
Adaptive Noise Cancellation using Java

Learn how to use a general-purpose LMS adaptive engine to write a Java program that

illustrates the use of adaptive filtering for noise cancellation.

Published: April 18, 2006

by Richard G. Baldwin

Java Programming Notes # 2360

 Preface

 General Background Information

 Preview

 Experimental Results

 Discussion and Sample Code

 Run the Program

 Summary

 What's Next?

 References

 Complete Program Listings

Preface

DSP and adaptive filtering

With the decrease in cost and the increase in speed of digital devices, Digital Signal Processing

(DSP) is showing up in everything from cell phones to hearing aids to rock concerts. Many

applications of DSP are static. That is, the characteristics of the digital processor don't change

with time or circumstances. However, a particularly interesting branch of DSP is adaptive

filtering. This is a scenario where the characteristics of the digital processor change with time,

circumstances, or both.

Sixth in a series

This is the sixth lesson in a series designed to teach you about adaptive filtering in Java. The

first lesson, titled Adaptive Filtering in Java, Getting Started, introduced you to the topic by

showing you how to write a Java program to adaptively design a time-delay convolution filter

with a flat amplitude response and a linear phase response using an LMS adaptive algorithm.

A general-purpose adaptive engine

http://cnx.rice.edu/content/m11829/latest/
mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/tocdsp.htm
http://cnx.org/content/m49840/latest/?collection=col11642/latest
http://cnx.rice.edu/content/m11829/latest/

The third lesson in the series, titled A General-Purpose LMS Adaptive Engine in Java, presented

and explained a general-purpose LMS adaptive engine written in Java. That engine can be used

to solve a wide variety of adaptive problems.

Adaptive identification and inverse filtering

The previous lesson titled Adaptive Identification and Inverse Filtering using Java showed you

how to accomplish the first two items in the following list of common applications of adaptive

filtering:

 System Identification

 Inverse System Identification

 Noise Cancellation

 Prediction

Adaptive noise cancellation

This lesson presents and explains a program named Adapt08, which demonstrates the use of

adaptive filtering for the third item in the above list, Noise Cancellation. A future lesson will

deal with the last item in the above list, Prediction.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

In preparation for understanding the material in this lesson, I recommend that you also study the

lessons identified in the References section of this document.

General Background Information

What is adaptive noise cancellation?

I will explain adaptive noise cancellation using an example which you can probably relate

to. The sample program that I will present later is designed to be consistent with this

example. If you go to Google and search for the keywords adaptive noise cancellation, you

will find other examples of situations where adaptive noise cancellation may be of value.

http://cnx.org/content/m49849/latest/?collection=col11642/latest
http://cnx.rice.edu/content/m11829/latest/
http://cnx.org/content/m49852/latest/?collection=col11642/latest
http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/
http://www.google.com/

A concert in the park

Let's assume that you are the promoter of a concert in the local park. In addition to the live

performance, you plan to record the concert and to produce and sell an audio CD containing that

recording.

Noise from a waterfall

As it turns out, there is a rather large waterfall in the park. The waterfall emits quite a lot of

acoustic noise. The acoustic noise emitted by the waterfall has a spectrum that is generally flat

across the typical audio spectrum. Thus we would say that the waterfall emits white noise.

The area of the park where the concert is to be staged is some distance from the waterfall, but it

is still possible to hear the waterfall on the stage where the concert is to be performed. Thus, the

performers and the spectators can easily hear the waterfall. That means that the performer's

microphones will also pick up the sound of the waterfall.

Waterfall sound is modified by the acoustic path

The waterfall doesn't sound exactly the same when heard in the concert area as it sounds when

standing near the waterfall. That is because the acoustic path between the waterfall and the

concert stage contains physical obstacles that either absorb or reflect the acoustic energy. Thus,

by the time the sound reaches the concert stage, it is composed of the sum of the primary sound

transmission plus time-delayed and attenuated echoes. Even the primary sound transmission is

delayed in time by the length of the acoustic path.

Need to get rid of the noise from the waterfall

The sound of the waterfall in the background may be pleasing to the spectators who attend the

concert and commune with nature on a cool spring evening. However, it probably wouldn't be

pleasing if those sounds were picked up by the performer's microphones, amplified, and

broadcast through the concert speaker system.

Also, the sounds of the waterfall probably wouldn't be pleasing to the potential customers of the

CD if those sounds existed as background noise on the music tracks. To the people who don't

have an opportunity to enjoy the natural setting of the concert, those sounds would probably

simply be a nuisance.

Therefore, you give your audio engineers the task of removing the sounds of the waterfall that

are picked up by the performer's microphones before those sounds are laid down on the

recording of the concert and before they are broadcast by the concert speaker system.

Adaptive noise cancellation to the rescue

It may be possible to accomplish this Noise Cancellation through the use of adaptive

filtering. The assumption is that even though the sound of the waterfall as perceived in the

concert area is decidedly different from the sound of the waterfall near the source, those sounds

are correlated nonetheless. If that is true, an adaptive noise cancellation filter can be used to

remove a large portion of the noise produced by the waterfall from the electronic signals

produced by the performer's microphones.

In order to explain how this is accomplished, I will refer you to the following Block Diagram of

the Adaptive System, produced by three students at Rice University.

Correspondence between my terminology and the block diagram

In this example, the white noise emitted by the waterfall is represented by the Reference Signal

in the block diagram. The acoustic path between the waterfall and the area where the concert is

to be staged is represented by the dotted box containing the question mark in the block

diagram. The sum of the sounds generated by the performers is represented by the Primary

Signal in the block diagram.

The natural addition of the modified waterfall noise to the sounds produced by the performers is

represented by the dotted circle containing the plus sign in the block diagram. In other words,

the output from the performer's microphones contains the sum of the sounds produced by the

performers and the noise from the waterfall as modified by the acoustic path between the

waterfall and the stage.

Relation to the adaptive engine

The Reference Signal in the block diagram corresponds to one of the two inputs to the adaptive

engine that will be discussed in conjunction with the program code. This is the input to the

adaptive filter. This is referred to as the whiteNoise in the program.

The other input to the adaptive engine, commonly referred to as the target, is shown as d(n) in

the block diagram.

Finally, the Output shown in the block diagram corresponds to the adaptive engine output

commonly referred to as the error.

The large box identified as Adaptive in the block diagram corresponds to the adaptive filter in

the adaptive engine used in the program.

