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Preface 

DSP and adaptive filtering 

With the decrease in cost and the increase in speed of digital devices, Digital Signal Processing 

(DSP) is showing up in everything from cell phones to hearing aids to rock concerts.  Many 

applications of DSP are static.  That is, the characteristics of the digital processor don't change 

with time or circumstances.  However, a particularly interesting branch of DSP is adaptive 

filtering.  This is a situation where the characteristics of the digital processor change with time, 

circumstances, or both. 

Second in a series 

This is the second lesson in a series designed to teach you about adaptive filtering in Java. 

The first lesson, titled Adaptive Filtering in Java, Getting Started, introduced you to the topic by 

showing you how to write a Java program to adaptively design a time-delay convolution filter 

with a flat amplitude response and a linear phase response using an LMS adaptive 

algorithm.  That was a relatively simple time-adaptive filtering problem for which the correct 

solution was well known in advance.  That made it possible to check the adaptive solution 

against the known solution. 

An adaptive whitening filter 
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In this lesson, I will show you how to write an adaptive whitening filter program in Java, which 

is conceptually more difficult than the filter that I explained in the previous lesson.  This lesson 

will also show you how to use the whitening filter to extract wide-band signal from a channel in 

which the signal is corrupted by one or more components of narrow-band noise. 

Viewing tip  

You may find it useful to open another copy of this lesson in a separate browser window.  That 

will make it easier for you to scroll back and forth among the different listings and figures while 

you are reading about them. 

Supplementary material  

I recommend that you also study the other lessons in my extensive collection of online Java 

tutorials.  You will find those lessons published at Gamelan.com.  However, as of the date of this 

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and 

sometimes they are difficult to locate there.  You will find a consolidated index at 

www.DickBaldwin.com.  

General Background Information 

Review of DSP concepts 

Before getting into the details of the program, I need to prepare you to understand the program 

by reviewing some digital signal processing (DSP) concepts with you. 

Sampled time series, convolution, and frequency spectrum 

First there is the matter of the spectrum of a signal as well as the concepts of convolution and 

sampled time series.  In order to understand this program, you will first need to understand the 

material in the following previously-published lessons: 

 100   Periodic Motion and Sinusoids 

 104   Sampled Time Series 

 108   Averaging Time Series 

 1478 Fun with Java, How and Why Spectral Analysis Works 

 1482 Spectrum Analysis using Java, Sampling Frequency, Folding Frequency, and the 

FFT Algorithm 

 1483 Spectrum Analysis using Java, Frequency Resolution versus Data Length 

 1484 Spectrum Analysis using Java, Complex Spectrum and Phase Angle 

 1485 Spectrum Analysis using Java, Forward and Inverse Transforms, Filtering in the 

Frequency Domain 

 1487 Convolution and Frequency Filtering in Java 

 1488 Convolution and Matched Filtering in Java 

 1492 Plotting Large Quantities of Data using Java 
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You will find links to all of the material listed above at Digital Signal Processing-DSP. 

Data predictability 

The adaptive design of the whitening filter in this lesson is based on the predictability, or lack 

thereof, of a time series.  Predictability is a measure of the degree to which it possible to use the 

current sample and a set of previous samples to predict the value of the next sample. 

White noise versus a single-frequency sinusoid 

The two extremes of predictability are given by white noise on one hand and a single frequency 

sinusoid on the other. 

(Recall that insofar as sampled time series are concerned, white noise is 

represented by a time series that is composed of equal contributions of all 

frequencies in the spectrum between zero and the Nyquist folding frequency, 

which is one-half the sampling frequency.) 

Generating white noise 

The easiest way to generate sampled white noise is to take the values for the samples from a 

random number generator.  If you take a sufficiently long series of such values and perform a 

spectral analysis on that time series, you will find that as the length of the series approaches 

infinity, the spectrum approaches the ideal case of an equal contribution of energy at all 

frequencies. 

(If that doesn't happen, then the values produced by your random number 

generator aren't truly random.) 

Random values are uncorrelated 

If the series of values produced by the random number generator is truly random, then the value 

of each sample is totally uncorrelated with all previous values.  If there is no correlation between 

successive values, then it is not possible to successfully predict the next value (except through 

pure chance) based on a knowledge of some subset or all of the previous values. 

(For example, given a true coin and given the outcome of any number of previous 

tosses, it is not possible to predict the next toss with a probability of success 

greater than one chance in two.  In other words, knowing the outcome of many 

previous tosses doesn't improve your likelihood of correctly predicting the next 

toss to better than one chance in two.) 

Therefore, if white noise is equivalent to a series of values produced by a random number 

generator, it is not possible to predict the value of a white noise sample using any number of 

previous samples. 
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A sinusoid is predictable 

On the other hand, a pure single-frequency sinusoid is completely deterministic.  There is 

nothing random about it.  That is to say, given a small number of successive values from a pure 

sinusoid, it is easy to design a convolution filter that will process that sinusoid to produce a 

perfect prediction of the next value given a small set of previous values. 

Predictability is inversely related to bandwidth 

In the real world, signals and noise are neither pure sinusoids nor completely random.  However, 

the narrower the bandwidth of a time series, the easier it is to predict the next value given a set of 

previous values.  Similarly, the wider the bandwidth of a time series, the more difficult it is to 

predict the next value given a set of previous values.  The program in this lesson will take those 

facts into account to adaptively design a convolution filter that will extract wide-band signals 

that have been corrupted by additive narrow-band noise. 

Why would we want to do this? 

This is not an unusual circumstance.  Wide-band signals corrupted by narrow-band noise can 

occur in a variety of real-world situations.  Some of the most common are situations in which 

wide-band signals are corrupted by additive reverberation noise.  This can occur in a theatre, for 

example, where specific audio frequencies tend to reverberate due to the architecture.  Another 

common example is an audio system that is corrupted by 60-cycle hum. 

Reflection seismology 

One of the earliest applications of digital whitening filters (although not necessarily adaptive) 

took place in the industry that searches for underground petroleum deposits using reflection 

seismology. 

In reflection seismology, a burst of energy is "shot" into the earth where it is reflected back to the 

surface by the different layers in the earth.  The reflected energy that arrives back at the surface 

is measured by sensors on the surface.  The two-way travel time of the energy to and from each 

layer is different.  Thus, the reflections from the shallow layers arrive back at the surface before 

the reflections from the deeper layers.  The output from each sensor (or possibly each group of 

sensors added together) is digitized and treated as a sampled time series. 

Repeat the process many times 

This process is repeated over and over moving along a straight line on the surface of the 

earth.  Then the sampled time series are plotted on the same display with equal spacing between 

the "traces" as they are often called.  Each trace represents a point on the surface of the earth, 

and the peaks and valleys in the time series represent reflections from the various layers in the 

earth below that point. 

Orient the display 



If this display is then oriented such that the zero time reference is at the top of the display and 

time increases going down the display, the peaks and valleys on the individual traces can be 

correlated by eye to trace out the layering in the earth.  Examples of such displays are shown in 

Figure 2 at the following URL: 

http://sepwww.stanford.edu/sep/prof/iei/mltp/paper_html/node4.html  

Each of the panels in Figure 2 at the above URL consists of hundreds of seismic traces with time 

going down the page.  To the trained eye, the layering in the earth is evident in those images. 

Initially used on shore 

Reflection seismology was first used to search for underground petroleum deposits underneath 

the land masses on the earth.  In this case, the shot of energy often consisted of a small explosion 

with the explosive material being tamped into a shallow borehole in the earth.  The sensors for 

each different shot point were often placed on the surface of the earth in a line. 

Moving offshore 

Around the turn of the twentieth century, this technique was moved offshore to those portions of 

the earth covered with shallow water along the continental shelves.  The purpose was to find 

underground petroleum deposits under these shallow water areas.  In this case, the sensors were 

often trailed along behind the boat on a cable that was slightly submerged.  The shots consisted 

of a variety of acoustic energy sources such as small explosions, or the release of a burst of air 

into the water from a high-pressure pneumatic device. 

Reverberation 

A special new problem was encountered with the transition to offshore exploration.  When the 

shot was fired in an attempt to inject energy into the earth, a large percentage of the energy 

became trapped in the water layer and continued to bounce back and forth between the surface of 

the water and the surface of the earth below the water.  This is a form of narrow-band 

reverberation. 

The level of the reverberation energy was greater than the level of the reflections from the deep 

layering of the earth.  Thus, the reverberation energy appeared as narrow-band reverberation 

noise in the output from the sensors, and the reflection energy of interest appeared as wide-band 

signals.  The reverberation energy tended to mask the reflections from the different surfaces in 

the earth making it difficult to interpret the results. 

Mathematical solutions 

Different mathematical techniques (usually involving matrix inversions) were used to design 

convolution filters that could be used to filter out the narrow-band noise and to make the wide-

band signals visible in the displays.  These filters were called whitening filters, and the overall 

process was often referred to as deconvolution. 
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If you are interested in learning more about the reverberation problem and deconvolution in 

exploration seismology, visit this site or go to Google and search for the keywords seismic and 

deconvolution. 

An adaptive solution 

The adaptive algorithm that I will present in this lesson is an adaptive approach to the matrix 

inversion solutions that were frequently used to solve this reverberation problem. 

The algorithm is also appropriate for use in a variety of other application areas involving wide-

band signals corrupted by narrow-band noise. 

Before getting into the details of the program, I am going to present and explain some 

experimental results that were produced using the program. 

How does it work? 

In the previous lesson, you learned how to use a least mean square (LMS) adaptive algorithm to 

adjust the individual coefficients in a convolution filter.  The setup was such that when the filter 

was applied to one sampled time series it would attempt to cause the output to look like another 

sampled time series. 

In the scenario presented in the previous lesson, the second sampled time series was simply a 

time-shifted version of the first time series.  As a result, the convolution filter that resulted from 

the adaptive process was a filter with a flat amplitude response and a linear phase 

response.  When the filter was applied to the first sampled time series, the output was a time-

shifted version of that time series that matched the second time series. 

We will use that same approach in this lesson, but will apply the approach to a different scenario. 

The scenario for this lesson 

In this lesson, we will have a sampled time series that consists of the sum of unpredictable wide-

band signal and narrow-band (predictable) noise.  The objective is to produce a replica of the 

narrow-band noise and then to subtract it from the original time series consisting of signal plus 

noise.  If successful, this will produce an output consisting mainly of the original wide-band 

signal. 

Will predict the next sample in the series 

We will set the adaptive algorithm up so that it uses the current sample plus a specified number 

of history samples to develop a convolution filter that is capable of predicting the value of the 

next sample. 

Because the narrow-band noise is largely predictable and the wide-band signal is largely 

unpredictable, the filter coefficients will adjust themselves to make a good prediction of the 
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narrow-band noise.  When we apply this convolution filter to the time series consisting of signal 

plus noise, the output will be an estimate of the waveform of the narrow-band noise.  We will 

then subtract that waveform from the time series consisting of signal plus noise, leaving an 

estimate of the wide-band signal. 

