
The Essence of OOP using Java, Static Initializer Blocks

Baldwin explains and illustrates the use of static initializer blocks.

Published: July 15, 2003

By Richard G. Baldwin

Java Programming Notes # 1632

 Preface

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 What's Next

 Complete Program Listing

Preface

This series of lessons is designed to teach you about the essence of Object-Oriented

Programming (OOP) using Java.

The first lesson in the series was entitled The Essence of OOP Using Java, Objects, and

Encapsulation. The previous lesson was entitled The Essence of OOP Using Java, Exception

Handling.

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

For further reading, see my extensive collection of online Java tutorials at Gamelan.com. A

consolidated index is available at www.DickBaldwin.com.

Preview

Proper initialization is important

Proper initialization of variables is an important aspect of programming. Unlike other

programming languages, it is not possible to write a Java program in which the variables are

initialized with the garbage left over in memory from the programs that previously ran in the

computer.

mailto:baldwin@DickBaldwin.com
http://softwaredev.earthweb.com/java/article/0,,12082_935351,00.html
http://softwaredev.earthweb.com/java/article/0,,12082_935351,00.html
http://www.developer.com/java/article.php/1455891
http://www.developer.com/java/article.php/1455891
http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/

Automatic initialization to default values

Instance and class (static) variables are automatically initialized to standard default values if you

fail to purposely initialize them. Although local variables are not automatically initialized, you

cannot compile a program that fails to either initialize a local variable or assign a value to that

local variable before it is used.

Thus, Java programmers are prevented from committing the cardinal sin of allowing their

variables to be initialized with random garbage.

Initialization during declaration

You should already know that you can initialize instance variables and class variables when you

declare them, by including an initialization expression in the variable declaration

statement. Figure 1 shows an example of a primitive class variable named var1 that is purposely

initialized to the value 6, along with a reference variable of type Date that is allowed to be

automatically initialized to the default value null.

 static int var1 = 6;

 Date date;

Figure 1

Constructor

What if your initialization requirements are more complex than can be satisfied with a single

initialization expression? You should already know that you can write a constructor to purposely

initialize all instance variables when an object is instantiated from the class. The code in a

constructor can be as complex as you need it to be.

Static initializer blocks

What you may not know, however, is that you can also write static initializer blocks to initialize

static variables when the class is loaded. The code in a static initializer block can also be quite

complex.

A static initializer block resembles a method with no name, no arguments, and no return type. It

doesn't need a name, because there is no need to refer to it from outside the class definition. The

code in a static initializer block is executed by the virtual machine when the class is loaded.

Like a constructor, a static initializer block cannot contain a return statement. Therefore, it

doesn't need to specify a return type.

Because it is executed automatically when the class is loaded, parameters don't make any sense,

so a static initializer block doesn't have an argument list.

Syntax

So, what does this leave as the syntax of a static initializer block? All that is left is the keyword

static and a pair of matching curly braces containing the code that is to be executed when the

class is loaded.

Multiple static initializer blocks

You may include any number of static initializer blocks in your class definition, and they can be

separated by other code such as method definitions and constructors. The static initializer blocks

will be executed in the order in which they appear in the code.

According to one of my favorite authors, David Flanagan, author of Java in a Nutshell,

"What the compiler actually does is to internally produce a single class

initialization routine that combines all the static variable initializers and all of the

static initializer blocks of code, in the order that they appear in the class

declaration. This single initialization procedure is run automatically, one time

only, when the class is first loaded."

The sample program that I will discuss in the next section will illustrate many aspects of static

initializer blocks.

Discussion and Sample Code

In this lesson, I will discuss and explain a Java program named Init01, which illustrates static

initializer blocks. As is often the case, I will discuss the program in fragments. A complete

listing of the program can be viewed in Listing 14 near the end of the lesson.

This program illustrates the use of static initializer blocks to execute initialization code that is too

complex to be contained in a simple variable initializer expression.

The code demonstrates that multiple initializer blocks are allowed, and that other code can be

inserted between the static initializer blocks.

Finally, the code demonstrates that static initializer blocks are combined in the order in which

they appear in the class definition, and executed once only.

The program was tested using SDK 1.4.1 under WinXP.