Physical arrangement

You will use two microphones for this project. One microphone will be placed close to the

waterfall where it will produce a high-fidelity electronic replica of the noise being emitted by the

waterfall. You will transmit that electronic information from the waterfall to the concert area via

electrical cable. At the concert area, you will convert that electronic information into a sampled

digital time series and feed it into the adaptive filter of the adaptive engine. This information is

represented by Reference Signal in the block diagram, and is represented by whiteNoise in the

program.

http://www.owlnet.rice.edu/~ryanking/elec431/intro.html
http://www.owlnet.rice.edu/~ryanking/elec431/intro.html
http://www.owlnet.rice.edu/~ryanking/elec431/bios.html
http://www.rice.edu/
http://www.owlnet.rice.edu/~ryanking/elec431/intro.html
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/

The other microphone is the performer's microphone (or the output from an electronic mixer if

there are multiple microphones on the stage). You will convert this information, (which consists

of signal plus waterfall noise), into a sampled digital time series and feed it as the target to the

adaptive engine. This is represented by d(n) in the block diagram.

The output from the adaptive engine commonly referred to as the error, contains the useful

output from the adaptive engine in this case. If all goes well, the error will consist mainly of

signal information produced by the performers with most of the noise produced by the waterfall

having been removed. You will feed the error into the sound system and broadcast it to the

spectators. You will also record it to be used later in the production of your audio CD.

Why does this work?

The overall objective of this adaptive scheme is to adjust the filter coefficients in the adaptive

digital filter in an attempt to drive the error to zero.

It is assumed that the signal is uncorrelated with the noise. (This should be the case when the

noise is produced by a waterfall and the signal is produced by musicians.) If this assumption is

true, a particular signal value at a particular adaptive correction to the filter coefficients may

have an impact on that particular correction. However, over the long term, the signal values will

not have a lasting effect on the adaptive corrections to the filter coefficients. (The corrections

produced by the signal will average out to zero.) Thus, over the long term, the adaptive

corrections to the filter coefficients will not be influenced by the signal in one direction or the

other.

Because the noise that is added to the signal is correlated with the white noise that is input to the

adaptive filter, over the long term, the adaptive algorithm will attempt to drive the noise

component of the error to zero. When the noise component is driven to near zero, the resulting

error consists mainly of signal.

(Note however that the existence of the signal that is uncorrelated with the noise

in the adaptive computation will prevent the algorithm from ever converging to a

perfect noise cancellation solution.)

Overall analysis

Therefore, in operation, the LMS adaptive algorithm attempts to cause the output from the

adaptive filter, shown as y(n) in the block diagram, to be an exact match for that version of the

noise that is added to the Primary Signal at the top of the block diagram. This is the result

which, when subtracted from the combined signal plus noise, will have the most beneficial effect

relative to driving the error to zero.

When this is accomplished perfectly and the adaptive filter output is subtracted from the

combined signal plus noise on the right side of the block diagram, the output or error will contain

only signal. Once again, however, the existence of the signal in the values used to compute the

http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/

adaptive corrections will prevent the system from ever reaching a perfect solution, and the error

will probably always contain at least a small residue of noise.

Preview

The program named Adapt08

The purpose of this program is to illustrate an adaptive noise cancellation system.

(See this URL for a description and a block diagram of an adaptive noise

cancellation system.)

This program requires the following classes:

 Adapt08.class

 AdaptEngine02.class

 AdaptiveResult.class

 ForwardRealToComplex01.class

 PlotALot01.class

 PlotALot03.class

 PlotALot07.class

The source code

The source code for the class named Adapt08 is provided in Listing 14 near the end of this

lesson. The source code for the other classes in the above list is provided in earlier lessons that

are accessible via the References section of this lesson.

The adaptive engine

This program uses the adaptive engine named AdaptEngine02 to adaptively develop a

convolution filter. One of the inputs to the adaptive engine is the sum of signal plus noise. The

other input to the adaptive engine is white noise, which is different from, but which is correlated

with the noise that is added to the signal.

The adaptive engine develops a filter that attempts to remove the noise from the signal plus noise

data producing an output consisting of almost pure signal.

Signal and noise sources

The signal and the white noise are derived from a random number generator. Therefore, they are

both essentially white. The signal is not correlated with the noise. Before final scaling, the

values obtained from the random number generator are uniformly distributed from -1.0 to +1.0.

Simulation of the propagation of waterfall noise through space

http://www.owlnet.rice.edu/~ryanking/elec431/intro.html

The white noise is processed through a convolution filter before adding it to the signal. The

convolution filter is designed to simulate the effect of acoustic energy being emitted at one point

in space and being modified through the addition of several time-delayed and attenuated echoes

before being received at another point in space. This results in constructive and destructive

interference such that the noise that is added to the signal is no longer white. However, it is still

correlated with the original white noise.

The graphic output

The program produces five graphs with three graphs in a row across the top of the screen and

two graphs in a row below the top row as shown by the screen shot in Figure 1.

Figure 1

Description of the five graphs

A brief description of each of the five graphs, working from left to right, top to bottom, follows:

1. The impulse response of the convolution filter that is applied to the white noise before it

is added to the white signal. (Simulates spatial propagation effects.)

2. The amplitude and phase response of the convolution filter that is applied to the white

noise before it is added to the white signal. (Shows simulated spatial propagation effects

in the frequency domain.)

3. Six time series that illustrate the time behavior of the adaptive process. (See description

by color code below.)

4. The amplitude and phase response of the adaptive filter at the end of every 400th

iteration.

5. The impulse response of the adaptive filter at the end of every 400th adaptive iteration.

Multiple stacked pages

Graph 3, showing the time series data, consists of multiple pages stacked on top of one

another. You can move the pages on the top of the stack to view the pages further down. The

pages on the top of the stack represent the results produced early in the adaptive process while

those further down represent the results produced later in the adaptive process.

(If you increase the number of iterations described later, graphs 4 and 5 will also

consist of multiple pages stacked on top of one another.)

The six time series and their colors

The six time series that are plotted in Graph #3 are, from top to bottom in the colors indicated:

1. (Black) Input to the adaptive filter. This is the white noise equivalent to the sound of the

waterfall in the above described scenario. This white noise is produced by a random

number generator.

2. (Red) Target for the adaptive process. This is the signal plus noise, which is shown as

d(n) in the block diagram. In this case, the noise is the waterfall noise as modified by the

acoustic path and the signal is the white signal produced by a random number generator.