The quality of the results 

The quality of the estimate of the wide-band signal will depend on a variety of factors including 

but not limited to: 

 The number of narrow-band noise components that are added to the signal. 

 The signal-to-noise ratio. 

 The number of coefficients in the convolution filter. 

 The feedback gain factor. 

 The number of iterations allowed for the adaptive process to converge to a solution. 

Some experiments 

Before getting into the details regarding the program code, we will perform some experiments 

where we will vary the factors in the above list and observe the results. 

First, however, I want to discuss of the difference between a prediction filter and a whitening 

filter, and to introduce you to the graphic output produced by the program. 

The whitening process 

In the above discussion, I explained that we will develop a convolution filter that can be applied 

to a sampled time series consisting of signal plus noise to use the current sample plus a specified 

number of historical samples to produce an output value that is an estimate of the value of the 

next sample. 

I also explained that in order to separate the signal from the noise, we will subtract the estimate 

of the next sample from the actual value of the next sample.  The combined process of applying 

the prediction filter and performing the subtraction process can be thought of as a whitening 

processing. 

The whitening filter 

I hope that by now you are sufficiently familiar with the convolution process that you will 

recognize that we can combine these two steps simply by concatenating a coefficient value of -1 

onto the end of the prediction filter and applying this filter to the sampled time series consisting 

of signal plus noise. 

I will refer to the filter that is created by concatenating a coefficient with a value of -1 onto the 

prediction filter as the whitening filter.  I will show you an example of a whitening filter shortly. 
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The time-series output 

This program uses a class named PlotALot07 to display various sampled time series involved in 

the adaptive process. 

(In fact, much of the code in this program involves displaying various results for 

explanation purposes having nothing to do with the actual adaptive process.) 

PlotALot07 

An object of the PlotALot07 class produces multiple pages of plotted data with multiple traces 

or time series on each page.  Figure 1 shows an example of one of the pages produced by this 

program. 

 
Figure 1 

Each page displays six different sampled time series plotted horizontally with time increasing 

from left to right.  (At this point, I will start referring to the sampled time series as traces.) 

Figure 1 shows the page produced by the program at the beginning of an adaptive run for a 

specific set of parameters. 

The output from the whitening filter 

The black trace at the top of Figure 1 shows the output from the whitening filter.  Ideally this 

trace contains the wide-band signal with the narrow-band noise having been removed.  However, 

in Figure 1, the top trace is still significantly corrupted by the narrow-band noise. 

Figure 2 shows the graphic output produced by the same run after approximately 500 adaptive 

iterations.  At this point, the narrow-band noise has been largely removed by the application of 

the whitening filter leaving only the wide-band signal in the top trace in Figure 2. 



 
Figure 2 

The wide-band signal 

The second (red) trace in Figure 1 and Figure 2 shows the raw wide-band signal prior to adding 

the narrow-band noise.  This wide-band signal consists of samples taken from a random number 

generator.  Therefore, this is a white signal containing equal contributions of all frequency 

components between zero and the Nyquist folding frequency. 

Ideally, the top trace should look exactly like the second trace once the narrow-band noise has 

been removed.  This is pretty much the case after 500 adaptive iterations in Figure 2. 

The narrow-band noise 

The third (blue) trace in Figure 1 and Figure 2 shows the narrow-band noise that was added to 

the wide-band signal for the purpose of purposely corrupting the signal.  For the case shown in 

Figure 1 and Figure 2, the narrow-band noise consisted of a single sinusoid with a peak-to-peak 

amplitude roughly twice the peak-to-peak amplitude of the wide-band signal. 

The wide-band signal plus the narrow-band noise 

The fourth (green) trace in Figure 1 and Figure 2 shows the sum of the wide-band signal and the 

narrow-band noise.  This is the time series that is processed by the whitening filter to produce the 

output shown in the top trace. 

You might note that at the beginning of the adaptive run in Figure 1, the output of the whitening 

filter in the top trace is very similar to the fourth trace except for a time shift.  However, by the 

end of 500 adaptive iterations, the output from the whitening filter bears little resemblance to the 

fourth trace, but instead looks much more like the second trace, which is pure signal. 

Output from the prediction filter 

The output from the fifth (violet) trace is the output produced by applying the prediction filter to 

the fourth trace consisting of the sum of signal and noise.  At the beginning of the adaptive 

process in Figure 1, the output from the prediction filter is essentially zero for all output 

values.  (This is because all of the initial coefficients in the prediction filter were initialized to a 

value of zero.)  However, by the end of 500 adaptive iterations, the output from the prediction 
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filter in the fifth trace is a very good replica of the narrow-band noise in the third trace.  Thus, 

subtracting the prediction filter output from the input that consists of the sum of signal and noise 

leaves a good estimate of the signal. 

The adaptive target 

The sixth trace at the bottom is the target time series that is used to control the  

adaptive process. 

(I explained the use of an adaptive target in the previous lesson.) 

This trace displays the next sample beyond the samples that are processed by the prediction filter 

during each adaptive iteration.  This trace is essentially the signal plus noise with a time shift as 

you can see by comparing it to the fourth (green) trace in Figure 1 and Figure 2.  The prediction 

filter attempts to predict the value of this trace during each iteration and the adaptive process is 

designed to improve the ability of the prediction filter to perform that prediction in a high quality 

fashion. 

The impulse response and the frequency response 

As another approach to explaining how adaptive whitening works, Figure 3 shows the impulse 

response and the frequency response of the whitening filter at the beginning of the run, and at the 

end of every 100 iterations of the iterative adaptive process. 

The impulse responses of the whitening filters at those points in time are shown in the panel on 

the left of Figure 3.  The frequency response of each of the impulse responses is shown in the 

panel on the right of Figure 3. 

http://cnx.org/content/m49840/latest/?collection=col11642/latest


  

Figure 3 

The impulse response of the whitening filter 

First consider the impulse response of the whitening filter.  The top trace in the left panel shows 

the impulse response at the beginning of the run before the adaptive process begins.  Each of the 

traces below that one shows the impulse response at the end of each set of 100 adaptive 

iterations, ending with the impulse response at the end of 500 iterations. 

The impulse response of the whitening filter always ends with a coefficient value of -1. 

(Recall that the whitening filter is constructed by concatenating a coefficient with 

a value of -1 onto the end of the prediction filter.) 

The impulse response of the prediction filter 

Thus, the impulse response of the prediction filter consists of all of the coefficient values to the 

left of the coefficient having the value of -1.  These coefficient values are initialized to values of 

zero at the beginning of the adaptive process as shown by the top impulse response in Figure 3. 

As you can see by examining each impulse response going down the page, the adaptive process 

causes the prediction filter coefficients to take on different values as the adaptive process 

proceeds through 500 adaptive iterations. 



As you can also see, the coefficient values for the prediction filter have pretty well stabilized by 

the end of 300 iterations for this set of conditions. 

The frequency response 

Although the format can be a little confusing, the right panel in Figure 3 shows the amplitude 

and phase response of each of the whitening filters shown in the left panel.  Each of the plots in 

the right panel shows the frequency response from a frequency of zero on the left, to the Nyquist 

folding frequency (one-half the sampling frequency) on the right. 

The red and black traces 

To get your bearings, consider the red trace and the black trace at the bottom of the right 

panel.  The black trace with the notch near the bottom of the right panel shows the amplitude 

response of the whitening filter in the bottom of the left panel.  The red trace at the bottom of the 

right panel shows the corresponding phase response for the same whitening filter plotted over an 

interval of +180 degrees to -180 degrees. 

Each such pair of red and black traces corresponds to the phase and amplitude response of the 

whitening filter immediately to the left of the red phase response. 

A notch filter 

Consider first the amplitude response shown by the black trace at the bottom of the right 

panel.  This amplitude response shows a reasonably sharp notch at a frequency about one fourth 

of the way between zero on the left and the Nyquist folding frequency on the right.  The location 

of the notch matches the frequency of the narrow-band noise that was suppressed by the adaptive 

process. 

A flat wide-band response 

The frequency response of the whitening filter is relatively flat at all frequencies on both sides of 

the notch.  When this filter is applied to the input consisting of wide-band signal plus narrow-

band noise at the same frequency as the notch, the filter does a reasonably good job of preserving 

the wide-band signal and suppressing the narrow-band noise.  That agrees with what we saw in 

the time series output in Figure 2. 

The adaptive progression 

If you examine the amplitude response curves at each level from top to bottom, you can see how 

this notch develops as the adaptive process converges.  As was the case with the impulse 

response, the position of the notch and the flatness at surrounding frequencies was pretty well 

established and stabilized by the end of about 300 adaptive iterations. 

The phase response  
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Another important characteristic of the whitening filter is the phase response.  The output of a 

filter with a flat amplitude response and a phase shift of zero degrees simply reproduces the 

input.  That is probably the best case scenario.  A phase shift of 180 degrees (or -180 degrees) 

reverses the algebraic sign of the input values.  This is probably the next best scenario because 

this phase shift is relatively easy to compensate for.   

(Note that a -180-degree phase shift is the same as a +180-degree phase shift.) 

Phase or waveform distortion 

Except for the unique case of a linear phase shift (see the previous lesson), phase shifts between 

the two extremes of zero degrees and 180 degrees usually introduce phase or waveform 

distortion into the signal.  This is usually undesirable and can be difficult to compensate for. 

The phase response curve 

The red phase response curves in Figure 3 are plotted against a black axis that represents zero 

degrees.  As you can see, at the end of 500 adaptive iterations and at most frequencies, the phase 

shift is either +180 degrees or -180 degrees, indicating that there will be very little phase or 

waveform distortion in the signal as it passes through the whitening filter.  The only frequencies 

where this is not true is in the narrow band of frequencies in the near vicinity of the notch in the 

amplitude response.  Thus, we can expect a small amount of phase distortion for those signal 

components on either side of the notch in the amplitude response. 

Overall, as we saw in Figure 2, this whitening filter does a reasonably good job of suppressing 

the narrow-band noise while preserving the wide-band signal with very little phase or waveform 

distortion. 

Required input data 

The user is required to provide the information shown in Figure 4 as command-line parameters 

to the program. 

(If the user fails to provide the required command-line parameters, default values 

are used.  The results shown in Figures 1 through 3 resulted from the default 

values.) 

feedbackGain: The gain factor that is used in the feedback  

loop to adjust the coefficient values in the  

prediction/whitening filter. (A whitening filter is a  

prediction filter with a -1 appended to its end.) If the 

value of the feedbackGain is too high, the program will  

become unstable.  If too low, convergence will take a long  

time. Values toward the low end tend to converge to better  

solutions. It is possible for the feedbackGain value to be  

low enough to avoid instability but high enough to cause  

the adaptive process to bounce around and never find a 

good 
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solution. Typical useful values for feedbackGain in this  

program are around 0.00001.   