Order of execution

Because the compiler combines multiple static initializer blocks into a single initialization

procedure, the order of execution of program code will not necessarily be the same as the order

in which the code appears in the program. (Multiple static initializer blocks can be separated by

non-static code.) This causes the program to be a little difficult to explain. In some cases, I will

present the code in a more meaningful order than the order in which it appears in the

program. Time tags are displayed at various points in the program to help make sense of the

order of execution.

Because the time tags are based on the system clock, the output produced by the program will be

different each time the program is run (at least the times will be different). I will show you the

output produce by a single running of the program. (Note that in some cases, I manually inserted

line breaks in the program output to force the material to fit in this narrow publication format.)

The main method

The code in Listing 1 shows the beginning of the controlling class and the beginning of the main

method. The code in the main method in Listing 1 displays the time that the program starts

running, which is also the time at which the class named A is caused to start loading (as you will

see in Listing 2).

public class Init01{

 public static void main(String[]

args){

 System.out.println("Start load: "

+

new Date());

Listing 1

Figure 2 shows the time at which the class named A started loading.

Start load: Fri May 30 15:28:49 CDT

2003

Figure 2

Load class A

The code in Listing 2 causes the class named A to start loading. Flanagan refers to the term

A.class in Listing 2 as a class literal. (I will show you an alternative way to accomplish the same

thing using a method call in Listing 3).

 Class aClass = A.class;

Listing 2

What does it mean to say that a class is loaded?

While I can't provide a description of exactly what happens from a technical viewpoint, I can tell

you what seems to happen from a functional viewpoint.

Functionally, an object of the class whose name is Class is created and saved in memory. This

object represents the class that is being loaded (in this case, the class named A). From that point

forward, all static members of the class are available to the program by referring to the name of

the class and the name of the member. Other information about the class is also available by

invoking methods on a reference to the Class object.

(The code in Listing 2 causes the Class object's reference to be saved in the reference variable

named aClass. However, the reference isn't used for any purpose elsewhere in the

program. The purpose of the statement in Listing 2 is to cause the class to load, and is not to get

and save a reference to the Class object.)

An alternative approach

The comments in Listing 3 show an alternative way to force the class named A to be loaded, and

to cause the Class object's reference to be saved in a reference variable named aClass. If

activated, this code would cause the class to be loaded by invoking the static forName method of

the class named Class, passing the name of the class to be loaded to the method as a String

parameter.

 //try{

 //Class aClass =

Class.forName("A");

 //}catch(ClassNotFoundException

e){

 //

e.printStackTrace();}

Listing 3

If you find the code (shown as comments) in Listing 3 to be confusing, just ignore

it. Understanding that code isn't critical to understanding static initializer blocks.

Display end of load time

Continuing in the main method, the code in Listing 4 causes the time to be displayed when the

loading of the class named A is complete.

 System.out.println("End load: " +

new Date());

Listing 4

The code in Listing 4 causes the date and time shown in Figure 3 to be displayed on the screen.

End load: Fri May 30 15:28:54 CDT 2003

Figure 3

(You can view all of the screen output in the order in which it appears in the

comments in Listing 14 near the end of the lesson.)

Five seconds have elapsed

If you compare the time shown in Figure 3 with the time shown in Figure 2, you will note that

five seconds have elapsed during the time that the class was being loaded. The reason for this

will become obvious as we examine the static initializer blocks in the definition of class A.

Now discuss the class named A

At this point, I am going to defer the remaining discussion of the main method until later and

discuss the static initialization defined in the class named A.

Listing 5 shows an abbreviated listing of the class named A, showing only the code involved in

the static initialization of the class when it is loaded. A complete listing of the class definition is

shown in Listing 14 near the end of the lesson.

class A{

 //Declare six static variables

 static int var1 = 6;

 static int var2 = 9;

 static int var3;//originally

initialized to 0

 static long var4;//originally

initialized to 0

 static Date date1;//initialized to

null

 static Date date2;//initialized to

null

 //instance var declaration omitted

for brevity

 static{

 //First static initializer block

 date1 = new Date();

 for(int cnt = 0; cnt < var2;

cnt++){

 var3 += var1;

 }//end for loop

 System.out.println("End first

static init: "

 +

new Date());

 }//end first static initializer

block

 //Constructor and instance method

omitted

 // for brevity.

 static{

 //Second static initializer block

 try{

 //Sleep for five seconds

Thread.currentThread().sleep(5000);

 }catch(Exception

e){System.out.println(e);}

 date2 = new Date();

 var4 = date2.getTime() -

date1.getTime();

 System.out.println("End second

static init: "

 +

new Date());

 }//end second static initializer

block

}//end class A

Listing 5

Six ordinary static variables

A careful examination of Listing 5 shows that it includes the declaration of six ordinary static

variables with two of them being initialized to integer values when they are declared. The

remaining four are automatically initialized to their default values when they are declared.

