
The Essence of OOP using Java, Instance Initializers

Baldwin explains the use of instance initializers, static initializers in conjunction with

constructors, and the initialization of ordinary instance variables. He explains and demonstrates

the order in which they are executed.

Published: August 19, 2003

By Richard G. Baldwin

Java Programming Notes # 1634

 Preface

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 What's Next

 Complete Program Listing

Preface

This series of lessons is designed to teach you about the essence of Object-Oriented

Programming (OOP) using Java.

The first lesson in the series was entitled The Essence of OOP Using Java, Objects, and

Encapsulation. The previous lesson was entitled The Essence of OOP using Java, Static

Initializer Blocks.

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

For further reading, see my extensive collection of online Java tutorials at Gamelan.com. A

consolidated index is available at www.DickBaldwin.com.

Preview

Proper initialization is important

As I mentioned in the previous lesson in this series, proper initialization of variables is an

important aspect of programming. Unlike other programming languages, it is not possible to

mailto:baldwin@DickBaldwin.com
http://softwaredev.earthweb.com/java/article/0,,12082_935351,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_935351,00.html
http://www.developer.com/java/other/article.php/2238491
http://www.developer.com/java/other/article.php/2238491
http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/

write a Java program in which the variables are accidentally initialized with the garbage left over

in memory from the programs that previously ran in the computer.

Automatic initialization to default values

Instance variables and class (static) variables are automatically initialized to standard default

values if you fail to purposely initialize them. Although local variables are not automatically

initialized, you cannot compile a program that fails to either initialize a local variable or assign a

value to that local variable before it is used.

Thus, Java programmers are prevented from committing the cardinal sin of allowing their

variables to be initialized with random garbage through programming negligence.

Initialization during declaration

You should already know that you can initialize instance variables and class variables when you

declare them, by including an initialization expression in the variable declaration

statement. Figure 1 shows an example of a primitive instance variable named simpleInitTime

that is purposely initialized to a long value obtained by invoking a static method of the Init02

class named relTime. (You will learn more about this method later.)

 long simpleInitTime =

Init02.relTime();

Figure 1

While the expression in Figure 1 is a little complex, it is still just an expression and is perfectly

suitable for use in initializing an instance variable when it is declared.

Constructor

What if your initialization requirements are more complex than can be satisfied with a single

initialization expression? You should already know that you can write one or more overloaded

constructors to purposely initialize all instance variables when an object is instantiated from the

class. The code in a constructor can be as complex as you need it to be.

Not all classes allow constructors

What you may not know, however, is that you cannot always write a constructor for a class when

you define it. For example, anonymous classes, which we will study in a subsequent lesson, do

not allow the definition of a constructor.

However, even anonymous classes allow you to write instance initializer blocks when you define

the class. The code in an instance initializer block, which can also be quite complex, is executed

when an object is instantiated from the class.

Not as powerful as a constructor

You can write any number of instance initializer blocks in your class definition. However,

unlike constructors, instance initializer blocks do not receive parameters. Therefore, they are

less powerful than constructors. In terms of power, instance initializer blocks fall between

simple initialization expressions (such as that shown in Figure 1) and constructors. Because

they can execute complex code, they are more powerful than simple initialization

expressions. Because they cannot receive parameters, they are less powerful than constructors.

Similar to noarg constructors

An instance initializer block is similar to a constructor that doesn't receive any parameters,

except that you can write any number of instance initializer blocks into your class definition, and

you can only write one noarg constructor in your class definition.

The order of execution

The code in an instance initializer block is executed after the constructor for the superclass is

executed, and before the constructor for the class to which the initializer belongs is executed.

If the class definition contains a combination of instance initializer blocks in combination with

the declaration of instance variables with initialization expressions, the code that comprises those

items is executed in the order in which it appears in the class definition.

The order of execution of instance initializers in combination with instance variable

initializations, constructors, and static initializer blocks will be illustrated in the sample program

that I will discuss later in this lesson.