3. (Blue) Output from the adaptive filter, shown as y(n) in the block diagram. This is an

adaptive estimate of the waterfall noise as modified by the acoustic path.

4. (Green) Error computed within the adaptive process. In this case, the error trace is

actually the trace that contains the signal with the noise partially removed. In other

words, the blue trace is an estimate of the waterfall noise as modified by the acoustic path

and the green trace is the difference between the red trace and the blue trace. The error is

shown both as e(n) and as Output in the block diagram.

5. (Violet) The original pure signal shown as s(n) in the block diagram. This trace is not

used in the adaptive computation. Rather, it is provided for visual comparison with the

green trace that shows the adaptive process' estimate of the signal after the noise has been

removed.

6. (Turquoise) The arithmetic difference between the pure signal trace (violet) and the green

trace containing the adaptive process' estimate of the signal. This trace is not used in the

adaptive computation. Rather, it is provided for a visual arithmetic comparison of the

difference between the pure signal trace and the adaptive estimate of the signal. Ideally

this trace will go to zero if the adaptive process is successful in totally eliminating the

noise from the green trace.

Impulse responses near the end of the run

Near the end of the run, the adaptive update process is disabled. The input data is set to zero for

the remainder of the run except that on one occasion, an impulse is inserted into the white noise

data. This makes it possible to see:

1. The single impulse in the input noise on the black trace.

2. The impulse response of the convolution filter that is applied to the white noise before it

is added to the white signal. This impulse response is visible on the red trace.

http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/

3. The impulse response of the final adaptive filter. This impulse response is visible on the

blue trace.

Ideally, the impulse response on the blue trace would be identical to the impulse response on the

red trace, indicating that the adaptive filter perfectly matches the convolution filter that is applied

to the white noise before it is added to the white signal. As you will see later, the match is not

perfect but it is very close.

User input

There is no user input to this program. All parameter values are hard coded into the main

method. To run the program with different parameters, modify the parameter values in the

source code and recompile the program.

Program parameters

The important program parameters that you might want to modify for experimental purposes are:

 feedbackGain: The gain factor that is used in the feedback loop to adjust the coefficient

values in the adaptive filter.

 numberIterations: This is the number of iterations that the program executes before

stopping and displaying all of the graphic results.

 filterLength: This is the number of coefficients in the adaptive filter. Must be at least

26. If you change the filterLength to a value that is less than 26, the plot of the impulse

responses of the adaptive filter will not be properly aligned.

 noiseScale: The scale factor that is applied to the values that are extracted from the

random number generator and used as white noise.

 signalScale: The scale factor that is applied to the values that are extracted from the

random number generator and used as white signal.

 pathOperator: A reference to an array of type double[] containing the coefficients of

the convolution filter that is applied to the white noise before it is added to the white

signal.

Program testing

This program was tested using J2SE 5.0 and WinXP. J2SE 5.0 or later is required.

Experimental Results

Before getting into the program details, I'm going to show you some experimental results.

The acoustic path operator

The left panel in Figure 2 shows the convolution operator that was applied to the white noise to

simulate the noise arriving at the location in the park where the concert is being held. When this

convolution operator is applied to the white noise time series, the result is the sum of the primary

time series plus four attenuated and time-delayed replicas of the time series. This is intended to

simulate the summation of the original waterfall noise plus several echoes.

(Note that this convolution operator also inserts a time delay of several samples

relative to its input.)

Figure 2

Complex frequency response

The right panel in Figure 2 shows the complex frequency response of the acoustic path

operator. The top curve is the amplitude response and the bottom curve is the phase response.

As you can see this particular configuration of echoes results in a decidedly non-flat transfer

function. The general saw tooth nature of the phase response indicates that there is an overall

time delay in addition to the modification of the acoustic energy as a function of frequency.

The adaptive filter operator

The left panel in Figure 3 shows the development of the adaptive filter convolution operator

from the beginning to the end of the run. Each of the individual graphs beginning at the top and

going down the page shows the adaptive convolution operator at the end of every 400th iteration.

Figure 3

Ideally, the convolution operator in Figure 3 should converge to a shape that exactly matches the

shape of the convolution operator shown in the left panel of Figure 2. As you can see, although

the match isn't perfect, it is reasonably close at the bottom of Figure 3. The continuing random

influence of the white signal would probably prevent a perfect solution from ever being achieved

regardless of how long the adaptive process is allowed to run.

The complex frequency response

The right panel in Figure 3 shows the complex frequency response corresponding to each of the

impulse responses in the left panel. As before, for each complex frequency response, the

amplitude response is above the phase response.

The time series

The top panel in Figure 4 shows the six time series described earlier at the beginning of the

run. The middle panel shows the same six traces in the time period immediately following the

period shown in the top panel. The bottom panel shows the same six time series at the end of the

run.

(Note that several panels of time series between the beginning and the end of the

run were omitted for brevity.)

Figure 4

The white waterfall noise

As explained earlier, the black trace in Figure 4 shows the white waterfall noise that is

transmitted to the adaptive engine via electrical cable without any influence from the acoustic

path. This trace is used as an input to the adaptive process.

Signal plus modified waterfall noise

The red trace in Figure 4 shows the sum of the white signal and the output from the acoustic path

operator shown in Figure 2. This trace is used as an input to the adaptive process.

Output from the adaptive filter

The blue trace in Figure 4 shows the output from the adaptive filter. The adaptive filter attempts

to cause its output to match the output from the acoustic path operator so that when it is

subtracted from the red trace, the result will be the pure signal. In other words, this is an

estimate of the waterfall noise as modified by the acoustic path to the concert area.

The adaptive output error

The green trace in Figure 4 shows the error in the adaptive process. For this configuration of the

adaptive engine, this is the trace that contains the signal with the noise having (hopefully) been

removed.

The pure signal

As mentioned earlier, the violet trace in Figure 4 shows the original pure signal. This trace is not

used in the adaptive process. Rather, it is provided here for visual comparison with the green

trace that shows the adaptive process' estimate of the signal after the noise has been removed.

Estimate of the signal quality

Also as mentioned earlier, the turquoise trace in Figure 4 shows the arithmetic difference

between the pure signal (violet) trace and the green trace containing the adaptive process'

estimate of the signal. This trace is not used in the adaptive process. Rather, it is provided for a

visual arithmetic comparison of the difference between the pure signal trace and the adaptive

estimate of the signal. Ideally this trace will go to zero if the adaptive process is successful in

totally eliminating the noise from the green trace.