Two static initializer blocks

Listing 5 also shows two static initializer blocks, physically separated by the class constructor

and an instance method. According to Flanagan, the code in Listing 5 is all combined by the

compiler into a single static initialization procedure, which is executed one time only when the

class is loaded.

I will separate the code in Listing 5 into several fragments and discuss those fragments in the

paragraphs that follow.

Ordinary static variables

Listing 6 shows the declaration of six ordinary static variables, and the purposeful initialization

of two of them. The remaining four are automatically initialized to their default values, but code

in the static initializer blocks to follow will also provide non-default initial values for some of

them.

class A{

 static int var1 = 6;

 static int var2 = 9;

 static int var3;//initialized to 0

 static long var4;//initialized to 0

 static Date date1;//initialized to

null

 static Date date2;//initialized to

null

Listing 6

First static initializer block

Listing 7 shows the first static initializer block.

 static{

 date1 = new Date();

 for(int cnt = 0; cnt < var2;

cnt++){

 var3 += var1;

 }//end for loop

 System.out.println("End first

static init: "

 +

new Date());

 }//end first static initializer

block

Listing 7

The code in this static initializer block records the date and time in one of the static variables,

date1, declared earlier.

Then it executes a for loop to compute an initial value for one of the other static variables, var3,

also declared earlier. Note that the computation of the initial value for var3 is based on the

initial value given to var1 when it was declared.

(The contents of date1 and var3 will be displayed later.)

Complex code

Note also that the code in this initializer block is far too complex to be included in a simple

initialization expression when a static variable is declared. Thus, this initializer block

demonstrates the primary purpose of static initializer blocks - to execute code that cannot be

included in an initialization expression that is part of a static variable declaration.

Display the date and time

Finally, the code in Listing 7 displays the date and time that the code in the initializer block

completes execution. This date and time is shown in Figure 4.

End first static init:

 Fri May 30

15:28:49 CDT 2003

Figure 4

If you compare the time in Figure 4 with the time in Figure 2, you will see that the two times are

indistinguishable. In other words, the time required to execute the code in the first static

initializer block was so short that the granularity of the time-display mechanism was too large to

show actual the time difference.

Second static initializer block

If you refer back to Listing 5, or refer to Listing 14 near the end of the lesson, you will see that

the static initializer block shown in Listing 7 is followed by the definition of the class constructor

and an instance method of the class. This is followed by a second static initializer block, as

shown in Listing 8.

 static{

 try{

Thread.currentThread().sleep(5000);

 }catch(Exception

e){System.out.println(e);}

 date2 = new Date();

 var4 = date2.getTime() -

date1.getTime();

 System.out.println("End second

static init: "

 +

new Date());

 }//end second static initializer

block

}//end class A

Listing 8

The code in the second static initializer block purposely inserts a five-second time delay by

putting the thread to sleep for five seconds. The static variable named date2 is then initialized

with a reference to a new Date object, which reflects the date and time following the five-second

delay.

The time difference

Following this, the code in Listing 8 computes a new initial value for the previously declared

static variable named var4 based on values saved during previous initialization operations.

The variable named var4 is initialized with a value that represents the time difference in

milliseconds between the time recorded during the execution of the first static initializer block,

and the time following the five-second delay in the second initializer block. Later, when the

values stored in the static variables are displayed, we will see that the time difference was 5008

milliseconds.

Display the date and time

Finally, the code in the second initializer block shown in Listing 8 displays the date and time that

the execution of the second initializer block is complete. This date and time is shown in Figure

5.

End second static init:

 Fri May 30

15:28:54 CDT 2003

Figure 5

As you should expect, this date and time matches the date and time displayed by the main

method in Figure 3 as the time that the loading operation for the class named A was completed.

Now back to the main method

After the class named A is loaded, the main method purposely causes the main thread to sleep for

five seconds as shown in Listing 9.