What does Flanagan have to say?

Here is how one of my favorite authors, David Flanagan of Java in a Nutshell fame, summarizes

the situation:

"An instance initializer is simply a block of code inside curly braces that is

embedded in a class definition, where a field or method definition normally

appears. A class (any class -- not just anonymous classes) can have any number

of instance initializers. The instance initializers and any variable initializers that

appear in field definitions for the class are executed in the order they appear in

the Java source code. These initializers are automatically run after the

superclass constructor has returned but before the constructor, if any, of the

current class runs."

Why do we need instance initializers?

Flanagan goes on to explain the value of instance initializers, not only for anonymous classes,

but also for non-anonymous classes. According to Flanagan,

"Instance initializers allow you to initialize an object's fields near the definition of

those fields, rather than deferring that initialization to a constructor defined

further away in the class. Used in this way, they can sometimes improve code

readability."

The sample program that I will discuss in the next section will illustrate many aspects of instance

initializers in combination with static initializer blocks, constructors, and simple instance

variable initializations.

Discussion and Sample Code

I will discuss and explain a Java program named Init02 in this lesson. (A complete listing of the

program is provided in Listing 15 near the end of the lesson.) As mentioned above, this program

illustrates many aspects of instance initializers in combination with static initializer blocks,

constructors, and simple instance variable initializations.

Description of the program

Instance initializers behave much like noarg constructors. They are particularly useful for

anonymous classes, which are not allowed to define any constructors, even those that take no

arguments. However, the syntax for anonymous classes, even in the absence of instance

initializers, is very cryptic. Therefore, I decided to explain and illustrate instance initializers in

the context of ordinary top-level classes rather than to combine that explanation with the

explanation of anonymous classes in a subsequent lesson.

The class hierarchy

This program defines a class named B that extends a class named A. Parameterized constructors

are used in both A and B to instantiate an object of the class named B.

The base time is recorded

The controlling class defines and initializes a static variable containing the time that the program

starts running in milliseconds relative to 00:00:00 GMT, Jan 1, 1970. This value is used as the

base for computing time intervals later as the execution of the program progresses.

The times that are computed and displayed later are in milliseconds relative to the time at which

the program started running.

The class loading process

Static initializers are defined in both A and B to display the time that the two classes are loaded

and the order in which they are loaded. You will see that both classes are loaded when an

attempt is made to instantiate an object of the subclass B. You will also see that the superclass is

loaded before the subclass is loaded, and both are loaded before the object is instantiated.

An initialized instance variable

An instance variable is defined in the class named B and is initialized (using a simple

initialization expression) with the time in milliseconds that the variable is initialized. In

addition, two separate instance initializers are defined in the class named B that perform

initialization after the constructor for A completes execution and before the constructor for B

begins execution.

In terms of physical location, the instance variable mentioned above follows the first of the two

instance initializers and appears before the second instance initializer in the class definition.

The order of execution

The first of the two instance initializers executes before the instance variable is initialized. The

second of the two initializers executes after the instance variable is initialized, demonstrating that

initialization based on simple initialization expressions and instance initializers occurs in the

order that the code appears in the class definition.

Initialization time is displayed

The two constructors (for classes A and B) and the two initializers each display time information

when they are executed to show the order in which the constructors and the initializers are

executed.

Two separate objects

Two separate instances (objects) of the class named B are created, showing not only the order in

which the instance initializers and the constructors are executed, but also showing that the static

initializers are executed one time only when the classes are first loaded.

Display values of instance variables

Each time an object of the class named B is instantiated, an instance method of the class is

invoked to display the values of the instance variables initialized during the process of

instantiating the object.

One-hundred millisecond delays

Several one-hundred millisecond time delays are purposely inserted at strategic points within the

program to force the time intervals between the different steps in the program to be

measurable. Otherwise, the time intervals between steps would be so small that it would not be

possible to distinguish between them on the basis of time recorded in milliseconds.