 

numberIterations: The is the number of iterations that the  

program executes before stopping and displaying all of the  

graphic results. 

 

predictionFilterLength: This is the number of coefficients  

in the prediction filter.  This can be any integer value  

greater than zero. The program will throw an exception if  

this value is zero.  Typical values are 15 to 30.  Longer  

filters tend to produce better results in terms of the  

narrowness of the notches at the noise frequencies and the  

flatness of the filter between the notches. 

 

signalScale: A scale factor that is applied to the wide  

band signal provided by the random noise generator. The  

random noise generator produces uniformly distributed  

values ranging from -0.5 to +0.5. Scaling values of from 

10 

to 20 work well in terms of producing a wide-band signal  

that is of a suitable magnitude for plotting. Set this to 

0 

to see how the program behaves in the presence of noise 

and 

the absence of signal. 

 

noiseScale: A scale factor that is applied to each of the  

sinusoidal noise functions before they are added to the  

signal. The raw sinusoids vary from -1.0 to +1.0.  Scaling  

values of from 10 to 20 work well in terms of being of a  

suitable magnitude for plotting. Set this to 0 to see how  

the program behaves in the presence of wide-band signal 

and 

the absence of narrow-band noise.  

 

numberNoiseSources: This value specifies the number of 

sinusoidal noise components that are added to the wide-

band 

signal.  Must be an integer value from 0 to 3. 

Figure 4 

The default values 

For the record, the default values that produced the output shown in Figures 1 through 3 are as 

shown in Figure 5. 

Using following values by default: 

feedbackGain: 1.0E-5 

numberIterations: 500 

predictionFilterLength: 26 

signalScale: 20.0 

noiseScale: 20.0 

numberNoiseSources: 1 



Figure 5 

A more difficult problem 

Now let's look at the experimental results for a considerably more difficult scenario.  The 

parameters for this scenario are shown in Figure 6. 

Using following values from input: 

feedbackGain: 1.0E-5 

numberIterations: 1000 

predictionFilterLength: 45 

signalScale: 20.0 

noiseScale: 10.0 

numberNoiseSources: 3 

Figure 6 

The main thing that makes this scenario more difficult is the fact that there are three narrow-band 

noise components instead of only one.  This means that the adaptive process will be required to 

build a whitening filter with a frequency response that has three notches but which is otherwise 

flat. 

To accommodate this added difficulty, I increased the prediction filter length to 45 coefficients 

and extended the number of adaptive iterations from 500 to1000.  I didn't change the feedback 

gain. 

The time-domain output 

Figure 7 shows the time-domain graphs at the beginning and at the end of the adaptive run after 

1000 adaptive iterations. 

 



 

Figure 7 

As you can see in the bottom panel of Figure 7, the whitening filter output in the top (black) trace 

is a reasonably good representation of the actual wide-band signal shown in the second (red) 

trace.  This indicates that the adaptive process was successful in designing a whitening filter that 

suppresses the three narrow-band noise components while preserving the wide-band signal. 

The impulse response and the frequency response 

Figures 8 and 9 show the impulse and frequency response curves for the whitening filter as the 

adaptive process converges.  The traces at the top of Figure 8 show the impulse response and 

frequency response of the whitening filter before the adaptive process began.  Each successive 

set of traces shows the response curves at the end of 100 adaptive iterations. 

  

Figure 8 



The traces at the bottom of Figure 8 show the response curves after 500 adaptive iterations. 

  

Figure 9 

The fifth set of traces down from the top in Figure 9 show the response curves at the end of 1000 

iterations. 

Three notches are visible 

You can see the three notches in the frequency response develop as you examine the curves from 

the top of Figure 8 to near the bottom of Figure 9.   

Reasonably flat amplitude response 

Although some ripple is evident in the amplitude response near the bottom of Figure 9, the 

amplitude response outside the areas of the three notches is reasonably flat. 

Well-behaved phase response 

Also, outside the areas of the three notches, the phase response is very close to either 180 

degrees or -180 degrees indicating that there should be very little phase or waveform distortion 

for the wide-band signal.  This agrees with a visual comparison of the first and second traces in 

the bottom panel of Figure 7. 



Enough talk, let's see some code 

Now that you know what to expect from the behavior of this program, it's time to examine the 

program code in some detail. 

Preview 

The program named Adapt02 illustrates one aspect of time-adaptive signal processing.  This 

program implements a time-adaptive whitening filter using a predictive approach. 

Input signal plus noise 

The program input is a time series consisting of a wide-band signal plus up to three sinusoidal 

noise components.  The program adaptively creates a filter that attempts to eliminate the 

sinusoidal noise while preserving the wide-band signal. 

Time series output 

The following time series are displayed when the program runs: 

 -err:  This is the negative of the error which is actually the output from the whitening 

filter.  Ideally this time series contains the wide-band signal with the sinusoidal noise 

having been removed. 

 signal:  The raw wideband signal consisting of samples taken from a random number 

generator. 

 sineNoise:  The raw noise consisting of the sum of one, two, or three sinusoidal 

functions. 

 input:  The sum of the signal plus the sinusoidal noise. 

 output:  The output produced by applying the prediction filter to the input signal plus 

noise. 

 target:  The target time series that is used to control the adaptive process.  This is the 

next sample beyond the samples that are processed by the prediction filter.  The 

prediction filter attempts to predict this value.  Thus, the adaptive process attempts to 

cause the output from the prediction filter to match the next sample in the incoming 

signal plus noise. 

Examples of these six sampled time series outputs are shown in Figure 1 and Figure 2 above. 

Frequency response of the whitening filter 

Although not required by the adaptive process, the frequency response of the whitening filter is 

computed and displayed once every 100 adaptive iterations.  This output is provided to help you 

to understand the adaptive process. 

Ideally the amplitude response will be flat with very narrow notches at the frequencies of the 

interfering sinusoidal noise components. 



Both the amplitude and the phase response are displayed once every 100 iterations.  This makes 

it possible for you to see the notches develop in the frequency response of the whitening filter as 

it converges on a solution.  It also makes it possible for you to see how the phase behaves at and 

between the notches in the amplitude response. 

An example of the frequency response output is shown in the right panel in Figure 3 above. 

Impulse response of the whitening filter 

The individual time-domain whitening filters, (on which the frequency response is computed), 

are also displayed once every 100 iterations.  An example is shown in the left panel of Figure 3. 

Command-line input 

The user provides six command line parameters to control the operation of the program.  These 

command-line parameters are described in Figure 4 above.  If the user doesn't provide any 

command line parameters, six default values are used instead. 

Other classes required 

In addition to the class named Adapt02, this program requires the following classes: 

 PlotALot01 

 PlotALot03 

 PlotALot07 

 ForwardRealToComplex01 

I provided the source code for and explained the class named PlotALot01 in the earlier lesson 

titled Plotting Large Quantities of Data using Java.  Therefore, I won't repeat that explanation in 

this lesson. 

I also provided and explained the class named PlotALot03 in the earlier lesson titled Plotting 

Large Quantities of Data using Java, and I won't repeat that material here either. 

I provided the source code for and explained the class named ForwardRealToComplex01 in the 

earlier lesson titled Spectrum Analysis using Java, Sampling Frequency, Folding Frequency, and 

the FFT Algorithm.  Once again, I will simply refer you to that lesson and won't repeat that 

material here. 

The class named PlotALot07 is new to this lesson.  The source code for this class is provided in 

Listing 22 near the end of the lesson.  The class named PlotALot07 is a simple extension of the 

class named PlotALot04, which I explained in the lesson titled Plotting Large Quantities of Data 

using Java.  I will refer you to that lesson for a general explanation of the class and won't provide 

further explanation of the class named PlotALot07. 

Program testing 
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This program was tested using J2SE 5.0 running under Windows XP.  J2SE 5.0 or later is 

required due to the use of Generics and the use of static import directives. 

Discussion and Sample Code 

The class named Adapt02 

The beginning of the class named Adapt02 and the beginning of the main method is shown in 

Listing 1. 

class Adapt02{ 

  public static void main(String[] args){ 

    //Default parameter values 

    double feedbackGain = 0.00001; 

    int numberIterations = 500; 

    int predictionFilterLength = 26; 

    double signalScale = 20; 

    double noiseScale = 20; 

    int numberNoiseSources = 1; 

 

Listing 1 

The code in Listing 1 establishes default values for six program parameters.  These default 

values are used if the user doesn't provide six parameters on the command line.  These default 

values were used to produce the program outputs shown in Figure 1 through Figure 3. 

Dealing with the command-line parameters 

The code in Listing 2 deal with the command-line parameters as described above. 

    if(args.length != 6){ 

      System.out.println( 

                   "Usage with all parameters following " 

+ 

                               "program name:\n" + 

                               "java Adapt02\n" + 

                               "feedbackGain\n" +  

                               "numberIterations\n" +  

                               "predictionFilterLength\n" 

+ 

                               "signalScale\n" + 

                               "noiseScale\n" + 

                               "numberNoiseSources\n"); 

      System.out.println( 

            "Using following values by default:\n" + 

            "feedbackGain: " + feedbackGain + 

            "\nnumberIterations: " + numberIterations + 

            "\npredictionFilterLength: " +  

                                   predictionFilterLength 

+ 
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            "\nsignalScale: " + signalScale + 

            "\nnoiseScale: " + noiseScale + 

            "\nnumberNoiseSources: " + 

numberNoiseSources); 

    }else{//Command line params were provided. 

      feedbackGain = Double.parseDouble(args[0]); 

      numberIterations = Integer.parseInt(args[1]); 

      predictionFilterLength = Integer.parseInt(args[2]); 

      signalScale = Double.parseDouble(args[3]); 

      noiseScale = Double.parseDouble(args[4]); 

      numberNoiseSources = Integer.parseInt(args[5]); 

     

      System.out.println( 

            "Using following values from input:\n" + 

            "feedbackGain: " + feedbackGain + 

            "\nnumberIterations: " + numberIterations + 

            "\npredictionFilterLength: " +  

                                   predictionFilterLength 

+ 

            "\nsignalScale: " + signalScale + 

            "\nnoiseScale: " + noiseScale + 

            "\nnumberNoiseSources: " + 

numberNoiseSources); 

    }//end else 

 

Listing 2 

The code in Listing 2 also displays the parameters that are used for each run of the program on 

the command-line screen. 

The code in Listing 2 is straightforward and shouldn't require further explanation. 

Invoke the method named process 

The code in Listing 3 instantiates a new object of the Adapt02 class and invokes the method 

named process on that object.  The values of each of the six command-line parameters described 

above are passed to the process method.  These values have already been converted from 

command-line String objects to values of type double and type int. 

    new Adapt02().process(feedbackGain, 

                          numberIterations, 

                          predictionFilterLength, 

                          signalScale, 

                          noiseScale, 

                          numberNoiseSources); 

  }//end main 

 

Listing 3 

Listing 3 also signals the end of the main method.  When the process method returns, the 

program terminates. 