The adaptive results

You can see the result of the adaptive process by comparing the traces from left to right in Figure

4. As you can see, the green error trace is a reasonably good replica of the violet signal trace by

the end of the top panel, and is an excellent replica of the violet signal trace by the end of the

middle panel. Thus, the noise is being almost totally suppressed from the red trace by the end of

the middle panel.

The impulse responses

As explained earlier, the adaptive process is turned off and an impulse is injected into the black

trace in the bottom panel of Figure 4. The impulse response of the acoustic path is shown by the

red trace in the bottom panel. The impulse response of the final adaptive filter is shown by the

blue trace in the bottom panel of Figure 4.

The objective of the adaptive process is to cause the impulse response of the adaptive filter to

match the impulse response of the acoustic path. A visual comparison of the red and blue traces

in the bottom panel of Figure 4 shows the extent to which this has been accomplished.

Now let's see some code.

Discussion and Sample Code

The class named Adapt08

The beginning of the class named Adapt08 and the beginning of the main method are shown in

Listing 1.

class Adapt08{

 public static void main(String[] args){

 //Default parameter values

 double feedbackGain = 0.0001;

 int numberIterations = 2001;

 int filterLength = 26;//Must be >= 26 for plotting.

 double noiseScale = 10;

 double signalScale = 10;

Listing 1

Listing 1 declares and initializes some of the program parameters. To experiment with different

values for the program parameters, change the values in Listing 1 and recompile the program.

The acoustic path operator

Listing 2 defines the impulse response of the path operator that simulates the acoustic path

between the waterfall and the location in the park where the concert is being performed. (This

impulse response is shown graphically in Figure 2.)

 double[] pathOperator = {0.0,

 0.0,

 0.0,

 1.0,

 0.0,

 0.64,

 0.0,

 0.0,

 0.32768,

 0.0,

 0.0,

 0.0,

 0.1342176,

 0.0,

 0.0,

 0.0,

 0.0,

 0.0439803,

 0.0};

Listing 2

Note that the first three values in the impulse response have values of zero. This has the effect of

inserting an overall time delay in the acoustic path. The value of 1.0 in the impulse response

represents the first arrival of the acoustic waterfall noise at the concert location. The remaining

non-zero values in the impulse response represent attenuated echoes that are further delayed in

time relative to the first arrival.

To experiment with different acoustic path operators, change the values in Listing 2 and

recompile the program. See if you can devise an acoustic path operator for which the adaptive

algorithm will refuse to converge to a solution.

Invoke the method named process

Listing 3 instantiates an object of the Adapt08 class and invokes the process method on that

object, passing the program parameters along with the acoustic path operator to the method.

 new Adapt08().process(feedbackGain,

 numberIterations,

 filterLength,

 noiseScale,

 signalScale,

 pathOperator);

 }//end main

Listing 3

The process method

Listing 4 shows the beginning of the process method, including the code required to display the

two graphs shown in Figure 2. This is the primary adaptive processing and plotting method for

the program.

 void process(double feedbackGain,

 int numberIterations,

 int filterLength,

 double noiseScale,

 double signalScale,

 double[] pathOperator){

 //The following array will be populated with the

 // adaptive filter for display purposes.

 double[] filter = null;

 //Display the pathOperator

 //First instantiate a plotting object.

 PlotALot01 pathOperatorObj = new PlotALot01("Path",

 (pathOperator.length * 4) +

8,148,70,4,0,0);

 //Feed the data to the plotting object.

 for(int cnt = 0;cnt < pathOperator.length;cnt++){

 pathOperatorObj.feedData(40*pathOperator[cnt]);

 }//end for loop

 //Cause the graph to be displayed on the computer

 // screen in the upper left corner.

 pathOperatorObj.plotData(0,0);

 //Now compute and plot the frequency response of the

 // path

 //Instantiate a plotting object for two channels of

 // frequency response data. One channel is for

 // the amplitude and the other channel is the phase.

 PlotALot03 pathFreqPlotObj =

 new

PlotALot03("Path",264,148,35,2,0,0);

 //Compute the frequency response and feed the results

 // to the plotting object.

 displayFreqResponse(pathOperator,pathFreqPlotObj,

128,0);

 //Cause the frequency response data stored in the

 // plotting object to be displayed on the screen in

 // the top row of images.

 pathFreqPlotObj.plotData(112,0);

Listing 4

All of the code shown in Listing 4 has been explained in earlier lessons referred to in the

References section of this lesson. That explanation won't be repeated here.

Instantiate an adaptive engine object

Listing 5 instantiates an object that will be used to handle the adaptive behavior of the program.

 AdaptEngine02 adapter = new AdaptEngine02(

filterLength,feedbackGain);

Listing 5

The class named AdaptEngine02 was explained in the lesson titled Adaptive Identification and

Inverse Filtering using Java, and that explanation won't be repeated here.

Prepare for the iterative adaptive process

Listing 6 performs several additional steps that are necessary to prepare for the iterative adaptive

process and plot the results of the adaptive process.

 //Instantiate an array object that will be used as a

 // delay line for the white noise data.

 double[] rawData = new double[pathOperator.length];

 //Instantiate a plotting object for six channels of

 // time-series data.

 PlotALot07 timePlotObj =

 new

http://cnx.org/content/m49852/latest/?collection=col11642/latest
http://cnx.org/content/m49852/latest/?collection=col11642/latest

PlotALot07("Time",468,198,25,2,0,0);

 //Instantiate a plotting object for two channels of

 // filter frequency response data. One channel is for

 // the amplitude and the other channel is for the

 // phase.

 PlotALot03 freqPlotObj =

 new

PlotALot03("Freq",264,487,35,2,0,0);

 //Instantiate a plotting object to display the filter

 // impulse response at specific time intervals during

 // the adaptive process.

 PlotALot01 filterPlotObj = new PlotALot01("Filter",

 (filterLength * 4) + 8,487,70,4,0,0);

 //Declare and initialize working variables.

 double output = 0;

 double err = 0;

 double target = 0;

 double input = 0;

 double whiteNoise = 0;

 double whiteSignal = 0;

 boolean adaptOn;

Listing 6

The code in Listing 6 is very similar to code that I have explained in previous lessons referred to

in the References section of this lesson. I won't bore you by repeating those explanations here.