Will discuss in fragments

I will discuss the program code in fragments. In discussing the fragments, I will present much of

the code in the order that it is executed, which is not necessarily the same order that the code

appears in the program.

As mentioned earlier, a complete listing of the program can be viewed in Listing 15 near the end

of the lesson.

Two utility methods

I will begin by presenting two static utility methods that are used to simplify the code in the

body of the program. Both of these methods are defined in the controlling class named Init02.

Relative time in milliseconds

The utility method named relTime, shown in Listing 1, is used to compute and return the current

time in milliseconds relative to a time value stored in a static variable of the controlling class

named baseTime. As you will see later, baseTime contains the time that the program started

running. Thus, each time this method is called, it returns the current time relative to the time that

the program started running.

 static long relTime(){

 return ((new Date().getTime()) -

baseTime);

 }//end printTime

Listing 1

I relegated this code to a utility method simply due to the length and complexity of the

expression, and the large number of times that the relative time is needed throughout the

program.

Insert a delay

The utility method shown in Listing 2 causes the current thread to sleep for one-hundred

milliseconds. Thus, each time this method is called, it inserts a one-hundred millisecond delay in

the execution of the program.

 static void delay(){

 try{

Thread.currentThread().sleep(100);

 }catch(Exception

e){e.printStackTrace();}

 }//end delay

Listing 2

This method is also called numerous times throughout the program. Once again, therefore, I

relegated this code to a utility method to simplify the code in the body of the program.

Establish the start time

Listing 3 shows the beginning of the controlling class named Init02, including the declaration

and initialization of the class variable named baseTime.

public class Init02{

 static long baseTime = new

Date().getTime();

Listing 3

According to the Sun documentation, the getTime method of the Date class in Listing 3

"Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this

Date object."

Thus, this variable will contains the time in milliseconds that the class named Init02 is loaded,

which is also the time that the program starts running. This time will serve as the base time

against which various time intervals will be computed during the running of the program.

The main method

The code in Listing 4 shows the beginning of the main method, which displays the current time

relative to the start time, and instantiates a new object of the class named B. In addition, the

code in Listing 4 invokes the method named showData on the new object. The showData

method displays the values stored in several instance values as various initialization steps are

completed during the instantiation of the object.

 public static void main(String[]

args){

 System.out.println("Instantiate

first obj: "

 +

relTime());

 new B("Construct 1").showData();

Listing 4

The output

As you have probably already guessed, the print statement in Listing 4 produces the output

shown in Figure 2. In other words, there was less than one millisecond of elapsed time between

the initialization of the static variable named baseTime and the invocation of the relTime

method in Listing 4.

Instantiate first obj: 0

Figure 2

Load classes A and B

The instantiation of the new object in Listing 4 triggers a whole chain of events. I will discuss

those events in the sequence in which they occur in the paragraphs that follow. The first pair of

interesting events is the loading of the classes named A and B.

What does it mean to say that a class is loaded?

As I explained in a previous lesson, I can't provide a description of exactly what happens from a

technical viewpoint. However, I can tell you what seems to happen from a functional viewpoint.

Functionally, an object of the class whose name is Class is created and saved in memory. This

object represents the class that is being loaded (in this case, two classes named A and B are

loaded, so two separate Class objects are created). From that point forward, all static members

of the class are available to the program by referring to the name of the class and the name of the

member. Other information about the class is also available by invoking methods, such as the

method named getSuperclass, on a reference to the Class object.

As you will see, when an attempt is made to instantiate an object of the subclass named B, that

class and its superclass named A are both loaded. Furthermore, the superclass named A is

loaded first. The loading of both classes takes place before the other steps required to instantiate

the object take place.

A static initializer in the class named A

Listing 5 shows the beginning of the class named A. The code in Listing 5 declares an instance

variable named aXstrTime, which will be used later to record the time that the constructor for

the class named A is executed. More important for this part of the discussion, however, is the

static initializer shown in Listing 5.

class A{

 long aXstrTime;

 static{//This is a static

initializer.