The process method 

Listing 4 shows the beginning of the method named process.  This is the primary adaptive 

processing and plotting method for the program. 

  void process(double feedbackGain, 

               int numberIterations, 

               int predictionFilterLength, 

               double signalScale, 

               double noiseScale, 

               int numberNoiseSources){ 

 

Listing 4 

The initial prediction filter 

Listing 5 creates the initial prediction filter with a value of zero for every coefficient.  The 

coefficient values are stored as values of type double in an array object referred to by 

predictionFilter.  Recall that array elements of type double are automatically initialized to a 

value of zero in Java. 

    double[] predictionFilter =  

                        new 

double[predictionFilterLength]; 

 

Listing 5 

You could easily initialize the coefficient values in the prediction filter to values other than zero 

if you had a reason to do so. 

The initial whitening filter 

The code in Listing 6 creates the initial whitening filter and initializes it for spectrum analysis 

and plotting by: 

 Creating an array object of type double to contain the whitening filter coefficients. 

 Copying the initial prediction filter coefficients into the lower elements of the whitening 

filter array. 

 Setting the topmost value in the whitening filter array to a value of -1.  (Recall that the 

whitening filter is created by concatenating a value of -1 onto the end of the prediction 

filter as described earlier.) 

    double[] whiteningFilter =  

                   new double[predictionFilter.length + 

1]; 

    System.arraycopy(predictionFilter, 

                     0, 

                     whiteningFilter, 



                     0, 

                     predictionFilter.length); 

    //Set the final value in the whitening filter to -1. 

    whiteningFilter[whiteningFilter.length - 1] = -1; 

 

Listing 6 

Create two delay lines 

The code in Listing 7 creates two array objects to serve as delay lines.  The previous lesson 

taught you about delay lines, so I won't repeat that material here. 

    //Create an array to serve as a two-sample delay line 

    // for the raw data. 

    double[] rawData = new double[2]; 

    //Create an array to serve as a processing delay line 

    // for the data being processed. 

    double[] chanA = new double[predictionFilter.length]; 

 

Listing 7 

Plotting objects 

Listing 8 instantiates an object of the PlotALot07 class, which is used later to plot the time series 

data shown in Figure 1 and Figure 2. 

    PlotALot07 timePlotObj =  

                  new 

PlotALot07("Time",468,200,25,10,4,4); 

 

    PlotALot03 freqPlotObj =  

                   new 

PlotALot03("Freq",264,487,35,2,0,0); 

     

    PlotALot01 filterPlotObj = new PlotALot01("Filter", 

            (whiteningFilter.length * 4) + 

8,487,70,4,0,0); 

 

Listing 8 

Then Listing 8 instantiates an object of the PlotALot03 class, which is used later for plotting two 

channels of frequency response data at specific time intervals during the adaptive process as 

shown in the right panel of Figure 3.  One channel is for the amplitude response and the other 

channel is for the phase response. 

Finally, Listing 8 instantiates an object of the PlotALot01 class, which is used later to display 

the whitening filter at specific time intervals during the adaptive process as shown in the left 

panel of Figure 3. 
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If you have been following along and reading my previous lessons, the use of objects from the 

PlotALot family of classes should be very familiar to you by now.  Therefore, I won't discuss 

this topic further in this lesson. 

A possible point of confusion 

There is one possible point of confusion, however, that is worth noting in this lesson (although it 

was explained fully in the previous lesson). 

The minimum allowable width for a Java Frame object is 112 pixels when Java is running under 

Windows XP.  Therefore, the display of the impulse responses of the whitening filters won't 

synchronize properly and show one filter on each line for whitening filter lengths less than 26 

coefficients.  To compensate for this problem, the code that feeds data to the plotting object later 

in the program extends the length of the filter to cause it to synchronize and to plot one set of 

filter coefficients on each line. 

The value of the extension coefficients 

When the filter is artificially extended (for plotting purposes only), it is extended with artificial 

filter coefficients having a value of 2.5.  This was done to make it obvious which part of the plot 

shows the actual filter coefficients and which part shows the artificial extension. 

Figure 10 shows the display of a six whitening filters based on a prediction filter length of only 

fifteen coefficients. 
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Figure 10 

The flat raised portion on the right side of each individual impulse response is not part of the 

actual filter, but rather is the artificial extension that was necessary to force this plot to 

synchronize properly under Windows XP.  The result of proper synchronization is that the 

impulse responses are plotted one above the other as shown.  (If this seems confusing, I 

recommend that you read more about it in the previous lesson.) 

Working variables 

Listing 9 declares and initializes several working variables. 

    //Declare and initialize working variables. 

    double output = 0; 

    double err = 0; 

    double target = 0; 

    double input = 0; 

    double signal = 0; 

    double sineNoise = 0; 

 

Listing 9 

Display the frequency response 

Recall that the adaptive process hasn't begun at this point in the program.  Listing 10 invokes the 

method named displayFreqResponse to display the frequency response of the initial whitening 

filter in the top of the right panel in Figure 3. 

    displayFreqResponse(whiteningFilter,freqPlotObj,128, 

                               whiteningFilter.length - 

1); 

 

Listing 10 

At this point, the whitening convolution filter consists of a single coefficient with a value of -

1.  All other coefficients have a value of zero.  As would be expected, therefore, the amplitude 

response is flat across the entire frequency spectrum.  The phase response is also flat across the 

entire spectrum with a value of 180 degrees. 

(For the record, the frequency response is computed at 128 points between zero 

and the Nyquist folding frequency.) 

The method named displayFreqResponse was explained in detail in the previous lesson, so I 

won't repeat that material here. 

Display the initial whitening filter 
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Listing 11 displays the initial whitening filter at the top of the left panel in Figure 3 by feeding 

the filter coefficients to the plotting object instantiated earlier and referred to by filterPlotObj. 

    for(int cnt = 0;cnt < whiteningFilter.length;cnt++){ 

      filterPlotObj.feedData(40*whiteningFilter[cnt]); 

    }//end for loop 

 

    //Extend the whitening filter with a value of 2.5 for 

    // display purposes only if it is too short to 

    // synchronize properly with the plotting software. 

    // This value of 2.5 is easily recognizable in the  

    // plot as artificial extended data.  See earlier 

    // comment on this topic.   

    //Note that this approach to forcing synchronization 

    // will not cause the plot to synchronize properly on 

    // an operating system for which the sum of the left 

    // and right insets on a Frame object are different 

    // from 8 pixels.  The same approach to 

synchronization 

    // could be used but the minimum synchronizable filter 

    // length would probably be different. 

    if(whiteningFilter.length <= 26){ 

      for(int cnt = 0;cnt < (26 - whiteningFilter.length); 

                                                    

cnt++){ 

        filterPlotObj.feedData(2.5); 

      }//end for loop 

    }//end if 

 

Listing 11 

If the length of the whitening filter is less than or equal to 26 coefficients, the code in Listing 11 

extends the filter for plotting purposes as described earlier. 

(If you are running this program under some operating system other than 

Windows XP, the plot may not synchronize properly under your operating 

system.  In that case, you should pay particular attention to the comments in 

Listing 11.) 

Create the test data 

We are now ready to execute the for loop that is used to implement the iterative adaptive 

process. 

During each iteration of the for loop, the code in Listing 12 generates one sample of wide-band 

signal by getting a value from a random number generator.  Then it creates a sample of narrow-

band noise by getting and adding one, two, or three values from the sin method of the Math 

class.  The signal sample and the noise sample are both scaled by factors provided by the user. 

    for(int cnt = 0;cnt < numberIterations;cnt++){ 



      //Get the next sample of wideband signal. 

      signal = signalScale*(Math.random() - 0.5); 

       

      //Get the next sample of sinusoidal noise containing 

      // three, two, or one sinusoid. 

      if(numberNoiseSources == 3){ 

        sineNoise = noiseScale*(Math.sin(2*cnt*PI/8) + 

                                Math.sin(2*cnt*PI/5) + 

                                Math.sin(2*cnt*PI/3)); 

      }else if(numberNoiseSources == 2){ 

        sineNoise = noiseScale*(Math.sin(2*cnt*PI/8) +  

                                Math.sin(2*cnt*PI/5)); 

      }else if(numberNoiseSources == 1){ 

        sineNoise = noiseScale*(Math.sin(2*cnt*PI/8)); 

      }else{ 

        System.out.println( 

            "Incorrect number noise sources, 

terminating"); 

        System.exit(0); 

      }//end else 

 

Listing 12 

Add the signal to the noise 

Listing 13 adds the signal to the noise and passes the sum to the method named flowLine for 

insertion into the delay line referred to by rawData. 

      flowLine(rawData,signal + sineNoise); 

 

Listing 13 

The method named flowLine was explained in detail in the previous lesson, so I won't repeat that 

explanation here.  

Populate the chanA delay line 

Listing 14 populates the chanA delay line with the next to the last value in the rawData delay 

line.  The last sample value in the rawData delay line will be the adaptive target. 

      flowLine(chanA,rawData[rawData.length - 2]); 

 

Listing 14 

Get and save data for plotting 

Listing 15 gets the most recent sample that was put into the chanA delay line and saves it for 

plotting. 
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      input = chanA[chanA.length -1]; 

 

Listing 15 

Apply the prediction filter 

Listing 16 invokes the dotProduct method to apply the coefficients belonging to the prediction 

filter to the data samples contained in the chanA delay line. 

(Click here to read a description of a vector dot product from Mathworld.  The 

vector dot product is a central element in the computational process involved in 

convolution.) 

      output = dotProduct(predictionFilter,chanA); 

 

Listing 16 

I explained the dotProduct method in detail in the previous lesson and won't repeat that 

explanation here. 

Compute the prediction error 

Listing 17 computes the prediction error by: 

 Getting the value of the signal plus noise sample from the end of the rawData delay line 

to be used as the prediction target. 

 Subtracting the target value that was returned by the dotProduct method. 

      //Get the signal plus noise sample from the end of 

      // the raw data delay line for an adaptive target. 

      target = rawData[rawData.length - 1]; 

       

      //Compute the error between the current filter 

output 

      // and the target. 

      err = output - target; 

 

Listing 17 

(Note:  If it weren't for the fact that I wrote this program to save and display 

various computational results, I could have written this code in a much more 

compact form involving the dot product of the whitening filter, instead of the 

prediction filter, and the raw data.) 

Update the prediction filter coefficients 
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Listing 18 uses the value of the error along with the value of feedbackGain to update each of the 

coefficient values in the prediction filter.  This is an implementation of a least mean square 

(LMS) adaptive algorithm. 

      for(int ctr = 0;ctr < 

predictionFilter.length;ctr++){ 

        predictionFilter[ctr] -=  

                               

err*chanA[ctr]*feedbackGain; 

      }//end for loop. 