Perform the iterative adaptive process

Listing 7 shows the beginning of a for loop that is used to perform the specified number of

iterations of the adaptive process.

 for(int cnt = 0;cnt < numberIterations;cnt++){

 adaptOn = true;

Listing 7

The variable named adaptOn

The variable named adaptOn is used to control whether or not the adapt method of the adaptive

engine updates the filter coefficients when it is called. The filters are updated when this variable

is true and are not updated when this variable is false. The value of this variable is maintained

as true until near the end of the specified number of iterations. At that time, it is set to false to

support the display of the impulse responses shown in the bottom panel of Figure 4.

(The adaptive process is disabled at that point in time to prevent the coefficients

belonging to the adaptive filter from being modified while the impulse response of

the adaptive filter is being displayed.)

Get white signal and noise values

Listing 8 gets and scales the next sample of white noise and white signal data from a random

number generator. The white noise is used to simulate the waterfall noise. Before scaling by

noiseScale and signalScale, the values are uniformly distributed from -1.0 to 1.0.

 whiteNoise = noiseScale*(2*(Math.random() - 0.5));

 whiteSignal = signalScale*(2*(Math.random() - 0.5));

Listing 8

Produce impulse responses near the end of the run

The code in Listing 9 sets the white noise and white signal values near the end of the run to zero

and turns adaptation off by setting the value of adaptOn to false.

This code also inserts a single impulse near the end of the whiteNoise data that produces impulse

responses for the acoustic path and for the adaptive filter.

The code in Listing 9 produces the impulse responses shown in the bottom panel of Figure 4.

 //Set values to zero

 if(cnt > (numberIterations - 5*filterLength)){

 whiteNoise = 0;

 whiteSignal = 0;

 adaptOn = false;

 }//end if

 //Now insert an impulse at one specific location in

 // the whiteNoise data.

 if(cnt == numberIterations - 3*filterLength){

 whiteNoise = 2 * noiseScale;

 }//end if

Listing 9

Convolve waterfall noise with acoustic path operator

Listing 10 convolves the waterfall noise with the acoustic path operator to produce an estimate of

the waterfall noise as it would sound at the location in the park where the concert is being

performed.

 //Insert the white noise data into the delay line

 // that will be used to convolve the white noise

 // with the path operator.

 flowLine(rawData,whiteNoise);

 //Apply the path operator to the white noise data.

 double pathNoise =

reverseDotProduct(rawData,pathOperator);

Listing 10

Code similar to that shown in Listing 10 has been explained in earlier lessons referred to in the

References section of this lesson. Therefore, I won't repeat that explanation here.

Perform the adaptive process

The code in Listing 11 performs the adaptive process for one iteration of the for loop that began

in Listing 7.

Listing 11 begins by declaring a variable that will be populated with a reference to an object

containing the results returned by the adapt method of the adaptive engine.

 //Declare a variable that will be populated with the

 // results returned by the adapt method of the

 // adaptive engine.

 AdaptiveResult result = null;

 //Establish the appropriate input values for an

 // adaptive noise cancellation filter and perform

the

 // adaptive update.

 input = whiteNoise;

 target = pathNoise + whiteSignal;

 result = adapter.adapt(input,target,adaptOn);

Listing 11

The two boldface statements in Listing 11 make this program unique and different relative to the

other programs explained in the earlier lessons referred to in the References section of this

lesson.

The general-purpose adaptive engine

When I developed the general purpose adaptive engine in the lesson titled A General-Purpose

LMS Adaptive Engine in Java, I explained:

"In this lesson, I will present and explain a general-purpose LMS adaptive engine

written in Java that can be used to solve a wide variety of adaptive problems."

http://cnx.org/content/m49849/latest/?collection=col11642/latest
http://cnx.org/content/m49849/latest/?collection=col11642/latest
http://cnx.rice.edu/content/m11829/latest/

The adaptive engine receives two input time series and produces two output time series. The

engine can be used to solve different problems by carefully selecting the two input time series

and order in which they are provided to the adaptive engine.

The configuration for adaptive noise cancellation

In Listing 11, the whiteNoise is provided to simulate the waterfall noise and is inserted into the

adaptive filter as shown by the Reference Signal in the block diagram.

The target in Listing 11 is constructed by adding the pathNoise to the whiteSignal. This

addition corresponds to the dotted circle with the plus sign at the top of the block diagram.

The value of whiteSignal in Listing 11 corresponds to the Primary Signal in the block diagram.

The value of the pathNoise in Listing 11 corresponds to the output from the dotted box

containing the question mark in the block diagram.

The target in Listing 11 corresponds to d(n) in the block diagram.

The output from the adaptive filter is subtracted from the target value to produce the error. The

error is used in a feedback loop to adjust the adaptive filter coefficients as shown in the block

diagram.

For this configuration, the error is also the primary output shown by the green trace in Figure 4.

Finish an adaptive iteration

Listing 12 shows the remaining code in the for loop that began in Listing 7.

 //Get and save adaptive results for plotting and

 // spectral analysis

 output = result.output;

 err = result.err;

 filter = result.filterArray;

 //Feed the time series data to the plotting object.

 timePlotObj.feedData(input,target,output,-err,

 whiteSignal,err +

whiteSignal);

 //Compute and plot summary results at the end of

 // every 400th iteration.

 if(cnt%400 == 0){

 displayFreqResponse(filter,freqPlotObj,

 128,filter.length -

1);

 //Display the filter impulse response coefficient

 // values. The adaptive engine returns the filter

 // with the time axis reversed relative to the

http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/
http://www.owlnet.rice.edu/~ryanking/elec431/

 // conventional display of an impulse response.

 // Therefore, it is necessary to display it in

 // reverse order.

 for(int ctr = 0;ctr < filter.length;ctr++){

 filterPlotObj.feedData(

 40*filter[filter.length - 1 -

ctr]);

 }//end for loop

 }//End display of frequency response and filter

 }//End for loop

Listing 12

All of the code in Listing 12 is very similar to code that I have explained in earlier lessons

referred to by the References section of this lesson. Therefore, I won't repeat that explanation

here.

Complete the process method

Listing 13 shows the remaining code in the process method.

 //Cause the data stored in the plotting objects to be

 // plotted.

 timePlotObj.plotData(376,0);//Top of screen

 freqPlotObj.plotData(0,148);//Left side of screen

 filterPlotObj.plotData(265,148);

 }//end process method

Listing 13

Shall I say it one more time? All of the code in Listing 13 is very similar to code that I have

explained in earlier lessons referred to by the References section of this lesson. Therefore, I

won't repeat that explanation here.

