise data. If the filter length is 1,

 // bypass the filtering operation and use the raw

 // signal plus white noise.

 if(bpFilterOperator.length == 1){

 filteredSignalPlusNoise = signalPlusNoise;

 }else{

 filteredSignalPlusNoise = reverseDotProduct(

 whiteNoiseDelayLine,

 bpFilterOperator)/(bpFilterOperator.length/2.0);

 }//end else

 //Insert the filtered signal plus noise into the

 // delay line that is used to obtain a time-advanced

 // sample of the target.

 flowLine(

 signalPlusNoiseDelayLine,filteredSignalPlusNoise);

 //Declare a variable that will be populated with the

 // results returned by the adapt method of the

 // adaptive engine.

 AdaptiveResult result = null;

 //Disable adaptive updates when the specified number

 // of adaptive iterations has been performed.

 if(cnt > numberAdaptiveIterations){

 adaptOn = false;

 }//end if

 //Establish the appropriate input values and perform

 // the adaptive updates to the adaptive filter

 // coefficients.

 input = signalPlusNoiseDelayLine[0];//historical samp

 target =

 signalPlusNoiseDelayLine[predictionDistance];

 result = adapter.adapt(input,target,adaptOn);

 //Get and save adaptive results.

 output = result.output;

 err = result.err;

 //Compute values that will be used later to compute

 // the percent error. This computation is performed

 // only after adaptive updates have been disabled.

 if(!adaptOn){

 //Accumulate the sum of the squares of the target

 // and error values.

 targetSumSq += target * target;

 errSumSq += err * err;

 }//end if

 //Feed the time series data to the plotting object.

 // Plot only two pages of data after adaptive updates

 // are disabled.

 if(cnt <= numberAdaptiveIterations + 2*sampPerPage){

 timePlotObj.feedData(input,target,output,err);

 }//end if

 }//End for loop on required number of iterations.

 //Compute and display the mean square values

 double rmsTarget =

 sqrt(targetSumSq/rmsAveragingLength);

 double rmsError = sqrt(errSumSq/rmsAveragingLength);

 System.out.println("\nRMS target: " + rmsTarget);

 System.out.println("RMS error: " + rmsError);

 System.out.println(

 "Percent error: " + 100.0*(rmsError)/(rmsTarget));

 //Cause the data stored in the plotting object to be

 // plotted.

 timePlotObj.plotData(0,296);

 }//end process method

 //---//

 //This method simulates a tapped delay line. It receives

 // a reference to an array and a value. It discards the

 // value at index 0 of the array, moves all the other

 // values by one element toward 0, and inserts the new

 // value at the top of the array.

 void flowLine(double[] line,double val){

 for(int cnt = 0;cnt < (line.length - 1);cnt++){

 line[cnt] = line[cnt+1];

 }//end for loop

 line[line.length - 1] = val;

 }//end flowLine

 //---//

 void displayFreqResponse(

 double[] filter,PlotALot03 plot,int len,int zeroTime){

 //Create the arrays required by the Fourier Transform.

 double[] timeDataIn = new double[len];

 double[] realSpect = new double[len];

 double[] imagSpect = new double[len];

 double[] angle = new double[len];

 double[] magnitude = new double[len];

 //Copy the filter into the timeDataIn array

 System.arraycopy(filter,0,timeDataIn,0,filter.length);

 //Compute DFT of the filter from zero to the folding

 // frequency and save it in the output arrays.

 ForwardRealToComplex01.transform(timeDataIn,

 realSpect,

 imagSpect,

 angle,

 magnitude,

 zeroTime,

 0.0,

 0.5);

 //Find the absolute peak value. Begin with a negative

 // peak value with a large magnitude and replace it

 // with the largest magnitude value.

 double peak = -9999999999.0;

 for(int cnt = 0;cnt < magnitude.length;cnt++){

 if(peak < abs(magnitude[cnt])){

 peak = abs(magnitude[cnt]);

 }//end if

 }//end for loop

 //Normalize to 20 times the peak value

 for(int cnt = 0;cnt < magnitude.length;cnt++){

 magnitude[cnt] = 20*magnitude[cnt]/peak;

 }//end for loop

 //Now feed the normalized data to the plotting

 // object.

 for(int cnt = 0;cnt < magnitude.length;cnt++){

 plot.feedData(magnitude[cnt],angle[cnt]/20);

 }//end for loop

 }//end displayFreqResponse

 //---//

 //This method receives two arrays and treats each array

 // as a vector. The two arrays must have the same length.

 // The program reverses the order of one of the vectors

 // and returns the vector dot product of the two vectors.

 double reverseDotProduct(double[] v1,double[] v2){

 if(v1.length != v2.length){

 System.out.println("reverseDotProduct");

 System.out.println("Vectors must be same length.");

 System.out.println("Terminating program");

 System.exit(0);

 }//end if

 double result = 0;

 for(int cnt = 0;cnt < v1.length;cnt++){

 result += v1[cnt] * v2[v1.length - cnt - 1];

 }//end for loop

 return result;

 }//end reverseDotProduct

 //---//

 //This method returns the values of a cosine function

 // sampled eight samples per cycle.

 double getCosine(int index){

 int cnt = index%8;

 if(cnt == 0){

 return 1.0;

 }else if(cnt == 1){

 return 0.7071067811865476;

 }else if(cnt == 2){

 return 0;

 }else if(cnt == 3){

 return -0.7071067811865476;

 }else if(cnt == 4){

 return -1.0;

 }else if(cnt == 5){

 return -0.7071067811865476;

 }else if(cnt == 6){

 return 0;

 }else if(cnt == 7){

 return 0.7071067811865476;

 }//end else

 return 0;//Make the compiler happy.

 }//end getCosine

 //---//

}//end class Adapt09

Listing 14

Copyright 2006, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which have gained a worldwide following among

experienced and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

Keywords
Java adaptive filtering convolution filter frequency spectrum LMS amplitude phase time-delay

linear DSP impulse decibel log10 DFT transform bandwidth signal noise real-time dot-product

vector time-series prediction identification inverse noise cancellation

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