 

Listing 18 

As I mentioned in the previous lesson, I'm not going to attempt to justify this adaptive algorithm 

theoretically.  There are hundreds of articles on the web that provide such justification.  If you 

are interested in a justification, I recommend that you use Google to search them out and read 

them.  For example, you might search for the keywords LMS Adaptive Algorithm or for the 

keywords Steepest Descent.  

The code in Listing 18 signals the end of the adaptive process.  Some of the code prior to this 

point, and most of the code following this point exists for display purposes only. 

Plotting code 

Listing 19 contains all of the remaining code in the for loop that began in Listing 12. 

      //Feed the time series data to the plotting object. 

      timePlotObj.feedData( 

                -

err,signal,sineNoise,input,output,target); 

       

      //Compute and plot the frequency response and plot 

      // the whitening filter every 100 iterations. 

      if(cnt%100 == 0){ 

        //Create a whitening filter from the data in the 

        // prediction filter.  Begin by copying the 

        // prediction filter into the bottom elements of 

        // the whitening filter. 

        System.arraycopy(predictionFilter, 

                         0, 

                         whiteningFilter, 

                         0, 

                         predictionFilter.length); 

        //Now set the final value in the whitening filter 

        // to -1. A whitening filter is a prediction 

filter 

        // with a -1 appended to its end. 

        whiteningFilter[whiteningFilter.length - 1] = -1; 

        displayFreqResponse(whiteningFilter,freqPlotObj, 

                           128,whiteningFilter.length - 

1); 
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        //Display the whitening filter coefficient values. 

        for(int ctr = 0;ctr < whiteningFilter.length; 

                                                    

ctr++){ 

          filterPlotObj.feedData(40*whiteningFilter[ctr]); 

        }//end for loop 

 

        //Extend the whitening filter with a value of 2.5 

        // for plotting if necessary to cause it to 

        // synchronize with one filter on each axis. 

        // See explanatory comment earlier. 

        if(whiteningFilter.length <= 26){ 

          for(int count = 0; 

              count < (26-

whiteningFilter.length);count++){ 

            filterPlotObj.feedData(2.5); 

          }//End for loop 

        }//End if statement 

      }//End display of frequency response and whitening 

       // filter 

    }//End for loop, End adaptive process 

 

Listing 19 

As mentioned earlier, the code in Listing 19 is mainly used for display purposes.  This code is 

straightforward and shouldn't require further explanation. 

Cause the data to be plotted 

The code in Listing 20 causes all of the data that has been fed to the plotting objects during the 

running of the program to actually be plotted on the screen. 

    timePlotObj.plotData(); 

    freqPlotObj.plotData(0,201); 

    filterPlotObj.plotData(265,201); 

     

  }//end process method 

 

Listing 20 

Listing 20 also signals the end of the method named process. 

The adaptive process 

The actual adaptive process is mainly executed in Listing 16, Listing 17, and Listing 18, plus 

those listings that involve feeding signal plus noise data into the delay lines.  Thus, the bulk of 

the code in this program is used for the following purposes having little or nothing to do with the 

adaptive process: 



 Generate synthetic data that can be used to illustrate the use of an adaptive whitening 

filter. 

 Display various data elements for use in explaining the adaptive process. 

If that code were to be eliminated from the program, leaving only the code required by the 

adaptive process, this would be a rather short and compact program. 

Run the Program 

I encourage you to copy the code from Listing 21 and Listing 22 into your text editor, compile it, 

and execute it.   

Recall that you will also need to create class files for the following classes: 

 PlotALot01 

 PlotALot03 

 ForwardRealToComplex01 

Earlier in this lesson, I provided links to the previously-published lessons where you can get the 

source code for those classes. 

Experiment with the code in the class named Adapt02, making changes, and observing the 

results of your changes.  For example, much of the code in this lesson is superfluous to the actual 

adaptive process, but instead is used to display data that helps to explain the adaptive 

process.  See how much of that code you can eliminate and still have a viable program. 

Separate the remaining code into two major sections.  Include the code that is required to create 

the synthetic data for test purposes in one section.  Include only the code that is required to 

adaptively process the data in the other section.  Compare the size of the two sections in order to 

get a feel for the amount of code that is actually required to implement adaptive whitening filters. 

Summary 

In this lesson, I showed you how to write an adaptive whitening filter program in Java.  I also 

showed you how to use the whitening filter to extract wide-band signal that is corrupted by one 

or more components of narrow-band noise.  

What's Next? 

The next lesson in this series will teach you how to write an adaptive line tracking program in 

Java. 

Complete Program Listings 



Complete listings of the programs discussed in this lesson are shown in Listing 21 and Listing 22 

below.  

   

/*File Adapt02.java 

Copyright 2005, R.G.Baldwin 

 

This program illustrates one aspect of time-adaptive signal 

processing.   

 

This program implements a time-adaptive whitening filter  

using a predictive approach. The program input is a time  

series consisting of a wide-band signal plus up to three  

sinusoidal noise functions. The program adaptively creates  

a filter that attempts to eliminate the sinusoidal noise  

while preserving the wide-band signal. 

 

The following time series are displayed when the program  

runs: 

 

-err: This is the negative of the error which is actually  

the output from the whitening filter.  Ideally this time  

series contains the wide-band signal with the sinusoidal  

noise having been removed. 

 

signal: The raw wideband signal containing samples taken  

from a random noise generator. 

 

sineNoise: The raw noise consisting of the sum of one, two, 

or three sinusoidal functions. 

 

input: The sum of the signal plus the sinusoidal noise. 

 

output: The output produced by applying the prediction  

filter to the input signal plus noise. 

 

target: The target signal that is used to control the  

adaptive process. This is the next sample beyond the  

samples that are processed by the prediction filter. In 

other words, the prediction filter attempts to predict this 

value. Thus, the adaptive process attempts to cause  the  

output from the prediction filter to match the next sample  

in the incoming signal plus noise.  This is an attempt to  

predict a future value based solely on the current and past 

values. 

 

Although not required by the adaptive process, the  

frequency response of the whitening filter is computed and  

displayed once every 100 iterations.  Ideally the amplitude 

response is flat with very narrow notches at the  

frequencies of the interfering sinusoidal noise components. 

Both the amplitude and phase response are displayed. This  

makes it possible to see the notches develop in the  

frequency response of the whitening filter as it converges. 

It also makes it possible to see how the phase behaves at 

the notches. 



 

The individual whitening filters on which the frequency  

response is computed are also displayed as time series. 

 

USAGE: The user provides six command line parameters to  

control the operation of the program.  If the user doesn't  

provide any command line parameters, six default values are 

used instead. 

 

The command line parameters are: 

 

feedbackGain: The gain factor that is used in the feedback  

loop to adjust the coefficient values in the  

prediction/whitening filter. (A whitening filter is a  

prediction filter with a -1 appended to its end.) If the 

value of the feedbackGain is too high, the program will  

become unstable.  If too low, convergence will take a long  

time. Values toward the low end tend to converge to better  

solutions. It is possible for the feedbackGain value to be  

low enough to avoid instability but high enough to cause  

the adaptive process to bounce around and never find a good 

solution. Typical useful values for feedbackGain in this  

program are around 0.00001.   

 

numberIterations: The is the number of iterations that the  

program executes before stopping and displaying all of the  

graphic results. 

 

predictionFilterLength: This is the number of coefficients  

in the prediction filter.  This can be any integer value  

greater than zero. The program will throw an exception if  

this value is zero.  Typical values are 15 to 30.  Longer  

filters tend to produce better results in terms of the  

narrowness of the notches at the noise frequencies and the  

flatness of the filter between the notches. 

 

signalScale: A scale factor that is applied to the wide  

band signal provided by the random noise generator. The  

random noise generator produces uniformly distributed  

values ranging from -0.5 to +0.5. Scaling values of from 10 

to 20 work well in terms of producing a wide-band signal  

that is of a suitable magnitude for plotting. Set this to 0 

to see how the program behaves in the presence of noise and 

the absence of signal. 

 

noiseScale: A scale factor that is applied to each of the  

sinusoidal noise functions before they are added to the  

signal. The raw sinusoids vary from -1.0 to +1.0.  Scaling  

values of from 10 to 20 work well in terms of being of a  

suitable magnitude for plotting. Set this to 0 to see how  

the program behaves in the presence of wide-band signal and 

the absence of narrow-band noise.  

 

numberNoiseSources: This value specifies the number of 

sinusoidal noise components that are added to the wide-band 

signal.  Must be an integer value from 0 to 3. 



 

Tested using J2SE 5.0 and WinXP.  J2SE 5.0 or later is  

required. 

**********************************************************/ 

import static java.lang.Math.*;//J2SE 5.0 req 

 

class Adapt02{ 

  public static void main(String[] args){ 

    //Default parameter values 

    double feedbackGain = 0.00001; 

    int numberIterations = 500; 

    int predictionFilterLength = 26; 

    double signalScale = 20; 

    double noiseScale = 20; 

    int numberNoiseSources = 1; 

     

    if(args.length != 6){ 

      System.out.println( 

                   "Usage with all parameters following " + 

                               "program name:\n" + 

                               "java Adapt02\n" + 

                               "feedbackGain\n" +  

                               "numberIterations\n" +  

                               "predictionFilterLength\n" + 

                               "signalScale\n" + 

                               "noiseScale\n" + 

                               "numberNoiseSources\n"); 

      System.out.println( 

            "Using following values by default:\n" + 

            "feedbackGain: " + feedbackGain + 

            "\nnumberIterations: " + numberIterations + 

            "\npredictionFilterLength: " +  

                                   predictionFilterLength + 

            "\nsignalScale: " + signalScale + 

            "\nnoiseScale: " + noiseScale + 

            "\nnumberNoiseSources: " + numberNoiseSources); 

    }else{//Command line params were provided. 

      feedbackGain = Double.parseDouble(args[0]); 

      numberIterations = Integer.parseInt(args[1]); 

      predictionFilterLength = Integer.parseInt(args[2]); 

      signalScale = Double.parseDouble(args[3]); 

      noiseScale = Double.parseDouble(args[4]); 

      numberNoiseSources = Integer.parseInt(args[5]); 

     

      System.out.println( 

            "Using following values from input:\n" + 

            "feedbackGain: " + feedbackGain + 

            "\nnumberIterations: " + numberIterations + 

            "\npredictionFilterLength: " +  

                                   predictionFilterLength + 

            "\nsignalScale: " + signalScale + 

            "\nnoiseScale: " + noiseScale + 

            "\nnumberNoiseSources: " + numberNoiseSources); 

    }//end else 

       

    //Instantiate a new object of the Adapt02 class and 



    // invoke the method named process on that object. 

    new Adapt02().process(feedbackGain, 

                          numberIterations, 

                          predictionFilterLength, 

                          signalScale, 

                          noiseScale, 

                          numberNoiseSources); 

  }//end main 

  //-----------------------------------------------------// 

   

  //This is the primary adaptive processing and plotting 

  // method for the program. 

  void process(double feedbackGain, 

               int numberIterations, 

               int predictionFilterLength, 

               double signalScale, 

               double noiseScale, 

               int numberNoiseSources){ 

    //Create the initial predictionFilter containing all 

    // zero values.  You could initialize this to different 

    // values if you wanted to. 

    double[] predictionFilter =  

                        new double[predictionFilterLength]; 

 

    //Create the initial whiteningFilter and initialize it 

    // for spectrum analysis and plotting by copying the 

    // initial prediction filter into the lower elements of 

    // the whitening filter. 

    double[] whiteningFilter =  

                   new double[predictionFilter.length + 1]; 

    System.arraycopy(predictionFilter, 

                     0, 

                     whiteningFilter, 

                     0, 

                     predictionFilter.length); 

    //Set the final value in the whitening filter to -1. 

    whiteningFilter[whiteningFilter.length - 1] = -1; 

     

    //Create an array to serve as a two-sample delay line 

    // for the raw data. 

    double[] rawData = new double[2]; 

    //Create an array to serve as a processing delay line 

    // for the data being processed. 

    double[] chanA = new double[predictionFilter.length]; 

     

    //Instantiate a plotting object for six channels of 

    // time-series data. 