Further, the remaining methods belonging to the Adapt08 class are similar to methods that I

have explained in earlier lessons, so I won't discuss those methods here. You can view the code

for the class named Adapt08 in its entirety in Listing 14 near the end of this lesson.

Run the Program

I encourage you to copy the code for the class named Adapt08 from the section titled Complete

Program Listings. Compile and execute the program. Experiment with the code. Make changes

to the code, recompile, execute, and observe the results of your changes.

Modify the program parameters and the path operator and see if you can explain the results of

those modifications.

See if you can create a path operator for which the adaptive process refuses to converge to a

solution.

Experiment with different values for feedback Gain. What happens if you use a large value for

feedbackGain? What happens if you use a very small value for feedbackGain? What happens

if you use a negative value for feedbackGain? Can you explain the results that you experience?

While experimenting with the feedbackGain, you might also want to experiment with the

program parameter named numberIterations. See if you can explain the results for small,

medium, and large values for this parameter.

Other classes required

In addition to the classes named Adapt08, you will need access to the following classes. The

source code for these classes can be found in the lessons indicated.

 AdaptEngine02: Adaptive Identification and Inverse Filtering using Java

 AdaptiveResult: Adaptive Identification and Inverse Filtering using Java

 ForwardRealToComplex01: Spectrum Analysis using Java, Sampling Frequency,

Folding Frequency, and the FFT Algorithm

 PlotALot01: Plotting Large Quantities of Data using Java

 PlotALot03: Plotting Large Quantities of Data using Java

 PlotALot05: Adaptive Filtering in Java, Getting Started

Summary

In this lesson, I showed you how to use a general-purpose LMS adaptive engine to write a Java

program that illustrates the use of adaptive filtering for Noise Cancellation.

What's Next?

Adaptive filtering is commonly used for the following four scenarios:

 System Identification

 Inverse System Identification

 Noise Cancellation

 Prediction

A previous lesson titled Adaptive Identification and Inverse Filtering using Java explained how

to write Java programs to illustrate the first two scenarios in the above list. This lesson explains

how to write a Java program that illustrates the use of adaptive filtering for the third scenario:

Noise Cancellation.

I plan to publish a lesson in the near future that explains and provides examples of Prediction

using adaptive filtering.

http://cnx.org/content/m49852/latest/?collection=col11642/latest
http://cnx.org/content/m49852/latest/?collection=col11642/latest
http://cnx.org/content/m49796/latest/?collection=col11642/latest
http://cnx.org/content/m49796/latest/?collection=col11642/latest
http://cnx.org/content/m49805/latest/?collection=col11642/latest
http://cnx.org/content/m49805/latest/?collection=col11642/latest
http://cnx.org/content/m49840/latest/?collection=col11642/latest
http://cnx.rice.edu/content/m11829/latest/
http://cnx.org/content/m49852/latest/?collection=col11642/latest

References

In preparation for understanding the material in this lesson, I recommend that you study the

material in the following previously-published lessons:

 100 Periodic Motion and Sinusoids

 104 Sampled Time Series

 108 Averaging Time Series

 1478 Fun with Java, How and Why Spectral Analysis Works

 1482 Spectrum Analysis using Java, Sampling Frequency, Folding Frequency, and the

FFT Algorithm

 1483 Spectrum Analysis using Java, Frequency Resolution versus Data Length

 1484 Spectrum Analysis using Java, Complex Spectrum and Phase Angle

 1485 Spectrum Analysis using Java, Forward and Inverse Transforms, Filtering in the

Frequency Domain

 1487 Convolution and Frequency Filtering in Java

 1488 Convolution and Matched Filtering in Java

 1492 Plotting Large Quantities of Data using Java

 2350 Adaptive Filtering in Java, Getting Started

 2352 An Adaptive Whitening Filter in Java

 2354 A General-Purpose LMS Adaptive Engine in Java

 2356 An Adaptive Line Tracker in Java

 2358 Adaptive Identification and Inverse Filtering using Java

Links to the lessons in the above list are available at Digital Signal Processing-DSP.

Complete Program Listings

A complete listings of the class discussed in this lesson is shown in Listing 14 below.

/*File Adapt08.java

Copyright 2005, R.G.Baldwin

The purpose of this program is to illustrate an adaptive

noise cancellation system.

See the following URL for a description and a block

diagram of an adaptive noise cancellation system.

http://www.owlnet.rice.edu/~ryanking/elec431/intro.html

This program requires the following classes:

Adapt08.class

AdaptEngine02.class

AdaptiveResult.class

ForwardRealToComplex01.class

PlotALot01.class

PlotALot03.class

http://cnx.org/content/col11642/latest/

PlotALot07.class

This program uses the adaptive engine named AdaptEngine02

to adaptively develop a filter. One of the inputs to the

adaptive engine is the sum of signal plus noise. The

other input to the adaptive engine is noise that is

different from, but which is correlated to the noise that

is added to the signal. The adaptive engine develops a

filter that removes the noise from the signal plus noise

data producing an output consisting of almost pure

signal.

The signal and the original noise are derived from a

random number generator. Therefore, they are both

essentially white. The signal is not correlated with the

noise. Before scaling, the values obtained from the

random number generator are uniformly distributed from

-1.0 to +1.0.

The white noise is processed through a convolution

filter before adding it to the signal. The convolution

filter is designed to simulate the effect of acoustic

energy being emitted at one point in space and being

modified through the addition of several time-delayed and

attenuated echoes before being received at another point

in space. This results in constructive and destructive

interference such that the noise that is added to the

signal is no longer white. However, it is still

correlated with the original white noise.

The program produces five graphs with three graphs in a

row across the top of the screen and two graphs in a row

below the top row.

The following is a brief description of each of the five

graphs, working from left to right, top to bottom.

1. The impulse response of the convolution filter that is

applied to the white noise before it is added to the

white signal.

2. The amplitude and phase response of the convolution

filter that is applied to the white noise before it is

added to the white signal.

3. Six time series that illustrate the time behavior of

the adaptive process.

4. The amplitude and phase response of the adaptive

filter at the end of every 400th iteration.

5. The impulse response of the adaptive filter at the end

of every 400th adaptive iteration.

Graph 3 consists of multiple pages stacked on top

of one another. Move the pages on the top of the stack to

view the pages further down. The pages on the top of the

stack represent the results produced early in the adaptive

process while those further down represent the results

produced later in the adaptive process. If you increase

the number of iterations described later, graphs 4 and 5

will also consist of multiple pages stacked on top of one

another.