 System.out.println("Class A

loaded: " +

Init02.relTime());

 }//End static initializer

Listing 5

You will recall from the previous lesson on static initializers that they execute one time only

when the class is loaded. The static initializer in Listing 5 prints a message showing the time

that the class named A is loaded.

Class A load time

On my machine the code in Listing 5 produced the output shown in Figure 3. Presumably, the

ten-millisecond delay between the start of the program and the point in time that the class named

A was loaded was due primarily to the time required for the program to find the class file on the

disk and to load it into memory. Your system may produce a different result depending on the

speed of your computer.

Class A loaded: 10

Figure 3

A static initializer in the class named B

Listing 6 shows the beginning of the class named B. The code in Listing 6 declares three

instance variables, which will be used later to record the time that the constructor and the

instance initializers are executed. More important for this part of the discussion, however, is the

static initializer shown in Listing 6.

class B extends A{

 long bXstrTime;

 long init1Time;

 long init2Time;

 static{//This is a static

initializer.

 Init02.delay();

 System.out.println("Class B

loaded: " +

Init02.relTime() + "\n");

 }//End static initializer

Listing 6

The output

The static initializer in Listing 6 purposely inserts a one-hundred millisecond delay and then

prints the time that it finishes executing. This is the time that the class named B finishes loading.

Class B loaded: 110

Figure 4

Figure 4 shows that the class named B was loaded immediately following the loading of the class

named A.

Create the new object of the class named B

After the classes are loaded, the system proceeds to create the new instance of the class named

B. You should recall however that objects are actually created beginning with the contribution

from the class named Object, and proceeding down the inheritance hierarchy to the class from

which the object is actually being instantiated. Thus, the next identifiable significant event is the

execution of the constructor for the class named A, which is the superclass of the class named

B. (Nothing in the program makes it possible for us to identify the construction of that portion of

the object attributable to the superclass named Object.)

The constructor for the class named A

Listing 7 shows the constructor for the class named A. The code in the constructor purposely

inserts a one-hundred millisecond delay, and then gets and saves the time that the constructor is

executed. (The time is saved in the instance variable named aXstrTime, which was declared in

Listing 5 earlier.)

 A(String str){//constructor

 Init02.delay();

 aXstrTime = Init02.relTime();

 System.out.println(str + "A: " +

aXstrTime);

 }//end constructor for A

Listing 7

Then the code in the constructor prints that time, producing the output shown in Figure 5.

Construct 1A: 210

Figure 5

The important point here is that the constructor for the superclass is executed after the classes

named A and B are loaded, but before the instance initializers for the subclass named B are

executed.

Instance initializers in the subclass named B

If you examine Listing 15 near the end of the lesson you will see that the class named B contains

two separate instance initializers, which are physically separated by an ordinary instance variable

declaration (with initialization) and a constructor. As you will see in the discussion that follows,

the execution of the first instance initializer follows the execution of the constructor for the

superclass named A shown in Listing 7.

Then the initialization of the ordinary instance variable takes place, following the execution of

the first instance initializer. This is followed by the execution of the second instance initializer.

Despite their physical placement in the code, the execution of both instance initializers and the

initialization of the ordinary instance variable all take place before the constructor for the class

named B is executed.

The first instance initializer

The first instance initializer is shown in Listing 8. Once again, as described by David Flanagan,

"An instance initializer is simply a block of code inside curly braces that is embedded in a class

definition, where a field or method definition normally appears. ... The instance initializers and

any variable initializers that appear in field definitions for the class are executed in the order

they appear in the Java source code. These initializers are automatically run after the

superclass constructor has returned but before the constructor, if any, of the current class runs."

 {//This is an instance initializer

 Init02.delay();

 init1Time = Init02.relTime();

 System.out.println("Initializer-1:

" +

init1Time);

 Init02.delay();

 }//end instance initializer

Listing 8

Insert a delay

The code in the instance initializer in Listing 8 begins by inserting a one-hundred millisecond

delay to force the time interval between the execution of the constructor for the class named A

and the execution of the instance initializer to be distinguishable.