    PlotALot07 timePlotObj =  

                  new PlotALot07("Time",468,200,25,10,4,4); 

             

    //Instantiate a plotting object for two channels of 

    // filter frequency response data.  One channel is for 

    // the amplitude and the other channel is the phase. 

    PlotALot03 freqPlotObj =  

                   new PlotALot03("Freq",264,487,35,2,0,0); 

     



    //Instantiate a plotting object to display the 

    // whitening filter at specific time intervals during 

    // the adaptive process. Note that the minimum 

    // allowable width for a Java Frame object is 112 

    // pixels under WinXP.  Therefore, the following 

    // display doesn't synchronize properly for prediction 

    // filter lengths less than 25 coefficients.  However, 

    // the code that feeds data to the plotting object 

    // later in the program extends the length of the 

    // filter to cause it to synchronize and to plot one 

    // set of filter coefficients on each axis. 

    PlotALot01 filterPlotObj = new PlotALot01("Filter", 

            (whiteningFilter.length * 4) + 8,487,70,4,0,0); 

    

    //Declare and initialize working variables. 

    double output = 0; 

    double err = 0; 

    double target = 0; 

    double input = 0; 

    double signal = 0; 

    double sineNoise = 0; 

     

    //Display frequency response of initial whitening 

    // filter computed at 128 points between zero and the 

    // folding frequency. 

    displayFreqResponse(whiteningFilter,freqPlotObj,128, 

                               whiteningFilter.length - 1); 

     

    //Display the initial whitening filter as a time series 

    // on the first axis. 

    for(int cnt = 0;cnt < whiteningFilter.length;cnt++){ 

      filterPlotObj.feedData(40*whiteningFilter[cnt]); 

    }//end for loop 

 

    //Extend the whitening filter with a value of 2.5 for 

    // display purposes only if it is too short to 

    // synchronize properly with the plotting software. 

    // This value of 2.5 is easily recognizable in the  

    // plot as artificial extended data.  See earlier 

    // comment on this topic.   

    //Note that this approach to forcing synchronization 

    // will not cause the plot to synchronize properly on 

    // an operating system for which the sum of the left 

    // and right insets on a Frame object are different 

    // from 8 pixels.  The same approach to synchronization 

    // could be used but the minimum synchronizable filter 

    // length would probably be different. 

    if(whiteningFilter.length <= 26){ 

      for(int cnt = 0;cnt < (26 - whiteningFilter.length); 

                                                    cnt++){ 

        filterPlotObj.feedData(2.5); 

      }//end for loop 

    }//end if 

     

    //Do the iterative adaptive process 

    for(int cnt = 0;cnt < numberIterations;cnt++){ 



      //Get the next sample of wideband signal. 

      signal = signalScale*(Math.random() - 0.5); 

       

      //Get the next sample of sinusoidal noise containing 

      // three, two, or one sinusoid. 

      if(numberNoiseSources == 3){ 

        sineNoise = noiseScale*(Math.sin(2*cnt*PI/8) + 

                                Math.sin(2*cnt*PI/5) + 

                                Math.sin(2*cnt*PI/3)); 

      }else if(numberNoiseSources == 2){ 

        sineNoise = noiseScale*(Math.sin(2*cnt*PI/8) +  

                                Math.sin(2*cnt*PI/5)); 

      }else if(numberNoiseSources == 1){ 

        sineNoise = noiseScale*(Math.sin(2*cnt*PI/8)); 

      }else{ 

        System.out.println( 

            "Incorrect number noise sources, terminating"); 

        System.exit(0); 

      }//end else 

 

      //Insert the signal plus noise into the raw data 

      // delay line. 

      flowLine(rawData,signal + sineNoise); 

 

      //Populate chanA with the next to the last value in 

      // the raw data delay line.  The last sample value in 

      // the delay line will be the adaptive target. 

      flowLine(chanA,rawData[rawData.length - 2]); 

 

      //Get the most recent sample that was put into the 

      // chanA delay line and save for plotting. 

      input = chanA[chanA.length -1]; 

       

      //Apply the current predictionFilter to the data 

      // contained in the chanA delay line. 

      output = dotProduct(predictionFilter,chanA); 

 

      //Get the signal plus noise sample from the end of 

      // the raw data delay line for an adaptive target. 

      target = rawData[rawData.length - 1]; 

       

      //Compute the error between the current filter output 

      // and the target. 

      err = output - target; 

       

      //Use the error to update the predictionFilter 

      // coefficients. 

      for(int ctr = 0;ctr < predictionFilter.length;ctr++){ 

        predictionFilter[ctr] -=  

                               err*chanA[ctr]*feedbackGain; 

      }//end for loop. This is the end of the adaptive 

      // process.  Code following this point in the program 

      // is used for display only. 

 

      //Feed the time series data to the plotting object. 

      timePlotObj.feedData( 



                -err,signal,sineNoise,input,output,target); 

       

      //Compute and plot the frequency response and plot 

      // the whitening filter every 100 iterations. 

      if(cnt%100 == 0){ 

        //Create a whitening filter from the data in the 

        // prediction filter.  Begin by copying the 

        // prediction filter into the bottom elements of 

        // the whitening filter. 

        System.arraycopy(predictionFilter, 

                         0, 

                         whiteningFilter, 

                         0, 

                         predictionFilter.length); 

        //Now set the final value in the whitening filter 

        // to -1. A whitening filter is a prediction filter 

        // with a -1 appended to its end. 

        whiteningFilter[whiteningFilter.length - 1] = -1; 

        displayFreqResponse(whiteningFilter,freqPlotObj, 

                           128,whiteningFilter.length - 1); 

 

        //Display the whitening filter coefficient values. 

        for(int ctr = 0;ctr < whiteningFilter.length; 

                                                    ctr++){ 

          filterPlotObj.feedData(40*whiteningFilter[ctr]); 

        }//end for loop 

 

        //Extend the whitening filter with a value of 2.5 

        // for plotting if necessary to cause it to 

        // synchronize with one filter on each axis. 

        // See explanatory comment earlier. 

        if(whiteningFilter.length <= 26){ 

          for(int count = 0; 

              count < (26-whiteningFilter.length);count++){ 

            filterPlotObj.feedData(2.5); 

          }//End for loop 

        }//End if statement 

      }//End display of frequency response and whitening 

       // filter 

    }//End for loop, End adaptive process 

     

    //Cause all the data to be plotted. 

    timePlotObj.plotData(); 

    freqPlotObj.plotData(0,201); 

    filterPlotObj.plotData(265,201); 

     

  }//end process method 

  //-----------------------------------------------------// 

   

  //This method simulates a tapped delay line. It receives 

  // a reference to an array and a value.  It discards the 

  // value at index 0 of the array, moves all the other 

  // values by one element toward 0, and inserts the new 

  // value at the top of the array. 

  void flowLine(double[] line,double val){ 

    for(int cnt = 0;cnt < (line.length - 1);cnt++){ 



      line[cnt] = line[cnt+1]; 

    }//end for loop 

    line[line.length - 1] = val; 

  }//end flowLine 

  //-----------------------------------------------------// 

   

  //This method receives two arrays and treats the first n  

  // elements in each of the two arrays as a pair of 

  // vectors.  It computes and returns the vector dot 

  // product of the two vectors.  If the length of one 

  // array is greater than the length of the other array, 

  // it considers the number of dimensions of the vectors 

  // to be equal to the length of the smaller array. 

  double dotProduct(double[] v1,double[] v2){ 

    double result = 0; 

    if((v1.length) <= (v2.length)){ 

      for(int cnt = 0;cnt < v1.length;cnt++){ 

        result += v1[cnt]*v2[cnt]; 

      }//end for loop 

      return result; 

    }else{ 

      for(int cnt = 0;cnt < v2.length;cnt++){ 

        result += v1[cnt]*v2[cnt]; 

      }//med for loop 

      return result; 

    }//end else 

  }//end dotProduct 

  //-----------------------------------------------------// 

   

  void displayFreqResponse( 

     double[] filter,PlotALot03 plot,int len,int zeroTime){ 

 

    //Create the arrays required by the Fourier Transform. 

    double[] timeDataIn = new double[len]; 

    double[] realSpect = new double[len]; 

    double[] imagSpect = new double[len]; 

    double[] angle = new double[len]; 

    double[] magnitude = new double[len]; 

     

    //Copy the filter into the timeDataIn array 

    System.arraycopy(filter,0,timeDataIn,0,filter.length); 

 

    //Compute DFT of the filter from zero to the folding 

    // frequency and save it in the output arrays. 

    ForwardRealToComplex01.transform(timeDataIn, 

                                     realSpect, 

                                     imagSpect, 

                                     angle, 

                                     magnitude, 

                                     zeroTime, 

                                     0.0, 

                                     0.5); 

 

    //Display the magnitude data. Convert to normalized 

    // decibels first. 

    //Eliminate or change any values that are incompatible 



    // with log10 method. 

    for(int cnt = 0;cnt < magnitude.length;cnt++){ 

      if((magnitude[cnt] == Double.NaN) ||  

                                    (magnitude[cnt] <= 0)){ 

        //Replace the magnitude by a very small positive 

        // value. 

        magnitude[cnt] = 0.0000001; 

      }else if(magnitude[cnt] == Double.POSITIVE_INFINITY){ 

        //Replace the magnitude by a very large positive 

        // value. 

        magnitude[cnt] = 9999999999.0; 

      }//end else if 

    }//end for loop 

     

    //Now convert magnitude data to log base 10 

    for(int cnt = 0;cnt < magnitude.length;cnt++){ 

      magnitude[cnt] = log10(magnitude[cnt]); 

    }//end for loop 

     

    //Note that from this point forward, all references to 

    // magnitude are referring to log base 10 data, which 

    // can be thought of as scaled decibels. 