The six time series that are plotted are, from top to

bottom in the colors indicated:

1. (Black) Input to the adaptive filter. This is the

white noise.

2. (Red) Target for the adaptive process. This is the

signal plus noise.

3. (Blue) Output from the adaptive filter.

4. (Green) Error computed within the adaptive process.

In this case, the error trace is actually the trace that

contains the signal with the noise removed. In other

words, the blue trace is an estimate of the noise and the

green trace is the difference between the red trace and

the blue trace.

5. (Violet) The original pure signal. This trace is

provided for visual comparison with the green signal trace.

6. (Turquoise) The arithmetic difference between the

pure signal trace (violet) and the green trace containing

the adaptive process's estimate of the signal. This

trace is provided for an arithmetic comparison of the

pure signal trace and the adaptive estimate of the signal.

Ideally this trace will go to zero if the adaptive process

is successful in totally eliminating the noise from the

green trace.

Near the end of the run, the adaptive update process is

disabled. The input data is set to zero for the remainder

of the run except that on one occasion, an impulse is

inserted into the white noise data. This makes it

possible to see:

1. The impulse response of the convolution filter that

is applied to the white noise before it is added to the

white signal.

2. The impulse response of the final adaptive filter.

There is no user input to this program. All parameters are

hard coded into the main method. To run the program with

different parameters, modify the parameters and recompile

the program.

The program parameters are:

feedbackGain: The gain factor that is used in the feedback

loop to adjust the coefficient values in the adaptive

filter.

numberIterations: This is the number of iterations that the

program executes before stopping and displaying all of the

graphic results.

filterLength: This is the number of coefficients in the

adaptive filter. Must be at least 26. If you change it

to a value that is less than 26, the plot of the impulse

responses of the adaptive filter will not be properly

aligned.

noiseScale: The scale factor that is applied to the values

that are extracted from the random number generator and

used as white noise.

signalScale: The scale factor that is applied to the

values that are extracted from the random number generator

and used as white signal.

pathOperator: Areference to an array of type double[]

containing the coefficients of the convolution filter that

is applied to the white noise before it is added to the

white signal.

Tested using J2SE 5.0 and WinXP. J2SE 5.0 or later is

required.

**/

import static java.lang.Math.*;//J2SE 5.0 req

class Adapt08{

 public static void main(String[] args){

 //Default parameter values

 double feedbackGain = 0.0001;

 int numberIterations = 2001;

 int filterLength = 26;//Must be >= 26 for plotting.

 double noiseScale = 10;

 double signalScale = 10;

 //Define the path impulse response as a simulation of

 // an acoustic signal with time-delayed echoes.

 double[] pathOperator = {0.0,

 0.0,

 0.0,

 1.0,

 0.0,

 0.64,

 0.0,

 0.0,

 0.32768,

 0.0,

 0.0,

 0.0,

 0.1342176,

 0.0,

 0.0,

 0.0,

 0.0,

 0.0439803,

 0.0};

 //Instantiate a new object of the Adapt08 class

 // and invoke the method named process on that object.

 new Adapt08().process(feedbackGain,

 numberIterations,

 filterLength,

 noiseScale,

 signalScale,

 pathOperator);

 }//end main

 //---//

 //This is the primary adaptive processing and plotting

 // method for the program.

 void process(double feedbackGain,

 int numberIterations,

 int filterLength,

 double noiseScale,

 double signalScale,

 double[] pathOperator){

 //The following array will be populated with the

 // adaptive filter for display purposes.

 double[] filter = null;

 //Display the pathOperator

 //First instantiate a plotting object.

 PlotALot01 pathOperatorObj = new PlotALot01("Path",

 (pathOperator.length * 4) + 8,148,70,4,0,0);

 //Feed the data to the plotting object.

 for(int cnt = 0;cnt < pathOperator.length;cnt++){

 pathOperatorObj.feedData(40*pathOperator[cnt]);

 }//end for loop

 //Cause the graph to be displayed on the computer

 // screen in the upper left corner.

 pathOperatorObj.plotData(0,0);

 //Now compute and plot the frequency response of the

 // path

 //Instantiate a plotting object for two channels of

 // frequency response data. One channel is for

 // the amplitude and the other channel is the phase.

 PlotALot03 pathFreqPlotObj =

 new PlotALot03("Path",264,148,35,2,0,0);

 //Compute the frequency response and feed the results

 // to the plotting object.

 displayFreqResponse(pathOperator,pathFreqPlotObj,

 128,0);

 //Cause the frequency response data stored in the

 // plotting object to be displayed on the screen in

 // the top row of images.

 pathFreqPlotObj.plotData(112,0);

 //Instantiate an object to handle the adaptive behavior

 // of the program.

 AdaptEngine02 adapter = new AdaptEngine02(

 filterLength,feedbackGain);

 //Instantiate an array object that will be used as a

 // delay line for the white noise data.

 double[] rawData = new double[pathOperator.length];

 //Instantiate a plotting object for six channels of

 // time-series data.

 PlotALot07 timePlotObj =

 new PlotALot07("Time",468,198,25,2,0,0);

 //Instantiate a plotting object for two channels of

 // filter frequency response data. One channel is for

 // the amplitude and the other channel is for the

 // phase.

 PlotALot03 freqPlotObj =

 new PlotALot03("Freq",264,487,35,2,0,0);

 //Instantiate a plotting object to display the filter

 // impulse response at specific time intervals during

 // the adaptive process.

 PlotALot01 filterPlotObj = new PlotALot01("Filter",

 (filterLength * 4) + 8,487,70,4,0,0);

 //Declare and initialize working variables.

 double output = 0;

 double err = 0;

 double target = 0;

 double input = 0;

 double whiteNoise = 0;

 double whiteSignal = 0;

 boolean adaptOn;

 //Perform the specified number of iterations.

 for(int cnt = 0;cnt < numberIterations;cnt++){

 //The following variable is used to control whether

 // or not the adapt method of the adaptive engine

 // updates the filter coefficients when it is called.

 // The filters are updated when this variable is

 // true and are not updated when this variable is

 // false.

 adaptOn = true;

 //Get and scale the next sample of white noise and

 // white signal data from a random number generator.

 // Before scaling by noiseScale and signalScale, the

 // values are uniformly distributed from -1.0 to 1.0.

 whiteNoise = noiseScale*(2*(Math.random() - 0.5));

 whiteSignal = signalScale*(2*(Math.random() - 0.5));

 //Set white noise and white signal values near the

 // end of the run to zero and turn adaptation off.