Get, save, and display the relative time

After sleeping for one-hundred milliseconds, the code in the initializer gets and saves the current

time relative to the start of the program.

Then the code in the initializer displays that time, producing the output shown in Figure 6.

Initializer-1: 310

Figure 6

If you compare Figure 6 with Figure 5 showing the time that the constructor for the class named

A was executed, you will see that the printout produced by the initializer followed the printout

produced by the constructor by the one-hundred millisecond delay introduced at the beginning of

the initializer. This confirms that the first initializer in the class named B was executed

following the execution of the constructor for the superclass named A.

Insert another time delay

Finally the instance initializer shown in Listing 8 inserts an additional one-hundred millisecond

delay. This makes it possible to distinguish the time that the ordinary instance variable (to be

discussed next) was initialized from the time that the print statement in the first instance

initializer was executed.

An ordinary instance variable

Listing 9 shows the declaration and initialization of an ordinary instance variable named

simpleInitTime. Recall that the physical location of this variable declaration is after the first

instance initializer and before the constructor and the second instance initializer.

 long simpleInitTime =

Init02.relTime();

Listing 9

Although the code in Listing 9 doesn't display the time of initialization, code later in the program

causes the value stored in the variable named simpleInitTime to be displayed, producing the

output shown in Figure 7.

class B simple init: 410

Figure 7

As you can see from the relative time shown in Figure 7, the instance variable was initialized

immediately following completion of execution of the first instance initializer shown in Listing 8

(compare Figure 7 with Figure 6).

The second instance initializer

An examination of Listing 15 near the end of the lesson shows that the class named B contains a

second instance initializer, separated from the first instance initializer by an ordinary instance

variable declaration and a constructor. The second instance initializer is shown in Listing 10.

 {//This is another instance

initializer

 Init02.delay();

 init2Time = Init02.relTime();

 System.out.println("Initializer-2:

" +

init2Time);

 }//end instance initializer

Listing 10

Insert a delay

This initializer begins by inserting a one-hundred millisecond delay. Then it gets, saves, and

displays the time relative to the start time for the program as shown in Figure 8.

Initializer-2: 510

Figure 8

A comparison of the relative time shown in Figure 8 with Figure 7 confirms that the second

instance initializer was executed after the initialization of the ordinary instance variable shown in

Listing 9. This confirms that the instance initializers and variable initializers are executed in the

order they appear in the Java source code.

The constructor for the class named B

The constructor for the class named B physically separates the two instance initializers in the

class definition. The code for the constructor begins in Listing 11.

 B(String str){

 super(str);

Listing 11

The constructor begins by using the super keyword to invoke a parameterized constructor on the

superclass named A.

(If you are unfamiliar with this use of the super keyword, see Lesson 1628 entitled The Essence

of OOP using Java, The this and super Keywords at www.DickBaldwin.com.)

Insert a time delay

The remaining code in the constructor, as shown in Listing 12, inserts a one-hundred millisecond

time delay.

 Init02.delay();

 bXstrTime = Init02.relTime();

 System.out.println(str + "B: " +

bXstrTime);

 }//end constructor for B

Listing 12

Get and display the time

Then the constructor gets, saves, and displays the time, producing the output shown in Figure

9. A comparison of the relative time shown in Figure 9 with the previous figures confirms that

the initializers are run after the superclass constructor has returned but before the constructor of

the current class runs.