 

    //Find the absolute peak value.  Begin with a negative 

    // peak value with a large magnitude and replace it 

    // with the largest magnitude value. 

    double peak = -9999999999.0; 

    for(int cnt = 0;cnt < magnitude.length;cnt++){ 

      if(peak < abs(magnitude[cnt])){ 

        peak = abs(magnitude[cnt]); 

      }//end if 

    }//end for loop 

 

    //Normalize to 50 times the peak value and shift up the 

    // page by 50 units to make the values compatible with 

    // the plotting program.  Recall that adding a 

    // constant to log values is equivalent to scaling the 

    // original data. 

    for(int cnt = 0;cnt < magnitude.length;cnt++){ 

      magnitude[cnt] = 50*magnitude[cnt]/peak + 50; 

    }//end for loop 

 

    //Now feed the normalized decibel data to the plotting 

    // system. 

    for(int cnt = 0;cnt < magnitude.length;cnt++){ 

      plot.feedData(magnitude[cnt],angle[cnt]/20); 

    }//end for loop 

     

  }//end displayFreqResponse 

  //-----------------------------------------------------// 

}//end class Adapt02 
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/*File PlotALot07.java  

Copyright 2005, R.G.Baldwin 

This program is an update to the program named  

PlotALot04 for the purpose of plotting six 

data channels.  See PlotALot04 for descriptive 

comments.  Otherwise, the comments in this 

program have not been updated to reflect this 

update. 

 

The program was tested using J2SE 5.0 and WinXP. 

Requires J2SE 5.0 to support generics. 

************************************************/ 

 

import java.awt.*; 

import java.awt.event.*; 

import java.util.*; 

 

public class PlotALot07{ 

  //This main method is provided so that the 

  // class can be run as an application to test 

  // itself. 

  public static void main(String[] args){ 

    //Instantiate a plotting object using the 

    // version of the constructor that allows for 

    // controlling the plotting parameters. 

    PlotALot07 plotObjectA =  

            new PlotALot07("A",158,350,25,5,4,4); 

     

    //Feed quadruplets of data values to the  

    // plotting object. 

    for(int cnt = 0;cnt < 115;cnt++){ 

      //Plot some white random noise. Note that 

      // fifteen of the values for each time 

      // series are not random.  See the opening 

      // comments for a discussion of the reasons 

      // why. 

      double valBlack = (Math.random() - 0.5)*25; 

      double valRed = valBlack; 

      double valBlue = valBlack; 

      double valGreen = valBlack; 

      double valMagenta = valBlack; 

      double valCyan = valBlack; 

      //Feed quadruplets of values to the plotting 

      // object by invoking the feedData method 

      // once for each quadruplet of data values. 

      if(cnt == 57){ 

        plotObjectA.feedData(0,0,0,0,0,0); 

      }else if(cnt == 58){ 

        plotObjectA.feedData(0,0,0,0,0,0); 

      }else if(cnt == 59){ 

        plotObjectA.feedData(25,25,25,25,25,25); 

      }else if(cnt == 60){ 

        plotObjectA.feedData(-25,-25,-25,-25,-25,-25); 

      }else if(cnt == 61){ 

        plotObjectA.feedData(25,25,25,25,25,25); 

      }else if(cnt == 62){ 



        plotObjectA.feedData(0,0,0,0,0,0); 

      }else if(cnt == 63){ 

        plotObjectA.feedData(0,0,0,0,0,0); 

      }else if(cnt == 26){ 

        plotObjectA.feedData(0,0,0,0,0,0); 

      }else if(cnt == 27){ 

        plotObjectA.feedData(0,0,0,0,0,0); 

      }else if(cnt == 28){ 

        plotObjectA.feedData(20,20,20,20,20,20); 

      }else if(cnt == 29){ 

        plotObjectA.feedData(20,20,20,20,20,20); 

      }else if(cnt == 30){ 

        plotObjectA.feedData(-20,-20,-20,-20,-20,-20); 

      }else if(cnt == 31){ 

        plotObjectA.feedData(-20,-20,-20,-20,-20,-20); 

      }else if(cnt == 32){ 

        plotObjectA.feedData(0,0,0,0,0,0); 

      }else if(cnt == 33){ 

        plotObjectA.feedData(0,0,0,0,0,0); 

      }else{ 

        plotObjectA.feedData(valBlack, 

                             valRed, 

                             valBlue, 

                             valGreen, 

                             valMagenta, 

                             valCyan); 

      }//end else 

    }//end for loop 

    //Cause the data to be plotted in the default 

    // screen location. 

    plotObjectA.plotData(); 

  }//end main 

  //-------------------------------------------// 

 

  String title; 

  int frameWidth; 

  int frameHeight; 

  int traceSpacing;//pixels between traces 

  int sampSpacing;//pixels between samples 

  int ovalWidth;//width of sample marking oval 

  int ovalHeight;//height of sample marking oval 

   

  int tracesPerPage; 

  int samplesPerPage; 

  int pageCounter = 0; 

  int sampleCounter = 0; 

  ArrayList <Page> pageLinks =  

                           new ArrayList<Page>(); 

   

  //There are two overloaded versions of the 

  // constructor for this class.  This 

  // overloaded version accepts several incoming 

  // parameters allowing the user to control 

  // various aspects of the plotting format. A 

  // different overloaded version accepts a title 

  // string only and sets all of the plotting 



  // parameters to default values. 

  PlotALot07(String title,//Frame title 

             int frameWidth,//in pixels 

             int frameHeight,//in pixels 

             int traceSpacing,//in pixels 

             int sampSpace,//in pixels per sample 

             int ovalWidth,//sample marker width 

             int ovalHeight)//sample marker hite 

  {//constructor 

    //Specify sampSpace as pixels per sample. 

    // Should never be less than 1.  Convert to 

    // pixels between samples for purposes of 

    // computation. 

    this.title = title; 

    this.frameWidth = frameWidth; 

    this.frameHeight = frameHeight; 

    this.traceSpacing = traceSpacing; 

    //Convert to pixels between samples. 

    this.sampSpacing = sampSpace - 1; 

    this.ovalWidth = ovalWidth; 

    this.ovalHeight = ovalHeight; 

 

    //The following object is instantiated solely 

    // to provide information about the width and 

    // height of the canvas. This information is 

    // used to compute a variety of other 

    // important values. 

    Page tempPage = new Page(title); 

    int canvasWidth = tempPage.canvas.getWidth(); 

    int canvasHeight =  

                     tempPage.canvas.getHeight(); 

    //Display information about this plotting 

    // object. 

    System.out.println("\nTitle: " + title); 

    System.out.println( 

          "Frame width: " + tempPage.getWidth()); 

    System.out.println( 

        "Frame height: " + tempPage.getHeight()); 

    System.out.println( 

                   "Page width: " + canvasWidth); 

    System.out.println( 

                 "Page height: " + canvasHeight); 

    System.out.println( 

               "Trace spacing: " + traceSpacing); 

    System.out.println( 

         "Sample spacing: " + (sampSpacing + 1)); 

    if(sampSpacing < 0){ 

      System.out.println("Terminating"); 

      System.exit(0); 

    }//end if 

    //Get rid of this temporary page. 

    tempPage.dispose(); 

    //Now compute the remaining important values. 

    tracesPerPage =  

                 (canvasHeight - traceSpacing/2)/ 

                                    traceSpacing; 



    System.out.println("Traces per page: " 

                                + tracesPerPage); 

    if((tracesPerPage == 0) ||  

                        (tracesPerPage%6 != 0) ){ 

      System.out.println("Terminating program"); 

      System.exit(0); 

    }//end if 

    samplesPerPage = canvasWidth * tracesPerPage/ 

                             (sampSpacing + 1)/6; 

    System.out.println("Samples per page: " 

                               + samplesPerPage); 

    //Now instantiate the first usable Page 

    // object and store its reference in the 

    // list. 

    pageLinks.add(new Page(title)); 

  }//end constructor 

  //-------------------------------------------// 

   

  PlotALot07(String title){ 

    //Invoke the other overloaded constructor 

    // passing default values for all but the 

    // title. 

    this(title,400,410,50,2,2,2); 

  }//end overloaded constructor 

  //-------------------------------------------// 

   

  //Invoke this method once for each quadruplet of  

  // data values to be plotted. 

  void feedData(double valBlack, 

                double valRed, 

                double valBlue, 

                double valGreen, 

                double valMagenta, 

                double valCyan){ 

    if((sampleCounter) == samplesPerPage){ 

      //if the page is full, increment the page 

      // counter, create a new empty page, and 

      // reset the sample counter. 

      pageCounter++; 

      sampleCounter = 0; 

      pageLinks.add(new Page(title)); 

    }//end if 

    //Store the sample values in the MyCanvas 

    // object to be used later to paint the 

    // screen.  Then increment the sample 

    // counter.  The sample values pass through 

    // the page object into the current MyCanvas 

    // object. 

    pageLinks.get(pageCounter).putData( 

                                  valBlack, 

                                  valRed, 

                                  valBlue, 

                                  valGreen, 

                                  valMagenta, 

                                  valCyan, 

                                  sampleCounter); 



    sampleCounter++; 

  }//end feedData 

  //-------------------------------------------// 

   

  //There are two overloaded versions of the 

  // plotData method.  One version allows the 

  // user to specify the location on the screen 

  // where the stack of plotted pages will 

  // appear.  The other version places the stack 

  // in the upper left corner of the screen. 

   

  //Invoke one of the overloaded versions of 

  // this method once when all data has been fed 

  // to the plotting object in order to rearrange 

  // the order of the pages with page 0 at the 

  // top of the stack on the screen. 