 // Insert an impulse near the end of the whiteNoise

 // data that will produce impulse responses for the

 // path and for the adaptive filter.

 //Set values to zero.

 if(cnt > (numberIterations - 5*filterLength)){

 whiteNoise = 0;

 whiteSignal = 0;

 adaptOn = false;

 }//end if

 //Now insert an impulse at one specific location in

 // the whiteNoise data.

 if(cnt == numberIterations - 3*filterLength){

 whiteNoise = 2 * noiseScale;

 }//end if

 //Insert the white noise data into the delay line

 // that will be used to convolve the white noise

 // with the path operator.

 flowLine(rawData,whiteNoise);

 //Apply the path operator to the white noise data.

 double pathNoise =

 reverseDotProduct(rawData,pathOperator);

 //Declare a variable that will be populated with the

 // results returned by the adapt method of the

 // adaptive engine.

 AdaptiveResult result = null;

 //Establish the appropriate input values for an

 // adaptive noise cancellation filter and perform the

 // adaptive update.

 input = whiteNoise;

 target = pathNoise + whiteSignal;

 result = adapter.adapt(input,target,adaptOn);

 //Get and save adaptive results for plotting and

 // spectral analysis

 output = result.output;

 err = result.err;

 filter = result.filterArray;

 //Feed the time series data to the plotting object.

 timePlotObj.feedData(input,target,output,-err,

 whiteSignal,err + whiteSignal);

 //Compute and plot summary results at the end of

 // every 400th iteration.

 if(cnt%400 == 0){

 displayFreqResponse(filter,freqPlotObj,

 128,filter.length - 1);

 //Display the filter impulse response coefficient

 // values. The adaptive engine returns the filter

 // with the time axis reversed relative to the

 // conventional display of an impulse response.

 // Therefore, it is necessary to display it in

 // reverse order.

 for(int ctr = 0;ctr < filter.length;ctr++){

 filterPlotObj.feedData(

 40*filter[filter.length - 1 - ctr]);

 }//end for loop

 }//End display of frequency response and filter

 }//End for loop,

 //Cause the data stored in the plotting objects to be

 // plotted.

 timePlotObj.plotData(376,0);//Top of screen

 freqPlotObj.plotData(0,148);//Left side of screen

 filterPlotObj.plotData(265,148);

 }//end process method

 //---//

 //This method simulates a tapped delay line. It receives

 // a reference to an array and a value. It discards the

 // value at index 0 of the array, moves all the other

 // values by one element toward 0, and inserts the new

 // value at the top of the array.

 void flowLine(double[] line,double val){

 for(int cnt = 0;cnt < (line.length - 1);cnt++){

 line[cnt] = line[cnt+1];

 }//end for loop

 line[line.length - 1] = val;

 }//end flowLine

 //---//

 void displayFreqResponse(

 double[] filter,PlotALot03 plot,int len,int zeroTime){

 //Create the arrays required by the Fourier Transform.

 double[] timeDataIn = new double[len];

 double[] realSpect = new double[len];

 double[] imagSpect = new double[len];

 double[] angle = new double[len];

 double[] magnitude = new double[len];

 //Copy the filter into the timeDataIn array

 System.arraycopy(filter,0,timeDataIn,0,filter.length);

 //Compute DFT of the filter from zero to the folding

 // frequency and save it in the output arrays.

 ForwardRealToComplex01.transform(timeDataIn,

 realSpect,

 imagSpect,

 angle,

 magnitude,

 zeroTime,

 0.0,

 0.5);

 //Note that the conversion to decibels has been

 // disabled. You can re-enable the conversion by

 // removing the comment indicators.

/*

 //Display the magnitude data. Convert to normalized

 // decibels first.

 //Eliminate or change any values that are incompatible

 // with log10 method.

 for(int cnt = 0;cnt < magnitude.length;cnt++){

 if((magnitude[cnt] == Double.NaN) ||

 (magnitude[cnt] <= 0)){

 //Replace the magnitude by a very small positive

 // value.

 magnitude[cnt] = 0.0000001;

 }else if(magnitude[cnt] == Double.POSITIVE_INFINITY){

 //Replace the magnitude by a very large positive

 // value.

 magnitude[cnt] = 9999999999.0;

 }//end else if

 }//end for loop

 //Now convert magnitude data to log base 10

 for(int cnt = 0;cnt < magnitude.length;cnt++){

 magnitude[cnt] = log10(magnitude[cnt]);

 }//end for loop

*/

 //Find the absolute peak value. Begin with a negative

 // peak value with a large magnitude and replace it

 // with the largest magnitude value.

 double peak = -9999999999.0;

 for(int cnt = 0;cnt < magnitude.length;cnt++){

 if(peak < abs(magnitude[cnt])){

 peak = abs(magnitude[cnt]);

 }//end if

 }//end for loop

 //Normalize to 20 times the peak value

 for(int cnt = 0;cnt < magnitude.length;cnt++){

 magnitude[cnt] = 20*magnitude[cnt]/peak;

 }//end for loop

 //Now feed the normalized data to the plotting

 // object.

 for(int cnt = 0;cnt < magnitude.length;cnt++){

 plot.feedData(magnitude[cnt],angle[cnt]/20);

 }//end for loop

 }//end displayFreqResponse

 //---//

 //This method receives two arrays and treats each array

 // as a vector. The two arrays must have the same length.

 // The program reverses the order of one of the vectors

 // and returns the vector dot product of the two vectors.

 double reverseDotProduct(double[] v1,double[] v2){

 if(v1.length != v2.length){

 System.out.println("reverseDotProduct");

 System.out.println("Vectors must be same length.");

 System.out.println("Terminating program");

 System.exit(0);

 }//end if

 double result = 0;

 for(int cnt = 0;cnt < v1.length;cnt++){

 result += v1[cnt] * v2[v1.length - cnt - 1];

 }//end for loop

 return result;

 }//end reverseDotProduct

 //---//

}//end class Adapt08

Listing 14

Copyright 2006, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which have gained a worldwide following among

experienced and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

Keywords
Java adaptive filtering convolution filter frequency spectrum LMS amplitude phase time-delay

linear DSP impulse decibel log10 DFT transform bandwidth signal noise real-time dot-product

vector time-series prediction identification inverse noise cancellation

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

-end-