Construct 1B: 611

Figure 9

The showData method

The class named B contains a method named showData. This method is shown in its entirety in

Listing 13. The purpose of this method is to summarize the order of initialization by displaying

the values stored in the various instance variables as the object was being instantiated.

 void showData(){

 System.out.println(

 "\nInitialization

values:");

 System.out.println("class A xstr:

" +

http://www.dickbaldwin.com/

aXstrTime);

 System.out.println("class B init-

1: " +

init1Time);

 System.out.println("class B simple

init: " +

simpleInitTime);

 System.out.println("class B init-

2: " +

init2Time);

 System.out.println("class B xstr:

" +

bXstrTime);

 System.out.println();//blank line

 }//end showData

Listing 13

The output of the showData method

The values stored in the instance variables are displayed in the order that the initialization steps

took place during the instantiation of the object. Recall that the showData method was invoked

on the object when it was instantiated in the main method in Listing 4, producing the output

shown in Figure 10.

Initialization values:

class A xstr: 210

class B init-1: 310

class B simple init: 410

class B init-2: 510

class B xstr: 611

Figure 10

An examination of Figure 10 makes it clear that the superclass constructor was executed first, at

a relative time of 210 milliseconds. This was followed by execution of the first instance

initializer at 310 milliseconds, initialization of the ordinary instance variable at 410 milliseconds,

and execution of the second instance initializer at 510 milliseconds. Finally the constructor for

the class named B was executed at a relative time of 611 milliseconds.

Instantiate another object

Listing 14 shows the remaining code in the main method, which was not previously discussed.

 delay();

 System.out.println("Instantiate

second obj: "

 +

relTime());

 new B("Construct 2").showData();

 }//end main

Listing 14

The remaining code in the main method inserts another one-hundred millisecond delay, and then

instantiates another object of the class named B. As before, this triggers a whole series of events,

many of which produce output on the screen.

The screen output

The output produced by instantiating another object is shown in its entirety in Figure 11.

Instantiate second obj: 711

Construct 2A: 811

Initializer-1: 911

Initializer-2: 1111

Construct 2B: 1211

Initialization values:

class A xstr: 811

class B init-1: 911

class B simple init: 1011

class B init-2: 1111

class B xstr: 1211

Figure 11

Except for the differences in the relative time values, the output shown in Figure 11 matches that

shown in Figure 2 and Figures 5 through 10. Note, however, that there is nothing in Figure 11

corresponding to the output previously shown in Figures 3 and 4.

Classes are not reloaded

Figures 3 and 4 show the output produced by the execution of the static initializers in the classes

named A and B. The process of instantiating another object from a set of previously loaded

classes does not cause those classes to be reloaded. Since static initializers are executed one time

only when the class is first loaded, those initializers are not executed when the second object is

instantiated from the class named B.

Constructors and instance initializers are executed for each object

However, constructors and instance initializers are executed, and ordinary instance variables are

initialized each time a new object is instantiated. Therefore, the output shown in Figure 11

contains messages and time tags corresponding to the execution of both constructors, the

execution of both instance initializers, and the initialization of an ordinary instance variable, all

in the proper order.

Run the Program

At this point, you may find it useful to compile and run the program shown in Listing 15 near the

end of the lesson.

Summary

Static initializer blocks

A static initializer is a block of code surrounded by curly braces that is embedded in a class

definition and is qualified by the keyword static.

You can include any number of static initializer blocks within your class definition. They can be

separated by other code such as method definitions and constructors. The static initializer blocks

will be executed in the order that they appear in the code, regardless of the other code that may

separate them.

The static initializers belonging to a class are executed one time only when the class is loaded.

Instance initializers

An instance initializer is a block of code surrounded by curly braces that is embedded in a class

definition. (It is not qualified by the keyword static.) You can include any number of instance

initializers in your class definition, and the initializers may be physically separated by other

items, such as constructors, method definitions, variable declarations, etc.

Instance initializers and variable initializers, along with constructors, are executed each time a

new object of the class is instantiated. The instance initializers and variable initializers are

executed in the order that they appear in the Java source code. They are executed after the

constructor for the superclass is executed, and before the constructor for the current class is

executed.

Instance initializers are especially useful in anonymous classes (to be explained in a future

lesson). However, they can be included in any class definition, and may make code more

readable by initializing instance variables near the declaration of those variables rather than

deferring that initialization to a constructor that is located further away in the class definition.