   

  //For this overloaded version, specify xCoor 

  // and yCoor to control the location of the 

  // stack on the screen.  Values of 0,0 will 

  // place the stack at the upper left corner of 

  // the screen.  Also see the other overloaded 

  // version, which places the stack at the upper 

  // left corner of the screen by default. 

  void plotData(int xCoor,int yCoor){ 

    Page lastPage =  

             pageLinks.get(pageLinks.size() - 1); 

    //Delay until last page becomes visible. 

    while(!lastPage.isVisible()){ 

      //Loop until last page becomes visible 

    }//end while loop 

     

    Page tempPage = null; 

    //Make all pages invisible 

    for(int cnt = 0;cnt < (pageLinks.size()); 

                                          cnt++){ 

      tempPage = pageLinks.get(cnt); 

      tempPage.setVisible(false); 

    }//end for loop 

     

    //Now make all pages visible in reverse order 

    // so that page 0 will be on top of the 

    // stack on the screen. 

    for(int cnt = pageLinks.size() - 1;cnt >= 0; 

                                          cnt--){ 

      tempPage = pageLinks.get(cnt); 

      tempPage.setLocation(xCoor,yCoor); 

      tempPage.setVisible(true); 

    }//end for loop 

 

  }//end plotData(int xCoor,int yCoor) 

  //-------------------------------------------// 

   

  //This overloaded version of the method causes 

  // the stack to be located in the upper left 

  // corner of the screen by default 



  void plotData(){ 

    plotData(0,0);//invoke overloaded version 

  }//end plotData() 

  //-------------------------------------------// 

 

  //Inner class.  A PlotALot07 object may 

  // have as many Page objects as are required 

  // to plot all of the data values.  The  

  // reference to each Page object is stored 

  // in an ArrayList object belonging to the 

  // PlotALot07 object. 

  class Page extends Frame{ 

    MyCanvas canvas; 

    int sampleCounter; 

 

    Page(String title){//constructor 

      canvas = new MyCanvas(); 

      add(canvas); 

      setSize(frameWidth,frameHeight);     

      setTitle(title + " Page: " + pageCounter); 

      setVisible(true); 

       

      //---------------------------------------// 

      //Anonymous inner class to terminate the 

      // program when the user clicks the close 

      // button on the Frame. 

      addWindowListener( 

        new WindowAdapter(){ 

          public void windowClosing( 

                                  WindowEvent e){ 

            System.exit(0);//terminate program 

          }//end windowClosing() 

        }//end WindowAdapter 

      );//end addWindowListener 

      //---------------------------------------// 

    }//end constructor 

    //=========================================// 

   

    //This method receives a quadruplet of sample 

    // values of type double and stores each of 

    // them in a separate array object belonging 

    // to the MyCanvas object. 

    void putData(double valBlack, 

                 double valRed, 

                 double valBlue, 

                 double valGreen, 

                 double valMagenta, 

                 double valCyan, 

                 int sampleCounter){ 

      canvas.blackData[sampleCounter] = valBlack; 

      canvas.redData[sampleCounter] = valRed; 

      canvas.blueData[sampleCounter] = valBlue; 

      canvas.greenData[sampleCounter] = valGreen; 

      canvas.magentaData[sampleCounter] = valMagenta; 

      canvas.cyanData[sampleCounter] = valCyan; 

      //Save the sample counter in an instance 



      // variable to make it available to the 

      // overridden paint method. This value is 

      // needed by the paint method so it will 

      // know how many samples to plot on the 

      // final page which probably won't be full. 

      this.sampleCounter = sampleCounter; 

    }//end putData 

     

    //=========================================// 

    //Inner class 

    class MyCanvas extends Canvas{ 

      double [] blackData =  

                      new double[samplesPerPage]; 

      double [] redData =  

                      new double[samplesPerPage]; 

      double [] blueData =  

                      new double[samplesPerPage]; 

      double [] greenData =  

                      new double[samplesPerPage]; 

      double [] magentaData =  

                      new double[samplesPerPage]; 

      double [] cyanData =  

                      new double[samplesPerPage]; 

                       

      //Override the paint method 

      public void paint(Graphics g){ 

        //Draw horizontal axes, one for each 

        // trace. 

        for(int cnt = 0;cnt < tracesPerPage; 

                                          cnt++){ 

          g.drawLine(0, 

                     (cnt+1)*traceSpacing, 

                     this.getWidth(), 

                     (cnt+1)*traceSpacing); 

        }//end for loop 

         

        //Plot the points if there are any to be 

        // plotted. 

        if(sampleCounter > 0){ 

          for(int cnt = 0;cnt <= sampleCounter; 

                                          cnt++){ 

                                             

            //Begin by plotting the values from 

            // the blackData array object. 

            g.setColor(Color.BLACK); 

             

            //Compute a vertical offset to locate 

            // the black data on every third axis 

            // on the page. 

            int yOffset =  

               ((1 + cnt*(sampSpacing + 1)/ 

                this.getWidth())*6*traceSpacing) 

                                - 5*traceSpacing; 

 

            //Draw an oval centered on the sample 

            // value to mark the sample in the 



            // plot. It is best if the dimensions 

            // of the oval are evenly divisable 

            // by 2 for  centering purposes. 

            //Reverse the sign of the sample 

            // value to cause positive sample 

            // values to be plotted above the 

            // axis. 

 

            g.drawOval(cnt*(sampSpacing + 1)% 

                   this.getWidth() - ovalWidth/2, 

              yOffset - (int)blackData[cnt]  

                                  - ovalHeight/2, 

              ovalWidth, 

              ovalHeight); 

             

            //Connect the sample values with 

            // straight lines.  Do not draw a 

            // line connecting the last sample in 

            // one trace to the first sample in 

            // the next trace. 

            if(cnt*(sampSpacing + 1)% 

                               this.getWidth() >= 

                                sampSpacing + 1){ 

              g.drawLine( 

                (cnt - 1)*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)blackData[cnt-1], 

                cnt*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)blackData[cnt]); 

            }//end if 

 

            //Now plot the data stored in the 

            // redData array object. 

            g.setColor(Color.RED); 

            //Compute a vertical offset to locate 

            // the red data on every third axis 

            // on the page. 

            yOffset = (1 + cnt*(sampSpacing + 1)/ 

                  this.getWidth())*6*traceSpacing 

                                  - 4*traceSpacing; 

             

            //Draw the ovals as described above. 

            g.drawOval(cnt*(sampSpacing + 1)% 

                   this.getWidth() - ovalWidth/2, 

              yOffset - (int)redData[cnt]  

                                  - ovalHeight/2, 

              ovalWidth, 

              ovalHeight); 

             

            //Connect the sample values with 

            // straight lines as described above. 

            if(cnt*(sampSpacing + 1)% 

                               this.getWidth() >= 

                                sampSpacing + 1){ 

              g.drawLine( 



                (cnt - 1)*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)redData[cnt-1], 

                cnt*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)redData[cnt]); 

                 

            }//end if 

           

 

            //Now plot the data stored in the 

            // blueData array object. 

            g.setColor(Color.BLUE); 

            //Compute a vertical offset to locate 

            // the blue data on every third axis 

            // on the page. 

            yOffset = (1 + cnt*(sampSpacing + 1)/ 

                 this.getWidth())*6*traceSpacing  

                                 -3*traceSpacing; 

             

            //Draw the ovals as described above. 

            g.drawOval(cnt*(sampSpacing + 1)% 

                   this.getWidth() - ovalWidth/2, 

              yOffset - (int)blueData[cnt]  

                                  - ovalHeight/2, 

              ovalWidth, 

              ovalHeight); 

             

            //Connect the sample values with 

            // straight lines as described above. 

            if(cnt*(sampSpacing + 1)% 

                               this.getWidth() >= 

                                sampSpacing + 1){ 

              g.drawLine( 

                (cnt - 1)*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)blueData[cnt-1], 

                cnt*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)blueData[cnt]); 

            }//end if 

             

             

            //Now plot the data stored in the 

            // greenData array object. 

            g.setColor(Color.GREEN); 

            //Compute a vertical offset to locate 

            // the green data on every third axis 

            // on the page. 

            yOffset = (1 + cnt*(sampSpacing + 1)/ 

                 this.getWidth())*6*traceSpacing  

                                 -2*traceSpacing; 

             

            //Draw the ovals as described above. 

            g.drawOval(cnt*(sampSpacing + 1)% 

                   this.getWidth() - ovalWidth/2, 



              yOffset - (int)greenData[cnt]  

                                  - ovalHeight/2, 

              ovalWidth, 

              ovalHeight); 

             

            //Connect the sample values with 

            // straight lines as described above. 

            if(cnt*(sampSpacing + 1)% 

                               this.getWidth() >= 

                                sampSpacing + 1){ 

              g.drawLine( 

                (cnt - 1)*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)greenData[cnt-1], 

                cnt*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)greenData[cnt]); 

            }//end if 

             

            //Now plot the data stored in the 

            // magentaData array object. 

            g.setColor(Color.MAGENTA); 

            //Compute a vertical offset to locate 

            // the magenta data on every third axis 

            // on the page. 

            yOffset = (1 + cnt*(sampSpacing + 1)/ 

                 this.getWidth())*6*traceSpacing  

                                    -traceSpacing; 

             

            //Draw the ovals as described above. 

            g.drawOval(cnt*(sampSpacing + 1)% 

                   this.getWidth() - ovalWidth/2, 

              yOffset - (int)magentaData[cnt]  

                                  - ovalHeight/2, 

              ovalWidth, 

              ovalHeight); 

             

            //Connect the sample values with 

            // straight lines as described above. 

            if(cnt*(sampSpacing + 1)% 

                               this.getWidth() >= 

                                sampSpacing + 1){ 

              g.drawLine( 

                (cnt - 1)*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)magentaData[cnt-1], 

                cnt*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)magentaData[cnt]); 

            }//end if 

             

            //Now plot the data stored in the 

            // cyanData array object. 

            g.setColor(Color.CYAN); 

            //Compute a vertical offset to locate 

            // the cyan data on every third axis 



            // on the page. 

            yOffset = (1 + cnt*(sampSpacing + 1)/ 

                 this.getWidth())*6*traceSpacing; 

             

            //Draw the ovals as described above. 

            g.drawOval(cnt*(sampSpacing + 1)% 

                   this.getWidth() - ovalWidth/2, 

              yOffset - (int)cyanData[cnt]  

                                  - ovalHeight/2, 

              ovalWidth, 

              ovalHeight); 

             

            //Connect the sample values with 

            // straight lines as described above. 

            if(cnt*(sampSpacing + 1)% 

                               this.getWidth() >= 

                                sampSpacing + 1){ 

              g.drawLine( 

                (cnt - 1)*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)cyanData[cnt-1], 

                cnt*(sampSpacing + 1)% 

                                 this.getWidth(), 

                yOffset - (int)cyanData[cnt]); 

            }//end if 

             

          }//end for loop 

        }//end if for sampleCounter > 0 

      }//end overridden paint method 

    }//end inner class MyCanvas 

  }//end inner class Page 

}//end class PlotALot07 

//=============================================// 
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In addition to his programming expertise, Richard has many years of practical experience in 

Digital Signal Processing (DSP).  His first job after he earned his Bachelor's degree was doing 

DSP in the Seismic Research Department of Texas Instruments.  (TI is still a world leader in 

DSP.)  In the following years, he applied his programming and DSP expertise to other 

interesting areas including sonar and underwater acoustics.  

Richard holds an MSEE degree from Southern Methodist University and has many years of 

experience in the application of computer technology to real-world problems.  
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