//Back in discussion of the main

method

 try{

Thread.currentThread().sleep(5000);

 }catch(Exception

e){System.out.println(e);}

Listing 9

A new object of the class named A

After the main thread has been allowed to sleep for five seconds, the code in the main method

instantiates a new object of the class named A and invokes the showData method on that

object. This code, which is shown in Listing 10, causes the values previously stored in the static

variables to be displayed.

 new A().showData();

 }//end main

}//end class Init01

Listing 10

When the showData method returns, the program terminates.

Resume discussion of class A definition

Some of the code that I skipped in my earlier discussion of the definition of class A was the

declaration of an instance variable named date3, as shown in Listing 11.

//Resume discussion of class A

 Date date3;

Listing 11

When does the initialization occur?

It is very important to understand that the initialization of static variables occurs when the class

is originally loaded, while the initialization of instance variables occurs when an object of the

class is instantiated. That characteristic of OOP is demonstrated in this program.

Record date and time of object instantiation

The class constructor, shown in Listing 12, causes the instance variable named date3, declared in

Listing 11, to contain the date and time that the object is actually instantiated.

 A(){//constructor

 //Record the time in an instance

variable.

 date3 = new Date();

 }//end constructor

Listing 12

Display data in the variables

The method named showData is shown in Listing 13. The code in this method displays the

times that the variables were initialized, along with the values stored in those variables.

 void showData(){//an instance method

 System.out.println("var3

initialized: "

+ date1);

 System.out.println("var3 = " +

var3);

 System.out.println("var4

initialized: "

+ date2);

 System.out.println("var4 = " +

var4

+ " msec");

 System.out.println("Obj

instantiated: "

+ date3);

 }//end showData

Listing 13

The output produced by the showData method

The showData method is invoked as soon as the new object is instantiated by the code in the

main method, producing the screen output shown in Figure 6.

var3 initialized: Fri May 30 15:28:49

CDT 2003

var3 = 54

var4 initialized: Fri May 30 15:28:54

CDT 2003

var4 = 5008 msec

Obj instantiated: Fri May 30 15:28:59

CDT 2003

Figure 6

Five-second intervals

First, you should note the five-second intervals that separate the two initialization operations and

the object instantiation.

Recall that the first five-second delay, that separates the two static initialization operations, was

caused when the second static initializer block put the thread that was loading the class to sleep

for five seconds.

Recall also that the second five-second delay was caused by the main method, which put the

main thread to sleep for five seconds after the class named A was loaded, and before an object of

the class named A, was instantiated.

Result of the loop computation

Also note the value of 54 stored in the static variable named var3. Recall that this value was

computed by a for loop in the first static initializer block.

The time difference in milliseconds

Finally, note the value of 5008 milliseconds stored in the static variable named var4. This value

was computed by code in the second static initializer block, after sleeping for 5000

milliseconds. This value represents the time difference between the execution of the first static

initializer block and the completion of the second static initializer block following a five-second

delay.

Run the Program

At this point, you may find it useful to compile and run the program shown in Listing 14 near the

end of the lesson.

Summary

No random garbage allowed

Unlike other programming languages, it is not possible to write a Java program in which the

variables are initialized with the random garbage left over in memory from the programs that

previously ran in the computer.

Instance and static variables are automatically initialized to standard default values if you fail to

purposely initialize them.

You cannot compile a program that fails to either initialize a local variable or assign a value to

that local variable before it is used.

Different approaches to variable initialization

You can initialize instance variables and class variables when you declare them, by including an

initialization expression in the variable declaration statement.

If your initialization needs are more complex than can be satisfied with a single initialization

expression, you can write a constructor to purposely initialize all instance variables when the

object is instantiated. The code in a constructor can be as complex as needed.

You can also write a static initializer block to initialize static variables when the class is

loaded. The code in a static initializer block, which is executed by the virtual machine when the

class is loaded, can also be quite complex.

Static initializer blocks

A static initializer block resembles a method with no name, no arguments, and no return

type. When you remove these items from the syntax, all that is left is the keyword static and a

pair of matching curly braces containing the code that is to be executed when the class is loaded.

You may include any number of static initializer blocks within your class definition. They can

be separated by other code such as method definitions and constructors. The static initializer

blocks will be executed in the order in which they appear in the code, regardless of the other

code that may separate them.