Instance initializers are very similar to noarg constructors, except that a class can define only one

noarg constructor, but can define any number of instance initializers. A class definition can

contain instance initializers in addition to a noarg constructor, in which case, the instance

initializers will be executed before the noarg constructor is executed.

What's Next?

The next lesson in this series will explain and discuss inner classes, with special emphasis on

member classes. Subsequent lessons will explain local classes, anonymous classes, and top-level

nested classes.

Complete Program Listing

A complete listing of the program discussed in this lesson is show in Listing 15 below.

/*File Init02.java

Copyright 2003 R.G.Baldwin

Illustrates the use of instance initializers.

Instance initializers behave much like noarg

constructors, and are particularly useful for

anonymous classes, which are not allowed to

define any constructors, even those that take no

arguments.

This program defines a class named B that extends

a class named A. Parameterized constructors are

used in both A and B to instantiate an object of

the class named B.

The controlling class defines and initializes

a static variable containing the time that the

program starts running in msec. This value is

used as the base for computing time intervals

later as the execution of the program progresses.

The times that are computed and displayed later

are in msec relative to the time at which the

program starts running.

Static initializers are defined in both A and B

to display the time that the two classes are

loaded and the order in which they are loaded.

An instance variable is defined in the class

named B and is initialized (using a simple

initialization expression) with the time in msec

that the variable is initialized. The physical

location of the instance variable follows the

first of two instance initializer in the class

definition.

In addition, two separate instance initializers

are defined in the class named B that perform

initialization after the constructor for A

completes execution and before the constructor

for B begins execution. The first of these

initializers executes before the instance

variable mentioned above is initialized. The

second of these initializers executes after the

instance variable is initialized, demonstrating

that initialization based on simple

initialization expressions and instance

initializers occurs in the order that the code'

appears in the class definition.

The two constructors and the two initializers

each get and print time information when they are

executed to show the order in which the

constructors and the initializers are executed.

Two separate instances of the class named B are

created, showing not only the order in which the

instance initializers and the constructors are

executed, but also showing that the static

initializers are executed one time only when the

classes are loaded.

Each time an object of the class named B is

instantiated, an instance method of the class

is invoked to display the values of the instance

variables initialized during the process

of instantiating the object of the class named B.

100-msec time delays are purposely inserted at

strategic points within the program in order to

force the time intervals between the occurrence

of the different steps in the program to be

measurable.

The output for one run is shown below. Your

results may be different depending on the speed

of your computer.

Instantiate first obj: 0

Class A loaded: 10

Class B loaded: 110

Construct 1A: 210

Initializer-1: 310

Initializer-2: 510

Construct 1B: 611

Initialization values:

class A xstr: 210

class B init-1: 310

class B simple init: 410

class B init-2: 510

class B xstr: 611

Instantiate second obj: 711

Construct 2A: 811

Initializer-1: 911

Initializer-2: 1111

Construct 2B: 1211

Initialization values:

class A xstr: 811

class B init-1: 911

class B simple init: 1011

class B init-2: 1111

class B xstr: 1211

Note the 100-msec elapsed time intervals

between the various steps in the execution of the

program. Also note the order in which the class

loading operations and the initialization steps

occur.

Tested using SDK 1.4.1 under WinXP

**/

import java.util.Date;

public class Init02{

 //Establish the base time in msec.

 static long baseTime = new Date().getTime();

 //This is a utility method used to insert a

 // 100-millisecod delay.

 static void delay(){

 try{

 Thread.currentThread().sleep(100);

 }catch(Exception e){e.printStackTrace();}

 }//end delay

 //---//

 //This is a utility method used to compute the

 // current time relative to the value stored

 // in the static variable named baseTime.

 static long relTime(){

 return ((new Date().getTime()) - baseTime);

 }//end printTime

 //---//

 public static void main(String[] args){

 //Invoke a parameterized constructor for the

 // class named B, which is a subclass of A.