Instance initializers

Although not covered in this lesson, it is also possible to define an instance initializer block,

which can be used to initialize instance variables in the absence of, or in addition to a

constructor. As you will learn in a future lesson on anonymous classes, it is not always possible

to define a constructor for a class, but it is always possible to define an instance initializer block.

What's Next?

The next lesson will explain and discuss instance initializer blocks that can be used in the

absence of, or in addition to class constructors.

Complete Program Listing

A complete listing of the program discussed in this lesson is show in Listing 14 below.

/*File Init01.java

Copyright 2003 R.G.Baldwin

Illustrates the use of static initializer blocks

to execute code that is too complex to be

contained in a simple variable initializer.

Demonstrates that static initializer blocks are

executed in the order in which they appear in the

class definition.

Demonstrates that other code can be inserted

between static initializer blocks in a class

definition.

The output will change each time this program is

run. The output for one run is shown below. Line

breaks were manually inserted to force the

material to fit in this narrow publication

format.

Start load: Fri May 30 15:28:49 CDT 2003

End first static init:

 Fri May 30 15:28:49 CDT 2003

End second static init:

 Fri May 30 15:28:54 CDT 2003

End load: Fri May 30 15:28:54 CDT 2003

var3 initialized: Fri May 30 15:28:49 CDT 2003

var3 = 54

var4 initialized: Fri May 30 15:28:54 CDT 2003

var4 = 5008 msec

Obj instantiated: Fri May 30 15:28:59 CDT 2003

Note the five-second time intervals that separate

the two initializations and the object

instantiation in the above output.

Tested using SDK 1.4.1 under WinXP

**/

import java.util.Date;

public class Init01{

 public static void main(String[] args){

 //Display start load time

 System.out.println("Start load: " +

 new Date());

 //Force the class named A to load using a

 // class literal.

 Class aClass = A.class;

 //Alternative way to cause the class named A

 // to load.

 //try{

 //Class aClass = Class.forName("A");

 //}catch(ClassNotFoundException e){

 // e.printStackTrace();}

 //Display end load time

 System.out.println("End load: " +

 new Date());

 //Sleep for five seconds after the class

 // loads

 try{

 Thread.currentThread().sleep(5000);

 }catch(Exception e){System.out.println(e);}

 //Instantiate a new object of the class named

 // A and display the data stored in the

 // variables.

 new A().showData();

 }//end main

}//end class Init01

//===//

class A{

 //Declare six static variables and initialize

 // some of them when they are declared. The

 // others will be automatically initialized to

 // either zero or null, but this may change

 // later due to the code in static initializer

 // blocks.

 static int var1 = 6;

 static int var2 = 9;

 static int var3;//originally initialized to 0

 static long var4;//originally initialized to 0

 static Date date1;//initialized to null

 static Date date2;//initialized to null

 //Declare an instance variable which is

 // originally initialized to null.

 Date date3;

 static{

 //First static initializer block records the

 // time and then executes a loop to

 // compute a new initial value for var3.

 date1 = new Date();

 for(int cnt = 0; cnt < var2; cnt++){

 var3 += var1;

 }//end for loop

 System.out.println("End first static init: "

 + new Date());

 }//end first static initializer block

 //---//

 //Note that the constructor and an instance

 // method physically separate the two static

 // initializer blocks.

 A(){//constructor

 //Record the time in an instance variable.

 date3 = new Date();

 }//end constructor

 //---//

 void showData(){//an instance method

 //Display the times that the variables were

 // initialized along with the values stored

 // in those variables.

 System.out.println("var3 initialized: "

 + date1);

 System.out.println("var3 = " + var3);

 System.out.println("var4 initialized: "

 + date2);

 System.out.println("var4 = " + var4

 + " msec");

 System.out.println("Obj instantiated: "

 + date3);

 }//end showData

 //---//

 static{

 //Second static initializer block sleeps for

 // five seconds, records the time, and then

 // computes a new intial value for var4 based

 // on values recorded during previous

 // initialization operations.

 try{

 //Sleep for five seconds

 Thread.currentThread().sleep(5000);

 }catch(Exception e){System.out.println(e);}

 date2 = new Date();

 var4 = date2.getTime() - date1.getTime();

 System.out.println("End second static init: "

 + new Date());

 }//end second static initializer block

}//end class A

Listing 14

Copyright 2003, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, Texas) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects, and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin@DickBaldwin.com

mailto:baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@DickBaldwin.com

-end-