 // Also invoke the showData method on that

 // object to display the values of the

 // instance variables that were initialized

 // during the construction of the object.

 System.out.println("Instantiate first obj: "

 + relTime());

 new B("Construct 1").showData();

 //Sleep 100 msec and then instantiate another

 // object.

 delay();

 System.out.println("Instantiate second obj: "

 + relTime());

 new B("Construct 2").showData();

 }//end main

 //---//

}//end class Init02

//===//

class A{

 long aXstrTime;

 static{//This is a static initializer, which is

 // run one time only when the class is loaded.

 //Print a message showing the time that the

 // class finishes loading.

 System.out.println("Class A loaded: " +

 Init02.relTime());

 }//End static initializer

 //---//

 A(String str){//constructor

 //Sleep for 100 msec before completing this

 // construction

 Init02.delay();

 //Record the time of construction and print

 // a message showing the construction time.

 aXstrTime = Init02.relTime();

 System.out.println(str + "A: " + aXstrTime);

 }//end constructor for A

}//end class A

//===//

class B extends A{

 long bXstrTime;

 long init1Time;

 long init2Time;

 static{//This is a static initializer, which is

 // run one time only when the class is loaded.

 //Sleep for 100 msec to show the order

 // that the classes named A and B are loaded.

 Init02.delay();

 //Print a message showing the time that the

 // class finishes loading.

 System.out.println("Class B loaded: " +

 Init02.relTime() + "\n");

 }//End static initializer

 //---//

 {//This is an instance initializer

 //Sleep for 100 msec before doing this

 // initialization.

 Init02.delay();

 //Record the time and print a message showing

 // the time that this instance initializer

 // was executed.

 init1Time = Init02.relTime();

 System.out.println("Initializer-1: " +

 init1Time);

 //Sleep for 100 msec after doing this

 // initialization to separate this

 // initialization from the initialization of

 // the instance variable that follows.

 Init02.delay();

 }//end instance initializer

 //---//

 //Note that this initialized instance variable

 // is located after the first instance

 // initializer and before the second instance

 // initializer..

 long simpleInitTime = Init02.relTime();

 //---//

 //Note that this constructor is physically

 // located between the two instance initializer

 // blocks. Both initializer blocks are

 // executed before the constructor for this

 // class is executed, but after the constructor

 // for the superclass is executed.

 B(String str){

 //Invoke a parameterized constructor on the

 // superclass.

 super(str);

 //Sleep for 100 msec before constructing

 // this part of the object.

 Init02.delay();

 //Record the time and print a message showing

 // the construction time for this part of

 // the object.

 bXstrTime = Init02.relTime();

 System.out.println(str + "B: " + bXstrTime);

 }//end constructor for B

 //---//

 {//This is another instance initializer

 //Sleep for 100 msec before doing this

 // initialization.

 Init02.delay();

 //Record the time and print a message showing

 // the time that this instance initializer

 // was executed.

 init2Time = Init02.relTime();

 System.out.println("Initializer-2: " +

 init2Time);

 }//end instance initializer

 //---//

 void showData(){

 //This method displays the values that were

 // saved in the instance variables during the

 // five initialization steps, one of which

 // was execution of the superclass

 // constructor. The values are displayed

 // in the order that the initialization steps

 // occurred.

 System.out.println(

 "\nInitialization values:");

 System.out.println("class A xstr: " +

 aXstrTime);

 System.out.println("class B init-1: " +

 init1Time);

 System.out.println("class B simple init: " +

 simpleInitTime);

 System.out.println("class B init-2: " +

 init2Time);

 System.out.println("class B xstr: " +

 bXstrTime);

 System.out.println();//blank line

 }//end showData

}//end class B

Listing 15

Copyright 2003, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, Texas) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects, and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin@DickBaldwin.com

-end-

mailto:baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@DickBaldwin.com

